Stochastic Optimization Recalls on probability

V. Leclère

December 2 2020

Vincent Leclère OS - 2 2/12/2019 1 / 26

Presentation Outline

- Probability recalls
- Random function
- 3 Limit of averages
- 4 Newsvendor problem

Presentation Outline

Probability recalls

•000000000

- Probability recalls
- Limit of averages

Probability space

- \bullet Let Ω be a set.
- A σ -algebra \mathcal{F} of Ω is a collection of subset of Ω such that

Limit of averages

- $\bullet \ \Omega \in \mathcal{F}$
- F is closed under complementation
- F is closed under countable union
- A measure $\mathbb{P}: \mathcal{F} \to [0,1]$ is a probability if
 - $\bullet \mathbb{P}(\Omega) = 1$
 - $\mathbb{P}(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\mathbb{P}(A_i)$ where $\{A_i\}_{i\in\mathbb{N}}$ is a collection of pairwise disjoint sets of \mathcal{F}
- $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.
- $A \in \mathcal{F}$ is \mathbb{P} -almost-sure if $\mathbb{P}(A) = 1$, and negligible if $\mathbb{P}(A) = 0$.
- $(\Omega, \mathcal{F}, \mathbb{P})$ is complete if all subset of a negligible set is measurable.

Vincent Leclère OS - 2 2/12/2019 2 / 26

Measurability and representation

- Let \mathcal{F} be a σ -algebra on Ω .
- A σ -algebra is generated by a collection of sets if it is the smallest containing the collection.
- A function $X: \Omega \to \mathbb{R}^n$ is \mathcal{F} -measurable if $X^{-1}(I) \in \mathcal{F}$ for all boxes I of \mathbb{R}^n , we note $X \prec \mathcal{F}$.
- A σ -algebra $\sigma(X)$ is generated by a function $X:\Omega\to\mathbb{R}^n$ sets if it is generated by $\{X^{-1}(I) \mid I \text{ boxes of } \mathbb{R}^n\}$.
- The σ -algebra generated by all boxes is called the Borel σ -algebra.

Theorem (Doob-Dynkin)

Let $X: \Omega \to \mathbb{R}^n$, $Y: \Omega \to \mathbb{R}^p$ be two \mathcal{F} -measurable functions. Then $Y \prec \sigma(X)$ iff there exists a Borel measurable function $f: \mathbb{R}^n \to \mathbb{R}^p$ such that Y = f(X).

Vincent Leclère OS - 2 2/12/2019 3 / 26

Random variables

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space.
- Define the equivalence class over the $\mathcal{L}^0(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$

$$egin{array}{ll} egin{array}{ll} egi$$

- A random variable X is an element of $L^0(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n) := \mathcal{L}^0(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n) / \sim$.
- In other word a random variable is a measurable function from Ω to \mathbb{R}^n defined up to negligeable set.

Expectation and variance

- We recall that $\mathbb{E}[X] := \int_{\Omega} X(\omega) \mathbb{P}(d\omega)$.
- If \mathbb{P} is discrete, we have $\mathbb{E}[X] = \sum_{\omega=1}^{|\Omega|} X(\omega) p_{\omega}$.
- If **X** admit a density function f we have $\mathbb{E}[X] = \int_{\mathbb{D}} x f(x) dx$.
- We define the variance of X

$$var(\mathbf{X}) := \mathbb{E}\left[\left(\mathbf{X} - \mathbb{E}\left[\mathbf{X}
ight]\right)^2\right] = \mathbb{E}\left[\mathbf{X}^2\right] - \left(\mathbb{E}\left[\mathbf{X}
ight]\right)^2$$

and the standard deviation

$$std(\mathbf{X}) := \sqrt{var(\mathbf{X})}$$

the covariance is given by

$$cov(\boldsymbol{X}, \boldsymbol{Y}) = \mathbb{E}[\boldsymbol{X}\boldsymbol{Y}] - \mathbb{E}[\boldsymbol{X}]\mathbb{E}[\boldsymbol{Y}]$$

Vincent Leclère OS - 2 2/12/2019 5 / 26

Random variables spaces

- $L^0(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ is the set of rv
- $L^1(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ is the set of rv such that $\mathbb{E}[|\mathbf{X}|] < +\infty$
- $L^p(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ is the set of rv such that $\mathbb{E}[|\mathbf{X}|^p] < +\infty$
- $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ is the set of rv that is almost surely bounded
- $L^p(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$, for $p \in]1, +\infty[$ is a reflexive Banach space, with dual L^q , where $\frac{1}{p} + \frac{1}{q} = 1$
- $L^1(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ is a non-reflexive Banach space with dual L^{∞}
- $L^2(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ is a Hilbert space
- $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ is a non-reflexive Banach space

Vincent Leclère OS - 2 2/12/2019 6 / 26

Independence

The cumulative distribution function (cdf) of a random variable X is

Limit of averages

$$F_X(x) := \mathbb{P}(X \leq x)$$

- Two random variables X and Y are independent iff (one of the following)
 - $F_{XY}(a,b) = F_X(a)F_Y(b)$ for all a, b
 - $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$ for all Borel sets A and B
 - $\mathbb{E}[f(\mathbf{X})g(\mathbf{Y})] = \mathbb{E}[f(\mathbf{X})]\mathbb{E}[g(\mathbf{Y})]$ for all Borel functions fand g
- A sequence of identically distributed independent variables is denoted iid.

Vincent Leclère OS - 2 2/12/2019 7 / 26

Inequalities

- (Markov) $\mathbb{P}(|\mathbf{X}| \ge a) \le \frac{\mathbb{E}[|\mathbf{X}|]}{a}$, for a > 0.
- (Chernoff) $\mathbb{P}(\mathbf{X} \geq a) \leq \frac{\mathbb{E}\left[e^{t\mathbf{X}}\right]}{e^{ta}}$, for t, a > 0.
- (Chebyshev) $\mathbb{P}(|\mathbf{X} \mathbb{E}[\mathbf{X}]| > a) < \frac{var(\mathbf{X})}{2}$, for a > 0.
- (Jensen) $\mathbb{E}[f(\mathbf{X})] \geq f(\mathbb{E}[\mathbf{X}])$ for f convex
- (Cauchy-Schwartz) $\mathbb{E}[|XY|] \leq ||X||_2 ||Y||_2$
- (Hölder) $\mathbb{E}[|\mathbf{X}\mathbf{Y}|] \leq ||\mathbf{X}||_p ||\mathbf{Y}||_q$ for $\frac{1}{p} + \frac{1}{q} = 1$
- (Hoeffding) $\mathbb{P}\Big(\mathbf{M}_n \mathbb{E}\big[\mathbf{M}_n\big] \geq t\Big) \leq \exp\Big(\frac{-2n^2t^2}{\sum_{i=1}^n (b_i a_i)^2}\Big)$ where $\{X_i\}_{i\in\mathbb{N}}$ is a sequence of bounded independent rv with $a_i < \mathbf{X}_i < b_i$.

Vincent Leclère OS - 2 2/12/2019 8 / 26

Limit of averages

Limits of random variable

Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables.

• We say that $\{X_n\}_{n\in\mathbb{N}}$ converges almost surely toward X if

$$\mathbb{P}\Big(\lim_{n}(\boldsymbol{X}_{n}-\boldsymbol{X})=0\Big)=1.$$

• We say that $\{X_n\}_{n\in\mathbb{N}}$ converges in probability toward X if

$$\forall \varepsilon > 0, \qquad \mathbb{P}(|\boldsymbol{X}_n - \boldsymbol{X}| > \varepsilon) \to 0.$$

• We say that $\{X_n\}_{n\in\mathbb{N}}$ converges in L^p toward X if

$$\|\boldsymbol{X}_n - \boldsymbol{X}\|_p = \mathbb{E}\left[|\boldsymbol{X}_n - \boldsymbol{X}|^p\right] \to 0.$$

• We say that $\{X_n\}_{n\in\mathbb{N}}$ converges in law toward X if

$$\mathbb{E}[f(\boldsymbol{X}_n)] \to \mathbb{E}[f(\boldsymbol{X})]$$
 for all bounded Lipschitz f

Vincent Leclère OS - 2 2/12/2019 9 / 26

Conditional expectation

- $\mathbb{P}(A|B) = \mathbb{P}(A \cap B)/\mathbb{P}(B)$
- If (X, Y) has density $f_{X,Y}$, then the conditional law (X|Y) has density $f_{X|Y}(x|y) = f_{X,Y}(x,y)/f_Y(y)$.
- In the continuous case we have

$$\mathbb{E}\big[\mathbf{X}|\mathbf{Y}=y\big]=\int_{\mathbb{R}}xf_{X|Y}(x|y)dx.$$

• More generally if \mathcal{G} is a sub-sigma-algebra of \mathcal{F} , the conditional expectation of $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ w.r.t \mathcal{G} is the \mathcal{G} -measurable random variable Y satisfying

$$\mathbb{E}[\mathbf{Y}\mathbb{1}_G] = \mathbb{E}[\mathbf{X}\mathbb{1}_G], \quad \forall G \in \mathcal{G}$$

Finally, we always have

$$\mathbb{E}\left[\mathbb{E}\left[oldsymbol{X}|oldsymbol{Y}
ight]
ight]=\mathbb{E}\left[oldsymbol{X}
ight]$$

Vincent Leclère OS - 2 2/12/2019 10 / 26

Presentation Outline

- Random function
- 3 Limit of averages

Vincent Leclère OS - 2 2/12/2019 10 / 26

Theorem (Monotone convergence)

Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables such that

 \bullet $X_{n+1} > X_n$ \mathbb{P} -a.s.

Probability recalls

 \bullet $X_n \to X_{\infty}$ \mathbb{P} -a.s.

then $\lim_{n\to\infty} \mathbb{E}[\boldsymbol{X}_n] = \mathbb{E}[\lim_n \boldsymbol{X}_n]$

Theorem (Dominated convergence)

Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables, and Y such that

- $\bullet |X_n| \leq Y \mathbb{P}$ -a.s. with $\mathbb{E}[|Y|] < +\infty$
- \bullet $X_n \to X_{\infty}$ \mathbb{P} -a.s.

then $\lim_{n\to\infty} \mathbb{E}\left[\boldsymbol{X}_n\right] = \mathbb{E}\left[\lim_n \boldsymbol{X}_n\right]$

Vincent Leclère OS - 2 2/12/2019 11 / 26

Measurability of multi-valued function

Consider a measurable space (Ω, \mathcal{F}) .

- A function $f: \Omega \to \mathbb{R}$ is \mathcal{F} -measurable if $f^{-1}(I) \in \mathcal{F}$ for all interval I of \mathbb{R} .
- A multi-function $\mathcal{G}:\Omega\rightrightarrows\mathbb{R}^n$ is \mathcal{F} -measurable if

$$\forall A \subset \mathbb{R}^n \text{closed}, \quad \mathcal{G}^{-1}(A) := \left\{ \omega \in \Omega \mid \mathcal{G}(\omega) \cap A \neq \emptyset \right\} \in \mathcal{F}.$$

• A closed valued multi-function $\mathcal{G}:\Omega\rightrightarrows\mathbb{R}^n$ is \mathcal{F} -measurable iff $d_{\mathsf{x}}(\omega):=\mathrm{dist}(\mathsf{x},\mathcal{G}(\omega))$ is \mathcal{F} -measurable.

Theorem (Measurable selection theorem)

If $\mathcal{G}:\Omega\rightrightarrows\mathbb{R}^n$ is a closed valued measurable multifunction, then there exists a measurable selection of \mathcal{G} , that is a measurable function $\pi:\mathrm{dom}(\mathcal{G})\subset\Omega\to\mathbb{R}^n$ such that $\pi(\omega)\in\mathcal{G}(\omega)$ for all $\omega\in\mathrm{dom}(\mathcal{G})$.

Vincent Leclère OS - 2 2/12/2019 12 / 26

Normal integrand

Probability recalls

Assume that \mathcal{F} is \mathbb{P} -complete.

Definition (Caratheodory function)

 $f: \mathbb{R}^n \times \Omega \to \mathbb{R}$ is a Carathéodory function if

- $f(\cdot,\omega)$ is continuous for a.a. $\omega \in \Omega$
- $f(x, \cdot)$ is measurable for all $x \in \mathbb{R}^n$

Definition (Normal integrand)

 $f:\mathbb{R}^n imes\Omega oar{\mathbb{R}}$ is a normal integrand (aka random lowersemicontinuous function) if

- $f(\cdot, \omega)$ is lsc for a.a. $\omega \in \Omega$
- $f(\cdot, \cdot)$ is measurable

f is a convex normal integrand if in addition it is convex in x for a.a. $\omega \in \Omega$.

Vincent Leclère OS - 2 2/12/2019 13 / 26

Measurability of minimum and argmin

Theorem (Measurability of minimum)

Let $f: \mathbb{R}^n \times \Omega \to \bar{\mathbb{R}}$ be a normal integrand and define

$$\vartheta(\omega) := \inf_{\mathsf{x}} f(\mathsf{x}, \omega) \qquad X^*(\omega) := \arg\min_{\mathsf{x}} f(\mathsf{x}, \omega).$$

Limit of averages

Then, ϑ and X^* are measurable.

Theorem (Pointwise minimization)

Let $f: \mathbb{R}^n \times \Omega \to \bar{\mathbb{R}}$ be a normal convex integrand then

$$\inf_{\boldsymbol{U}\in L^0, \boldsymbol{U}\in U} \mathbb{E}\big[f(\boldsymbol{U}(\omega), \omega)\big] = \mathbb{E}\Big[\inf_{u\in U(\omega)} f(u, \omega)\Big]$$

Vincent Leclère OS - 2 2/12/2019 14 / 26

Continuity and derivation under expectation

Let $f: \mathbb{R}^n \times \Omega$ be a random function (i.e. measurable in ω for all x). We say that f is dominated on X if, for all $x \in X$, there exists an integrable random variable **Y** such that $f(x, \cdot) \leq \mathbf{Y}$ almost surely. If f is dominated on $X \subset \mathbb{R}^n$, we define $F(x) := \mathbb{E}[f(x,\omega)]$.

Limit of averages

- If f is lsc in x and dominated on X, then F is lsc.
- If f is continuous in x and dominated on X, then F is continuous.
- If f is Lispchitz in x, with $\mathbb{E}[\operatorname{lip}(f(\cdot,\omega))] < +\infty$, then F in Lipschitz continous. Moreover if f is differentiable in x, we have

$$\nabla F(x) = \mathbb{E} \left[\nabla_x f(x, \omega) \right].$$

• If f is a convex normal integrand, and $x_0 \in \text{int}(\text{dom}(F))$, then

$$\partial F(x_0) = \mathbb{E}\left[\partial f(x_0,\omega)\right]$$

Vincent Leclère OS - 2 2/12/2019 15 / 26

Presentation Outline

- 3 Limit of averages

Vincent Leclère OS - 2 2/12/2019 15 / 26

Limit of averages

•0000

Strong Law of large number

• We consider a function $f: \mathbb{R}^n \times \Xi \to \mathbb{R}$, and a random variable ξ which takes values in Ξ , and define $F(x) := \mathbb{E}[f(x, \xi)]$.

Limit of averages

00000

- We consider a sequence of random variables $\{\xi_i\}_{i\in\mathbb{N}}$.
- We define the average function

$$\hat{F}_N(x) := \frac{1}{N} \sum_{i=1}^N f(x, \boldsymbol{\xi}_i)$$

We say that we have a Law of Large Number (LLN) if,

$$\forall x \in \mathbb{R}^n, \qquad \mathbb{P}\Big(\lim_n \hat{F}_n(x) = F(x)\Big) = 1$$

• The strong LLN state that LLN holds if $f(x, \xi)$ is integrable, and $\{\boldsymbol{\xi}_i\}_{i\in\mathbb{N}}$ is a iid (with same law as $\boldsymbol{\xi}$).

Vincent Leclère OS - 2 2/12/2019 16 / 26

Uniform Law of large number

• Having LLN means that, for all $\varepsilon > 0$ (and almost all sample),

$$\forall x, \exists N_{\varepsilon} \in \mathbb{N}, \quad n \geq N \implies |\hat{F}_{N}(x) - F(x)| \leq \varepsilon$$

Limit of averages

00000

• We say that we have ULLN if for all $\varepsilon > 0$ (and almost all sample),

$$\exists N_{\varepsilon} \in \mathbb{N}, \quad \forall x, \qquad n \geq N \implies |\hat{F}_{N}(x) - F(x)| \leq \varepsilon$$

or equivalently

$$\exists N \in \mathbb{N} \qquad n \geq N \implies \sup_{x} |\hat{F}_N(x) - F(x)| \leq \varepsilon$$

Theorem

If f is a dominated Caratheodory function on X compact and the sample is iid then we have ULLN on X.

Vincent Leclère OS - 2 2/12/2019 17 / 26

Central Limit Theorem

Theorem

Let $\left\{\mathbf{X}_i\right\}_{i\in\mathbb{N}}$ be a sequence of rv iid, with finite second order moments. Then we have

$$\sqrt{n}\Big(\underbrace{\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{X}_{i}}_{M_{\bullet}}-\mathbb{E}\left[\boldsymbol{X}\right]\Big)
ightarrow \mathcal{N}(0,std(\boldsymbol{X}))$$

where the convergence is in law.

Monte-Carlo method

- Let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of rv iid with finite variance.
- We have $\mathbb{P}\Big(M_N \in \Big[\mathbb{E}\big[m{X}\big] \pm rac{\Phi^{-1}(
 ho)std(m{X})}{\sqrt{N}}\Big]\Big) pprox
 ho$
- In order to estimate the expectation $\mathbb{E}[X]$, we can
 - sample N independent realizations of X, $\{X_i\}_{i \in \llbracket 1, N \rrbracket}$
 - compute the empirical mean $M_N = \frac{\sum_{i=1}^N X_i}{N}$, and standard-deviation s_N
 - choose an error level p (e.g. 5%) and compute $\Phi^{-1}(1-p/2)$ (1.96)
 - and we know that, asymptotically, the expectation $\mathbb{E}\left[\mathbf{X}\right]$ is in $\left[M_N \pm \frac{\Phi^{-1}(p)s_N}{\sqrt{N}}\right]$ with probability (on the sample) 1-p
- In the case of bounded independent variable we can use Hoeffding

$$\mathbb{P}\Big(\mathbb{E}\big[\boldsymbol{X}\big] \in [M_n \pm t]\Big) \geq 2e^{-\frac{2nt^2}{b-a}}$$

Vincent Leclère OS - 2 2/12/2019 19 / 26

Presentation Outline

- Limit of averages
- 4 Newsvendor problem

The (deterministic) newsboy problem

In the 50's a boy would buy a stock u of newspapers each morning at a cost c, and sell them all day long for a price p. The number of people interested in buying a paper during the day is d. We assume that 0 < c < p.

How shall we model this?

The (deterministic) newsboy problem

In the 50's a boy would buy a stock u of newspapers each morning at a cost c, and sell them all day long for a price p. The number of people interested in buying a paper during the day is d. We assume that 0 < c < p.

How shall we model this?

- Control $\mu \in \mathbb{R}^+$
- Cost $L(u) = cu p \min(u, d)$

Leading to

Probability recalls

$$\min_{u} cu - p \min(u, d)$$
s.t. $u > 0$

Vincent Leclère OS - 2 2/12/2019 20 / 26

The (stochastic) newsboy problem

Probability recalls

Demand d is unknown at time of purchasing. We model it as a random variable d with known law. Note that

- the control $u \in \mathbb{R}^+$ is deterministic
- the cost is a random variable (depending of **d**). We choose to minimize its expectation.

Vincent Leclère OS - 2 2/12/2019 21 / 26

Probability recalls

Demand d is unknown at time of purchasing. We model it as a random variable d with known law. Note that

- the control $u \in \mathbb{R}^+$ is deterministic
- the cost is a random variable (depending of d). We choose to minimize its expectation.

We consider the following problem

$$\min_{u} \quad \mathbb{E}[cu - p \min(u, \mathbf{d})]$$
s.t. $u \ge 0$

How can we justify the expectation?

The (stochastic) newsboy problem

Demand d is unknown at time of purchasing. We model it as a random variable d with known law. Note that

- the control $u \in \mathbb{R}^+$ is deterministic
- the cost is a random variable (depending of d). We choose to minimize its expectation.

Limit of averages

We consider the following problem

$$\min_{u} \quad \mathbb{E}\left[cu - p \min(u, \mathbf{d})\right]$$
s.t. $u > 0$

How can we justify the expectation?

By law of large number: the Newsboy is going to sell newspaper again and again. Then optimizing the sum over time of its gains is closely related to optimizing the expected gains.

Solving the stochastic newsboy problem

For simplicity assume that the demand d has a continuous density f. Define J(u) the expected "loss" of the newsboy if he bought u newspaper. We have

$$J(u) = \mathbb{E}\left[cu - p \min(u, \mathbf{d})\right]$$

$$= (c - p)u - p\mathbb{E}\left[\min(0, \mathbf{d} - u)\right]$$

$$= (c - p)u - p\int_{-\infty}^{u} (x - u)f(x)dx$$

$$= (c - p)u - p\left(\int_{-\infty}^{u} xf(x)dx - u\int_{-\infty}^{u} f(x)dx\right)$$

For simplicity assume that the demand d has a continuous density f. Define J(u) the expected "loss" of the newsboy if he bought u newspaper. We have

$$J(u) = \mathbb{E}\left[cu - p\min(u, \mathbf{d})\right]$$
$$= (c - p)u - p\left(\int_{-\infty}^{u} xf(x)dx - u\int_{-\infty}^{u} f(x)dx\right)$$

Thus,

$$J'(u) = (c - p) - p\left(uf(u) - \int_{-\infty}^{u} f(x)dx - uf(u)\right)$$
$$= c - p + pF(u)$$

where F is the cumulative distribution function (cdf) of d. F being non

decreasing, the optimum control u^* is such that $J'(u^*) = 0$, which is

$$u^* \in F^{-1}\left(\frac{p-c}{p}\right)$$

Vincent Leclère OS - 2 2/12/2019 22 / 26

Newsvendor problem (continued)

We assume that the demand can take value $\{d_i\}_{i\in \llbracket 1,n\rrbracket}$ with probabilities $\{p_i\}_{i\in[1,n]}$.

Vincent Leclère OS - 2 2/12/2019 23 / 26

Newsvendor problem

Newsvendor problem (continued)

Probability recalls

We assume that the demand can take value $\{d_i\}_{i\in [1,n]}$ with probabilities $\{p_i\}_{i\in [1,n]}$.

In this case the stochastic newsvendor problem reads

$$\min_{u} \sum_{i=1}^{n} p_{i} \left(cu - p \min(u, d_{i}) \right)$$
s.t. $u \geq 0$

Vincent Leclère OS - 2 2/12/2019 23 / 26

We can represent the newsvendor problem in a 2-stage framework.

- Let u_0 be the number of newspaper bought in the morning.
- let u_1 be the number of newspaper sold during the day.

Vincent Leclère OS - 2 2/12/2019 24 / 26

We can represent the newsvendor problem in a 2-stage framework.

- Let u_0 be the number of newspaper bought in the morning. → first stage control
- let u_1 be the number of newspaper sold during the day. → second stage control

Vincent Leclère OS - 2 2/12/2019 24 / 26

We can represent the newsvendor problem in a 2-stage framework.

- Let u₀ be the number of newspaper bought in the morning.
 → first stage control
- let u_1 be the number of newspaper sold during the day.
 - → second stage control

The problem reads

$$\min_{u_0, u_1} \quad \mathbb{E} \left[cu_0 - pu_1 \right] \\
s.t. \quad u_0 \ge 0 \\
 \quad u_1 \le u_0 \qquad \qquad \mathbb{P} - as \\
 \quad u_1 \le d \qquad \qquad \mathbb{P} - as \\
 \quad u_1 \prec d$$

Vincent Leclère OS - 2 2/12/2019 24 / 26

Newsvendor problem 00000000

Two-stage newsvendor problem

Probability recalls

In extensive formulation the problem reads

$$\min_{u_{0},\{u_{1}^{i}\}_{i\in[1,n]}} \quad \sum_{i=1}^{n} p_{i}(cu_{0} - pu_{1}^{i})$$

$$s.t. \quad u_{0} \geq 0$$

$$u_{1}^{i} \leq u_{0} \qquad \forall i \in [1,n]$$

$$u_{1}^{i} \leq d_{i} \qquad \forall i \in [1,n]$$

Vincent Leclère OS - 2 2/12/2019 25 / 26

In extensive formulation the problem reads

$$\min_{\substack{u_0,\{u_1^i\}_{i\in[1,n]}\\ s.t.}} \sum_{i=1}^n p_i (cu_0 - pu_1^i) \\
s.t. \quad u_0 \ge 0 \\
u_1^i \le u_0 \quad \forall i \in [1,n] \\
u_1^i \le d_i \quad \forall i \in [1,n]$$

Note that there are as many second-stage control u_1^i as there are possible realization of the demand d, but only one first-stage control u_0 .

Vincent Leclère OS - 2 2/12/2019 25 / 26

Practical work

- Using julia we are going to model and work around the Newsvendor problem
- Download the files at https://github.com/leclere/TP-Saclay
- Start working on the "Newsvendor Problem" up to question 3.

Vincent Leclère OS - 2 2/12/2019 26 / 26