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Two-stage Problem

The extensive formulation of
min E{L(UO,& m)}

s.t. g(up, & up) <0, P—as
o(uy) C o(§)

s
min > p°L(uo, &%, ui)

wfuitseqs) 53

sit g(uo, &% u7) <0, Vse[l,9].

It is a deterministic problem that can be solved with standard tools
or specific methods.
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Splitting variables

The extended Formulation (in a compact formulation)

S
min ZpSL(US,ES,uf)

uOv{”i}sG[l,S]] s=1

s.t g(u07§svuf) <0, Vs € [[175]]

Can be written in a splitted formulation

S
H S S S S
min p’L(ug, &, ui)
{u§,u3}sequ,s] SZ:; Y

s.t g(ug, &%, u7) <0, Vs € [1,5]

S __
ug = U Vs,

Vincent Leclére 0S-5 16/12/2020 3 / 29
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Splitting variables

The extended Formulation (in a compact formulation)

S
. SI(ug. €5 u8
min E p*L(ug, €, ur)
o {uitseqs) 3 o

s.t g(U07£sv Uf) <0, Vs € [[175]]

Can be written in a splitted formulation

S
min psL(u57§57 us)
To{u§,u3 Ysea,s] 52::1 0 !
st g(ug, &%, u7) <0, Vs € [1,5]
US = l_Jo

16/12/2020 3 / 29
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Splitting variables

The extended Formulation (in a compact formulation)

S
min ZpSL(US,fs,uf)

uO?{”f}SE[l,S]] s=1

s.t g(u07§s7uf) <0, Vs € [[175]]

Can be written in a splitted formulation

S
_min ZpsL(uS,gs,uf)
{uovul}SEHI,S]] s=1

sit g(ug, &%, u3) <0, vs € [1,5]
uy = Zp ug Vs
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Dualizing non-anticipativity constraint

S
H S S S S
S rsmn E P L(U07£ 7u1)
{Uovul}se[[l,s]] s—1

sit g(ug, &%, u7) <0, Vs € [1,9]
USZZP Uy Vs

is equivalent to

S
min max ZpsL(ué,gs,uf)ers)\s(uépr ”0)

{ug, 05} sei,s) {N Fseqn,s) 1

st g(ug, €% u7) <0, Vse[LS]

Vincent Leclére = 16/12/2020 4 / 29
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Dualizing non-anticipativity constraint

S
H S S S S
S rsmn E P L(U07£ 7u1)
{Uovul}se[[l,s]] s—1

sit g(ug, &%, u7) <0, Vs € [1,9]
USZZP Uy Vs

is equivalent to

S
min max E p°L(ug, &%, u3)
g uitsen,sy N dsenst 5

S
S ISR SISV
s=1 s,

s.t g(ugagsv Ui) < 07 Vs € [175]]
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Dualizing non-anticipativity constraint

S
H S S S S
S rsmn E P L(U07£ 7u1)
{Uovul}se[[l,s]] s—1

sit g(ug, &%, u7) <0, Vs € [1,9]
USZZP Uy Vs

is equivalent to

S
min max E p°L(ug, &%, u3)
g uitsen,sy N dsenst 5

S
+> P =) E[A]p
s=1

st g(ug, & u7) <0, Vse[L,9]
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Dualizing non-anticipativity constraint

S
H S S S S
S rsmn E P L(U07£ 7u1)
{Uovul}se[[l,s]] s—1

sit g(ug, &%, u7) <0, Vs € [1,9]
USZZP Uy Vs

is equivalent to

S
min max E p°L(ug, &%, u3)
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S
+Y PN = > E[A]poug
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Dualizing non-anticipativity constraint

S
H S S S S
S rsmn E P L(U07£ 7u1)
{Uovul}se[[l,s]] s—1

sit g(ug, &%, u7) <0, Vs € [1,9]
USZZP Uy Vs

is equivalent to

S
min max E p°L(ug, &%, u3)
g uitsen,sy N dsenst 5

+ZS:pS(A5—E[>\})u3

s.t g(ug, &%, u7) <0, Vs € [1,5]
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Dualizing non-anticipativity constraint

Thus, the dual problem reads

max min zs:ps(L(uS,ﬁs,uf)—i- ()\5 —E[A])ug)

A {U57Uf}se[1,51] s—=1

s.t g(ug, &%, u7) <0, Vs € [1,5]

The inner minimization problem, for A given, can decompose
scenario by scenario, by solving S deterministic problem

min - L(uf, €, u5) + A°u8
{u§,ui}

st g(ug, &, u7) <0

Vincent Leclére 0S-5 16/12/2020 5/ 29
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Dualizing non-anticipativity constraint

Thus, the dual problem reads
S
max min P (L(ug, &%, u3) + (N° ug
AEN=0 {450 }oepn,s) Z::l (L(e5. )+ ( )u5)

s.t g(ug, &%, u7) <0, Vs € [1,5]

The inner minimization problem, for A given, can decompose
scenario by scenario, by solving S deterministic problem

min - L(uf, €, u5) + A°u8
{u§,ui}

st g(ug, &, u7) <0
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Price of information

e By weak duality, any A such that E[A] = 0 will give a lower
bound on the 2-stage problem, computed as

S
>op° min (L(6,€%u) + N )

S S
s=1 Ho-t

sit g(ug, &%, u7) <0

@ A = 0 lead to the anticipative lower-bound

@ If problem is convex, and under some qualification
assumptions, there exists an optimal A*, called the price of
information, such that the lower bound is tight.

Vincent Leclére 0S-5 16/12/2020 6 / 29
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Progressive Hedging Algorithm

The progressive hedging algorithm build on this decomposition in
the following way.
© Set a price of information {\*},c1,5] such that E[A] =0
@ For each scenario solve
min  L(ug, &%, u7) + Aug
ug,u3

st g(ug, &%, u7) <0

@ Compute the mean first control T := 322, p°ug
@ Update the price of information with

X = X+ p(u — o)

@ Go back to 2.

Vincent Leclére 0S-5 16,/12/2020 7/29
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The progressive hedging algorithm build on this decomposition in
the following way.
© Set a price of information {\*},c1,5] such that E[A] =0
@ For each scenario solve
min  L(ug, &, uf) + A ug+pl|u§ — o]
ug,uy

st g(ug, &%, u7) <0

@ Compute the mean first control T := 322, p°ug
@ Update the price of information with

X = X+ p(u — o)

@ Go back to 2.
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Convergence of Progressive Hedging

Theorem

Assume that L and g are convex Isc in (ug, u1) for all £, and that,
for all s € S, there exists (ug, u7) such that L(ug,&°, uj) < +o0
and g(ug,&°,uj) <O0.

Then, the progressive hedging algorithm converges toward an
optimal primal solution, and the price of information converges
toward an optimal price of information.

Moreover we can show that

1
e =1 8) ~ G, + 513~ 1B
is a decreasing sequence.

Vincent Leclére 0S-5 16/12/2020 8 / 29
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Bounds in Progressive Hedging

@ At any iteration of the PH algorithm, we have a collection of
primal solution {(ug, uj)}ses, and a price of information

{)\S}SES-

@ We have a lower bound on the value of the stochastic
programm given by

BPH Zp uOvESaui)_‘_Asug]v
seS

@ and an upper bound given by

BPH Zp UO,SS,Uf(UO))-

seS

Vincent Leclére 0S-5 16/12/2020 9 / 29
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Linear 2-stage stochastic program

Consider the following problem
min E cTuo+un1}
s.t. Aug=b, wu>0
Tug+ Wuy =h, u; >0, P— as.
u €R”, o(u) Co(q, T,W,h)
——
13

Vincent Leclere

16/12/2020 10 / 29



L-Shaped decomposition method
0®000000000000

Linear 2-stage stochastic program

Consider the following problem
min E cTuo+un1}
s.t. Aug=b, wu>0
Tug+ Wuy =h, u; >0, P— as.
u €R", o(u) Co(q, T,W,h)
——

13
Which we rewrite

min c'ug+E |:Q(U0a E)}

s.t. Aug = b

Vincent Leclere
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Linear 2-stage stochastic program

Consider the following problem
min E cTuo+un1}
s.t. Aug=b, wu>0
Tug+ Wuy =h, u; >0, P— as.
u €R”, o(u) Co(q, T,W,h)
——
13

Which we rewrite

min c'ug+E |:Q(U0a E)}

s.t. Aug = b
with
N T
Q(uo, §) = min Ge th

S.t. W&Ul = hg - TguO

Vincent Leclere
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Linear 2-stage stochastic program : Extensive Formulation

The associated extensive formulation read
S
. T s s s
min C U+ p°q -uf
s=1

s.t. AUQ = b7 [2]s} > 0
T up+ Wou; = h°, uj >0,Vs

Vincent Leclére - 16/12/2020 1/
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Linear 2-stage stochastic program : Extensive Formulation

The associated extensive formulation read
S
min cTuo+ZPS q° - u;
s=1
s.t. AUQ = b7 [2]s} > 0

T up+ Wou; = h°, uj >0,Vs

Which we rewrite

S
min cTu0+Zpst(uo)
s=1

s.t. Aug=b, up>0
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Linear 2-stage stochastic program : Extensive Formulation

The associated extensive formulation read
S
min cTuo+ZPS q° - u;
s=1
s.t. AUQ = b7 [2]s} > 0
T up+ Wou; = h°, uj >0,Vs
Which we rewrite
S
min cTquerst(uo)
up
s=1
s.t. Aug=b, up>0
with
*(ug) := min S.u
Q°(uo) min q°-u
s.t. Wuy = h° — T iy

Vincent Leclere - 16,/12/2020 11 /29
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Relatively complete recourse

We assume here relatively complete recourse. Without this
assumption we would need feasability cuts.
Here, relatively complete recourse means that, for ug > 0 :

Aup=b = Qs(uwp) < +oo, Vsel]l,5]

Vincent Leclére 0S-5 16/12/2020 12 /29
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Decomposition of linear 2-stage stochastic program

We rewrite the extended formulation as

. T sns
min c up+ g p°0
uo,(0°)ses -
s.t. Aug=b, wup >0

0° > Q%(uo) Vs

Vincent Leclere

16/12/2020
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Decomposition of linear 2-stage stochastic program

We rewrite the extended formulation as

. T sns
min c up+ g p°0
uo,(0°)ses -
s.t. Aug=b, wup >0

0° > aj - up+ B Vk,Vs

Note that Q°(up) is a polyhedral function of wug, hence
0° > Q°(up) can be rewritten 6° > o - up + [, Vk.

Vincent Leclére - 16,/12/2020 13/
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Decomposition of linear 2-stage stochastic program

We rewrite the extended formulation as

. T sns
min c up+ g p°0
uo,(0°)ses -
s.t. Aug=b, wup >0

0° > aj - up+ B Vk,Vs

Note that Q°(up) is a polyhedral function of wug, hence

0° > Q°(up) can be rewritten 6° > o - up + [, Vk.

The decomposition approach consists in constructing iteratively
cut coefficients o} and 3.

Vincent Leclére 0S-5 16/12/2020 13 / 29
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Obtaining (optimality) cuts

Recall that

s.t. Woui = h* — T%up, uj >0

can also be written (through strong duality by relatively complete
recourse assumption)
D s _ A (h°—T°
(D) Q(wo) = max ( )
s.t. (W)X < ¢°

Vincent Leclére = 16/12/2020 14 / 29
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Obtaining (optimality) cuts

(D) @(w) = max  A*-(h° = T°u)

s.t. (W)X < ¢°
admits for optimal solution \° .
Consider another control v, we have
(D) Qh) = max, X (K~ T°u)
s.t. (W)X < g°

As 7, is admissible for (D, ) it is also admissible for (D, ), hence

Q*(uh) = X%, - (H — T*uh).

Vincent Leclere - 16/12/2020 15 /29



L-Shaped decomposition method
0000000e000000

Obtaining (optimality) cuts

To sum up we have seen that, for any admissible first stage
solution, we can construct an exact cut for Q° by solving the dual
of the second stage problem.

Vincent Leclére 0S-5 16/12/2020 16 / 29
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Obtaining (optimality) cuts

To sum up we have seen that, for any admissible first stage
solution, we can construct an exact cut for Q° by solving the dual
of the second stage problem.

More precisely, let > 0 be such that Ay = b. Let A} be an
optimal dual solution. Then, setting

af =—(T)TX; and Bf:=(\)'h°
we have

{Q%ué)Za?ué—i—Bi Vuy > 0,Auy = b
Q*(uo) = ag - ug + B

Vincent Leclére 0S-5 16/12/2020 16 / 29
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L-shaped method (multi-cut version)

@ We have a collection of K x S cuts, such that Q*(up) > «f - up + 55.

@ Solve the master problem, with optimal primal solution u6<+1.

s
min cup+ E p°0°
UOZO 1

s=

s.t. Aug = b
0° > ajug + B} Vk € [1,K], Vsel[l5]

© Solve S slave problems, with optimal dual solution Aj  ;

s(. K+1 . s s

Q*(u = min -u

(ug ) W ERr q-u
sit. Weui=h — Tsul* ui >0

@ construct S new cuts with

. T .
04?@1 =—(T") 7<+17 ﬂfs<+1 =h°- f<+1

Vincent Leclere 0S-5 16/12/2020 17 /29
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L-shaped method (multi-cut version)

@ We have a collection of K x S cuts, such that Q*(up) > «f - up + 55.

@ Solve the master problem, with optimal primal solution u6<+1.

S

. T sns

min c' u 0

min 0 +2P
s=

s.t. Aug = b

0°>asuo+ B Vke[l,K], V¥sel[LS]

© Solve S slave problems, with optimal dual solution Aj  ;

Q°(ugth) = max A (= Touth)

s.t. We-\°<g°
@ construct S new cuts with
o T o
O‘i(-s—l = _(Ts) f<+17 Bf@rl =h"- >\i<+1

Vincent Leclere 0S-5 16/12/2020 17 /29
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L-shaped method (multi-cut version) : bounds

@ At any iteration of the L-shaped method we can easily determine
upper and lower bound over our problem.

@ Indeed, ul is an admissible firt stage solution, and Q*(uk) is the

value of a slave problem. Thus the value of admissible solution v is

simply given by

B=c'uf +Zp Q°(u

@ Furthermore, Qj(uo) > maxk<x a5 - ug + 55, thus the value of the
master problem is always a lower bound over the value of the SP
problem :

LB =c"uf +Zp595

Vincent Leclére 0S-5 16/12/2020 18 / 29
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L-shaped method (single-cut version)

@ We have a collection of K cuts, such that
Q(uo) == D55 @°(u0) = k- uo + B

@ Solve the master problem, with optimal primal solution ué”l.
E?lz% clup+0
s.t. Aug = b
0 > axug + Px Vk € [1,K]

@ Solve S slave dual problems, with optimal dual solution Ait1
max A° (hs - Tsué(“)
AsERM
s.t. We.-\° <g°
© construct new cut with

s s
QK41 1= — ZPS (T)T N, Br+1 = ZPS h® - A°.

Vincent Leclere - 16/12/2020 19 /29
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Feasibility cuts

@ Without the relatively complete recourse assumption we cannot
guarantee that Q(ug) < +00, however we still have that Q is
polyhedral, thus so is dom(Q).

@ Without RCR we need to add feasibility cuts in the following way:

o If, Qs(u(’)‘) = +00, then we can find an unbounded ray of the
dual problem

A (RS = T3 k
/\Tea]l{m ( uo)
st WS XN <

more precisely a vector ¥ such that, for all t >0
W* - tAk < ¢°.
e Then, for ug to be admissible, we need that

N (= Toup) <0
which is a feasibility cut.

Vincent Leclére 0S-5 16/12/2020 20 / 29
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Convergence

In the linear case, the L-Shaped algorithm terminates in finitely
many steps, yielding the optimal solution.

The proof is done by noting that only finitely many cuts can be
added, and not being able to add a cut prove that the algorithm
has converged.

Vincent Leclére 0S-5 16/12/2020 21 / 29
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Comparison of Progressive Hedging and L-shaped

Progressive Hedging

L-Shaped

problems
sol. atit. k
Bounds
Convergence
Complexity

Implem.

convex continuous
non-admissible splitted solutions
LB free, UB easy

asymptotic

fixed : S deterministic problem

easy from deterministic solver

linear, 1st stage integer
admissible primal solution

LB and UB free

finite

increasing for master problem,
fixed for slave problem

built from scratch

Vincent Leclere
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16/12/2020

22 / 29



Multistage program
[ JeleleloloYele}

Presentation Outline

© Multistage program

Vincent Leclere 0S-5 16,/12/2020 22 /29



Multistage program

[e] Jelelelelele}

Where do we come from: two-stage programming

@ We take decisions in two stages
g~ &~ Uy,
with wuq: recourse decision .

@ On a tree, it means
solving the extensive formulation:

min couo + »  ps[(cs, tns)] -

Uo,Uy,s
seS

Vincent Leclere = 16,/12/2020
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Extending two-stage to multistage programming

@ We want to minimize min, E [c(u, £)]

@ Where we take decisions in T stages

uomélmulv---«»éT«»uT,

@ It can be represented on a tree 7, where a
node n of depth t represent a realisation
of (&4,...,&,;), and to which is attached a
probability pj.

@ Then, the extensive formulation reads

min Z pncn(un)

{Un}nET neT

Vincent Leclére 0S-5 16/12/2020 24 / 29
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Compact and splitted extended formulation

@ Consider a tree of depth T. A scenario s = (n,...,n7) is a
sequence of node, where each element is a descendent of the
previous one. A scenario s € S is uniquely defined by its last
element, which is a leaf of the tree.

@ Let ps be the probability of the leaf defining scenario s.
@ The compact formulation of the multistage problem reads

min ancn(un Zpszcn Up)

{untneT neT seS nes

@ The splitted extended formulation reads
T
min Zpszcs,t(us,t)
{Us,r}ses.,te[[o,T]] ses —0
s.t. Ust = Us ¢ Vt,¥n € N¢,Vs,s" o n

where MN; is the set of of nodes of depth t
Vincent Leclére 0S-5 16/12/2020 25 / 29
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Introducing the non-anticipativity constraint

We do not know what holds behind the door.

Non-anticipativity

At time t, decisions are taken sequentially, only knowing the past
realizations of the perturbations.

Mathematically, this is equivalent to say that at time t,
the decision u; is
@ a function of past noises

ur = 7Tt(£Oa o 751‘) )

@ taken knowing the available information,

olur) Co(€o- &) -

Vincent Leclére 0S-5 16/12/2020 26 / 29
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Multistage extensive formulation approach

Assume that §; € R"™ can take n¢ values
and that U¢(x) can take n, values.

Then, considering the extensive formulation
approach, we have

° ng— scenarios.

° (ng'+1 —1)/(ne — 1) nodes in the tree.

@ Number of variables in the optimization
problem is roughly
ny X (ngTJrl —-1)/(ne —1) = nung.

Vincent Leclére 0S-5 16,/12/2020 27 / 29
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Multistage extensive formulation approach

Vincent Leclere

Assume that §; € R"™ can take n¢ values
and that U¢(x) can take n, values.

Then, considering the extensive formulation
approach, we have

° ng— scenarios.

o (n/*' —1)/(n¢ — 1) nodes in the tree.

@ Number of variables in the optimization
problem is roughly
ny X (ngTJrl —-1)/(ne —1) = nung.
The complexity grows exponentially with the
number of stage. :-(
A way to overcome this issue is to compress
information!

0S-5 16/12/2020 27 / 29
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lllustrating extensive formulation with the damsvalley

example

@ 5 interconnected dams
@ 5 controls per timesteps

@ 52 timesteps (one per week, over one
year)
@ n¢ = 10 noises for each timestep

We obtain 10°2 scenarios, and =~ 5.10°2
constraints in the extensive formulation ...

Estimated storage capacity of the Internet:

10%* bytes.

Vincent Leclere

16/12/2020
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2-stage approach

The 2-stage approach consists in approximating the multistage program
by a two-stage programm :

@ relax all non-anticipativity constraints except the ones on ug, this
turn the tree into a scenario fan (same number of scenario),

@ it means that all decision (uq,...,ur_1) are anticipative (not up).
@ reduce the number of scenarios by sampling, and solve the SAA
approximation of the 2-stage relaxation.

Denote v¥ the value of the multistage problem, v2>4 the value of the
2-stage relaxation, and v2>* the (random) value of the SAA of the
2-stage relaxation. Then we have
V2SA < b
V,2nSA — V2

E[VZSA} < V2SA

SA

m

Vincent Leclére 0S-5 16/12/2020 29 / 29
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