Cours SOD314: TD1

Mardi 4 février 2020

Ex. 1: Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue différentiable. Soit $x \in \mathbb{R}^n$.

• Résoudre le problème

$$\min_{d \in \mathbb{R}^n} \nabla f(x)^{\top} d$$
s.t. $||d||_2 = 1$, (1)

et montrer que la direction de pente maximale est $-\nabla f(x)$.

 \bullet On suppose maintenant que le gradient de f est L-Lipschitzien:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|. \tag{2}$$

On rappelle que f satisfait alors l'inégalité:

$$f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{L}{2} ||y - x||_{2}^{2}.$$
 (3)

Montrer que le pas optimal de descente est $\frac{1}{L}$.

Correction: i) On réécrit la contrainte $\|d\|_2^2 = 1$ pour obtenir un problème équivalent. On dualise alors la contrainte pour obtenir le Lagrangien $\mathcal{L}(d,\mu) = \nabla f(x)^{\top}d + \mu(\|d\|_2^2 - 1)$. Les conditions d'optimalité au premier ordre donne: $\nabla_d \mathcal{L}(d,\mu) = 0$, soit $\nabla f(x) + 2\mu d = 0$, soit $d = -\frac{\nabla f(x)}{2\mu}$. Par ailleurs, on a $\|d\|_2 = 1$, d'où $\mu = \frac{\|\nabla f(x)\|}{2}$, puis $d = -\frac{\nabla f(x)}{\|\nabla f(x)\|}$.

ii) Soit $x_{k+1} = x_k - \alpha \nabla f(x_k)$. On a alors

$$f(x_{k+1}) \leq f(x_k) + \nabla f(x_k)^{\top} (x_{k+1} - x_k) + \frac{L}{2} ||x_{k+1} - x_k||_2^2$$

= $f(x_k) - \alpha \nabla f(x_k)^{\top} \nabla f(x_k) + \frac{L}{2} ||\alpha \nabla f(x_k)||_2^2$
= $f(x_k) + (\frac{L}{2}\alpha^2 - \alpha) ||\nabla f(x_k)||_2^2$.

En prenant alors $\alpha = \frac{1}{L}$ on minimise le terme de droite, qui est lui-même une borne supérieure pour $f(x_{k+1})$. On assure alors que l'objectif décroît au moins de $-\frac{1}{2L}\|\nabla f(x_k)\|_2^2$ entre deux itérations.

Ex. 2:(Transformée de Fenchel) Calculer la transformée de Fenchel des fonctions suivantes:

- f(x) = |x|.
- $f(x) = \frac{1}{2} ||x||_2^2$.
- $f(x) = \frac{1}{2}x^{\top}Qx + b^{\top}x$ où $Q \in \mathbb{R}^{n \times n}$ est une matrice symétrique définie positive.
- $f(x) = \log(1 + \exp(x))$.

Correction:

i) Notons que $f^*(p) = \sup_{x \in \mathbb{R}} (px - |x|) = \sup \left\{ \sup_{x > 0} (px - x), \sup_{x < 0} (px + x) \right\}$. On a alors

- Si p < -1, alors $\sup_{x < 0} ((p+1)x) = +\infty$ et donc $f^*(p) = +\infty$.
- Si p > 1 alors $\sup_{x>0} ((p-1)x) = +\infty$ et donc $f^*(p) = +\infty$.
- $Si |p| \le 1$, $alors \sup_{x \le 0} ((p+1)x) = 0$ et $\sup_{x \ge 0} ((p-1)x) = 0$. D'où $f^*(p) = 0$.

On en déduit alors

$$f^{\star}(p) = \begin{cases} 0 & si |p| \le 1 \\ +\infty & sinon \end{cases}$$

ii) On a par définition $f^*(p) = \sup_{x \in \mathbb{R}^n} p^\top x - \frac{1}{2} ||x||_2^2$. Les conditions d'optimalité au premier ordre nous donne que le minimum satisfait $x^{\sharp} = p$, d'où $f^*(p) = \frac{1}{2} ||p||_2^2$.

iii) On a $f^*(p) = \sup_x p^\top x - \frac{1}{2} x^\top Q x - b^\top x$. Les conditions d'optimalité au premier ordre donnent

$$p - Qx - b = 0$$

soit $x = Q^{-1}(p-b)$. En remplaçant dans le problème d'optimisation précédent, on obtient $f^*(p) = \frac{1}{2}(p-b)^\top Q^{-1}(p-b)$.

iv) On a $f^*(p) = \sup_x p^\top x - \log(1 + \exp(x))$. Les conditions d'optimalité au premier ordre nous donnent, si existence de la solution: $p = \frac{\exp x}{1 + \exp x}$. On en déduit:

- $Si \ p \in]0,1[$, $alors \ x = \log(\frac{p}{1-p})$. En remplaçant on obtient alors $f^*(p) = p\log(\frac{p}{1-p}) + \log(1-p) = (1-p)\log(1-p) + p\log(p)$.
- Si $p \in \{0,1\}$, $f^*(p) = 0$. Dans ce cas, le sup n'est pas atteint.
- Sinon $f^{\star}(p) = +\infty$.

Ex. 3: Soit $f: \mathbb{R}^n \to]-\infty, +\infty]$ et $g: \mathbb{R}^n \to]-\infty, +\infty]$ deux fonctions propres, convexes, s.c.i. On définit l'opération d'inf-convolution comme

$$(f \square g)(x) = \inf_{y \in \mathbb{R}^n} f(y) + g(x - y). \tag{4}$$

Montrer que $(f+g)^* = f^* \square g^*$.

Correction:

On a

$$(f \Box g)^{*}(p) = \sup_{x} \ p^{\top}x - \inf_{y}(f(y) + g(x - y))$$

$$= \sup_{x,y} \ p^{\top}x - f(y) - g(x - y)$$

$$= \sup_{x,y} \ p^{\top}y + p^{\top}(x - y) - f(y) - g(x - y)$$

$$= \sup_{y,z} \ p^{\top}y + p^{\top}z - f(y) - g(z)$$

$$= \sup_{y}(p^{\top}y - f(y)) + \sup_{z}(p^{\top}z - g(z))$$

$$= f^{*}(p) + q^{*}(p)$$

On en déduit $(f \Box g)^* = f^* + g^*$. Si on prend $f' = f^*$ et $g' = g^*$, le résultat se réécrit $(f^* \Box g^*)^* = f + g$. En effet, f et g étant convexes propres s.c.i, on a que $f^{**} = f$ et $g^{**} = g$ (Chapitre 1, proposition 5). D'où le résultat final en prenant les transformées de Fenchel des deux membres de l'égalité précédente.

Ex. 4: On étudie un problème de régression avec une régularisation en norme ℓ_1 . On suppose disponible un ensemble de labels $y_1, \dots, y_n \in \mathbb{R}$ correspondant à des observations $x_1, \dots, x_n \in \mathbb{R}^p$. Le problème de régression cherche à trouver le paramètre $\theta \in \mathbb{R}^p$ solution du problème d'optimisation

$$\min_{\theta \in \mathbb{R}^p} \sum_{i=1}^n l(x_i^\top \theta, y_i) + \lambda \|\theta\|_1 , \qquad (5)$$

où $l: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ est une fonction de pénalisation et $\lambda \in \mathbb{R}$ un paramètre de régularisation. Le terme $\|\cdot\|_1$ est non-differentiable. Pour le prendre en compte, on réécrit le problème sous la forme:

$$\min_{\theta \in \mathbb{R}^p} F(\theta) + G(\theta) , \qquad (6)$$

avec $G: x \to ||x||_1$.

- ullet Calculer le sous-différentiel de G.
- $\bullet\,$ Calculer la transformée de Fenchel de G. Faire un dessin.
- Exprimer $(F+G)^*$ en fonction de F^* et G^* .
- Expliquer l'intérêt de la formulation duale du problème.

Correction:

- i) On a $G(x) = ||x||_1 = \sum_{i=1}^n |x_i|$ qui est une fonction additive.
- ii) On sait que la transformée de Fenchel de $h(x) = \|x\|_1$ vaut $h^\star(p) = \chi_{[-1,1]}(p)$, où $\chi_{[-1,1]}$ désigne la fonction indicatrice de l'intervalle [-1,1]. En utilisant l'additivité de G, on en déduit $G^\star(p) = \chi_B(p)$, avec $B = p \in \mathbb{R}^n$: $|x_i| \leq 1$, $\forall i = 1, \cdots, n$.
- iii) En utilisant l'exercice 3, on obtient $(F+G)^* = F^* \square G^*$.
- iv) Si la transformée de Fenchel de F est facile à calculer, la formulation duale du problème $(F+G)^*$ présente l'avantage de ne plus être non-lisse, la fonction G se réécrivant dans le dual comme une fonction indicatrice, induisant des contraintes sur les bornes de $p \in \mathbb{R}^n$ Ces contraintes de borne sont habituellement faciles à traiter pour les solveurs d'optimisation.