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A Change in the Point of View

During the first part of the course, we have studied open-loop
stochastic optimization problems, that is, problems in which the
decisions correspond to deterministic variables which minimize a
cost function defined as an expectation.

min E(j(u, W)) . J

uelad
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A Change in the Point of View

During the first part of the course, we have studied open-loop
stochastic optimization problems, that is, problems in which the
decisions correspond to deterministic variables which minimize a
cost function defined as an expectation.

min E(j(u, W)) .

uelad

We now enter the realm of closed-loop stochastic optimization,
that is, the case where on-line information is available to the
decision maker. The decisions are thus functions of information
and correspond to random variables.

Jmin E(i(U, W)) . J
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Variables and Constraints

The decision variable U is now a random variable and belongs to a
functional space U. A canonical example is: U = L%(Q, A, P; U).

The contraints U € U*! on the r.v. U may be of different kinds:
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Variables and Constraints

The decision variable U is now a random variable and belongs to a
functional space U. A canonical example is: U = L%(Q, A, P; U).

The contraints U € U*! on the r.v. U may be of different kinds:
@ point-wise constraints dealing with the possible values of U:
UeU={Ucl, Uw)e U Pas.},
@ risk constraints, such as expectation or probability constraints:
Ucu={UclU,P(OU)<0) >},

@ measurability constraints which express the fact that a given
amount of information Y is available to the decision maker:

U ey = {U € U, U measurable w.rt. Y} .

We will mainly concentrate on measurability constraints.
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Compact Formulation of a Closed-Loop Problem

Given a probability space (22, A, P), the essential ingredients of a
stochastic optimization problem are

@ noise W: r.v. with values in a measurable space (W, W),
@ decision U: r.v. with values in a measurable space (U, U),
e information Y': r.v. with values in a measurable space (Y,Y),
@ cost function: measurable mapping j: U x W — R.
The o-field generated by Y is denoted by B C A.
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Compact Formulation of a Closed-Loop Problem

Given a probability space (22, A, P), the essential ingredients of a

stochastic optimization problem are

@ noise W: r.v. with values in a measurable space (W, W),

@ decision U: r.v. with values in a measurable space (U, U),

e information Y': r.v. with values in a measurable space (Y,Y),

@ cost function: measurable mapping j: U x W — R.

The o-field generated by Y is denoted by B C A.

With all these elements at hand, the problem is written as follows:

E(j(U,W)).

mi
U

n
Y

The notation U < Y (or equivalently U < B) is used to express

that the r.v. U is measurable w.r.t. to the o-field generated by Y.
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Representation of Measurability Constraints

Consider the information structure of the stochastic optimization
problem in a compact form, that is, the measurability constraints

u<y.

This information structure may be interpreted in different ways.
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Representation of Measurability Constraints

Consider the information structure of the stochastic optimization
problem in a compact form, that is, the measurability constraints

u<y.

This information structure may be interpreted in different ways.

@ From the functional point of view, using Doob’s Theorem,
the decision U is expressed as a measurable function of Y:

U=¢(Y).

In this setting, the decision variable becomes the function .
@ From the algebraic point of view, the constraints are expressed
in terms of o-field, that is,

U(U) - G(Y) .

Question: how to take this last representation into account?
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Dynamic Information Structure (DIS)

This is the situation when B = o(Y') depends on U. For example,
in the case where Y = h(U, W), the constraint expression is

U=hUW),

which yields a (seemingly) implicit measurability constraint.
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This is the situation when B = o(Y') depends on U. For example,
in the case where Y = h(U, W), the constraint expression is

U=<hU,w),
which yields a (seemingly) implicit measurability constraint.

This is a source of huge complexity for stochastic optimization
problems, known under the name of the dual effect of control.
Indeed, the decision maker has to take care of the following
double effect:
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Dynamic Information Structure (DIS)

This is the situation when B = o(Y') depends on U. For example,
in the case where Y = h(U, W), the constraint expression is

U=<hU,w),
which yields a (seemingly) implicit measurability constraint.

This is a source of huge complexity for stochastic optimization
problems, known under the name of the dual effect of control.
Indeed, the decision maker has to take care of the following
double effect:

@ on the one hand, his decision affects the cost E (j(U, W)),

@ on the other hand, she makes the information more or less
constrained, that is, a less or more large admissible set for U.
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Static Information Structure (SIS)

This is the case when B = o(Y) is fixed, defined independently
of U. Therefore, the terminology “static” expresses that the
information o-field B constraining the decision U cannot be
modified by the decision maker. It does not imply that no
dynamics is present in the problem formulation.'?

2|f time is involved in the problem, at each time t, a decision U, is taken
based on the available information Y,, inducing a measurability constraint
U, < Y,. But the issue of dynamic information depends on the dependency
of Y; w.r.t. the controls, and not on the presence of time t in the problem.
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This is the case when B = o(Y) is fixed, defined independently
of U. Therefore, the terminology “static” expresses that the
information o-field B constraining the decision U cannot be
modified by the decision maker. It does not imply that no
dynamics is present in the problem formulation.'?

@ The situation where the information Y is a function of a
exogenous noise W, thatis, Y = h(W), always induces
a static information structure.

@ Note that it may happen that Y functionally depends on U
whereas the o-field B generated by Y remains fixed.

2|f time is involved in the problem, at each time t, a decision U, is taken
based on the available information Y,, inducing a measurability constraint
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Position of the Problem. ..

We want to solve a closed-loop stochastic optimization problem,
that is, a problem such that the decision variable U is a random
variable which satisfies measurability conditions imposed by the
information structure defined by the random variable Y.
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We assume that the problem is dual effect free, that is, we assume
that the o-field generated by the information variable Y does not
depend on the control variable U (static information structure).

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 211 / 328



Position of the Problem. ..

We want to solve a closed-loop stochastic optimization problem,
that is, a problem such that the decision variable U is a random
variable which satisfies measurability conditions imposed by the
information structure defined by the random variable Y.

We assume that the problem is dual effect free, that is, we assume
that the o-field generated by the information variable Y does not
depend on the control variable U (static information structure).

We manipulate the measurability conditions from the algebraic
point of view, that is, o(U) C o(Y) = B.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 211 / 328



Position of the Problem. ..

We want to solve a closed-loop stochastic optimization problem,
that is, a problem such that the decision variable U is a random
variable which satisfies measurability conditions imposed by the
information structure defined by the random variable Y.

We assume that the problem is dual effect free, that is, we assume
that the o-field generated by the information variable Y does not
depend on the control variable U (static information structure).

We manipulate the measurability conditions from the algebraic
point of view, that is, o(U) C o(Y) = B.

In order to numerically solve the optimization problem, we need to
approximate the problem by using a finite representation of it.
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and Problem under Consideration

The standard form of the problem we are interested in is
inE(j(U W
min E(j(U, W)) ,
subject to

U is B-measurable ,

where B = o(Y) is a fixed o-field.
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and Problem under Consideration

The standard form of the problem we are interested in is

V(W B) = min E(j(U, W)) .

subject to

U is B-measurable ,
where B = o(Y) is a fixed o-field.

In order to obtain a numerically tractable approximation of this
problem, we have to approximate

o the noise W by a “finite” noise W, (Monte Carlo,...),
o the o-field B by a “finite” o-field B, (partition,...).

Question: VW, B,) — V(W,B)?
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A Specific Instance of the Problem

A specific instance of the problem is the one which incorporates

dynamical systems, that is, the stochastic optimal control problem:

T-1
w U minX X-,—) E< ;0 Lt(xtv Uta Wt+1) + K(XT)>

0 T o1
subject to
XO = f_l(WO) ;
Xf+1 = ft(xt7Ut7 Wt+1)7 t:07...,T—1,
Ut = Yt , t= 07 y T-1
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A Specific Instance of the Problem

A specific instance of the problem is the one which incorporates

dynamical systems, that is, the stochastic optimal control problem:

T-1
min E< Le(X,, U, W 1)+K(xT)>
(U Ug_ 1 Xy X1) ;0 AL

subject to
XO = f_l(WO) ;
Xf+1 = ft(xt7Ut7 Wt+1)7 t:07...,T—1,

u =Y, , t=0,...,T—1.

Assuming that o(Y,) are fixed o-fields, a widely used approach to
discretize this optimization problem is the so-called scenario tree
method. We present it before considering the general case.
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@ Stochastic Programming: the Scenario Tree Method
@ Scenario Tree Method Overview
@ Some Details about the Method
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Stochastic Programming: the Scenario Tree Method Scenario Tree Method Overview
Some Details about the Method

A Standard Stochastic Optimal Control Problem

Consider the following stochastic optimal control problem with a
static (non-anticipative) information structure.

T-1
min E Le(X,, U, W, ;) + K(X >
(UgesUg_q Koo X ) <t0 t(Xp, Uy, Weyy) (X7)

subject to
XO = ffl(WO)v
Xt+1 = ﬂ(xt,Ut, Wt+1), tZO,...,T—l’

U, < h(W,,...,W,), t=0,...
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Stochastic Programming: the Scenario Tree Method Scenario Tree Method Overview
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A Standard Stochastic Optimal Control Problem

Consider the following stochastic optimal control problem with a
static (non-anticipative) information structure.

T-1
min E Le(X,, U, W, ;) + K(X >
(UgesUg_q Koo X ) <t0 t(Xp, Uy, Weyy) (X7)

subject to
XO = ffl(WO)v
Xt+1 = ﬂ(xt,Ut, Wt+1), tZO,...,T—l’

U, < h(W,,....W,), t=0,..

, L T—1.

Almost sure constraints (e.g. bound constraints on X, and U,)
may also be present in the formulation.
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Stochastic Programming: the Scenario Tree Method Scenario Tree Method Overview

Some Details about the Method

Scenario Tree Methodology

Aim: obtain a finite dimensional approximation of the problem.
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Scenario Tree Methodology

Aim: obtain a finite dimensional approximation of the problem.

© Discretize the noise process
{W,} using a scenario tree.
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Scenario Tree Method Overview
Some Details about the Method

Scenario Tree Methodology

Aim: obtain a finite dimensional approximation of the problem.

@ Discretize the noise process
{W,} using a scenario tree.

@ Copy out the measurability
constraints on this structure:
U, = ht(WO, ey Wt).
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Scenario Tree Methodology

Aim: obtain a finite dimensional approximation of the problem.

@ Discretize the noise process
{W,} using a scenario tree.

@ Copy out the measurability
constraints on this structure:
U, < he(W,,...,W,).
© Write the dynamics and cost

functions at the tree nodes:
xt+1 = ft(xt7 Ut’ Wt+1)'
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Stochastic Programming: the Scenario Tree Method

Scenari e Method Overview
Some Details about the Method

Scenario Tree Methodology

Aim: obtain a finite dimensional approximation of the problem.

@ Discretize the noise process
{W,} using a scenario tree.

@ Copy out the measurability
constraints on this structure:
U, < he(W,,...,W,).
© Write the dynamics and cost
functions at the tree nodes:
xt+1 = (X, Uy, Wt+1)'
@ Solve the problem using
adequate mathematical
programming techniques.
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Stochastic Programming: the Scenario Tree Method Scenario Tree Method Overview

Some Details about the Method

1. Discretize the Random Inputs

The tree architecture is characterized by the fact that each node of
the tree corresponds to a unique past noise history but is generally
followed by several possible future histories.
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1. Discretize the Random Inputs

The tree architecture is characterized by the fact that each node of
the tree corresponds to a unique past noise history but is generally
followed by several possible future histories.

The tree is obtained by repeatedly using a finite approximation of
the conditional probability laws IP’(Wt | W,,..., Wt_l):

P(W,) ~ {wg,....w{*} ~ P(W, | W,=w)~ {wiowg™my

Note that this discretization scheme is much more sophisticated
than the standard Monte Carlo sampling of (W,,..., W).
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Some Details about the Method

1. Discretize the Random Inputs

The tree architecture is characterized by the fact that each node of
the tree corresponds to a unique past noise history but is generally
followed by several possible future histories.

The tree is obtained by repeatedly using a finite approximation of
the conditional probability laws IP’(Wt | W,,..., Wt71)5

P(W,) ~ {wd,...,w"} ~ P(W, | W, =w))~{w", ... ,wy™} ...

Note that this discretization scheme is much more sophisticated
than the standard Monte Carlo sampling of (W,,..., W;).

The starting point may be a given —
collection of scenarios from which — =
one constructs a tree by grouping | S —
the scenarios according to their o — (!
(approximate) common past. e — b
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Stochastic Programming: the Scenario Tree Method Scenario Tree Method Overview

Some Details about the Method

2. Copy out the Measurability Constraints

Assume that the information consists of the exact observation of
all past noises: Y, = (W,,..., W,). Then, a different decision

t
has to be attached at each node of the scenario tree.
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Some Details about the Method

2. Copy out the Measurability Constraints

Assume that the information consists of the exact observation of
all past noises: Y, = (W,,..., W,). Then, a different decision

has to be attached at each node of the scenario tree.

But the method can face more general situations by grouping
nodes of the scenario tree in order to represent the information
structure induced by the h:(W,,..., W,)'s.

In all cases, the information structure is entirely coded within the
scenario tree by means of those groups of nodes (one decision for
each group of nodes).

For example, the so-called perfect memory information structure
he(W,, ..., W,) = (ho(W,),...,h(W,)) leads to a grouping of
scenario tree nodes at each time step t, and ultimately produces a
tree structure called the decision tree.
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Stochastic Programming: the Scenario Tree Method

Scenario Tree Method Overview
Some Details about the Method

3. Write the Dynamics and Cost Functions

Consider a node v € N of the scenario tree at time t, and denote:

(v) the probability of node v, ©

°

o

@ O(v) the time index of node v (= t),
°

v) the control index of node v.

t—1 t t+1
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Some Details about the Method

3. Write the Dynamics and Cost Functions

Consider a node v € N of the scenario tree at time t, and denote:

°

e m(v) the probability of node v, ‘ 2

@ O(v) the time index of node v (= t), \
o | | ‘

v) the control index of node v.

t—1 t t+1
Note that the probability function 7 satisfies the following conditions:

)= > w& ., > w=1.

gef1(v) ved—i(t)
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Some Details about the Method

3. Write the Dynamics and Cost Functions

Consider a node v € N of the scenario tree at time t, and denote:

°
e m(v) the probability of node v, ‘ 2

@ O(v) the time index of node v (= t), \
o | ‘

v) the control index of node v.

t—1 t t+1

Note that the probability function 7 satisfies the following conditions:

)= > w& ., > w=1.

gef1(v) ved—i(t)

Then, the dynamic equation from node u to node v writes

X0 = To(5)) (500 U (50)) W) -
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Some Details about the Method

3. Write the Dynamics and Cost Functions

Consider a node v € N of the scenario tree at time t, and denote:

7(v) the probability of node v, ‘ 2
O(v) the time index of node v (= t), \
ol | ‘

v) the control index of node v.

t—1 t t+1

Note that the probability function 7 satisfies the following conditions:

)= > w& ., > w=1.

gef1(v) veo—1(t)
Then, the dynamic equation from node u to node v writes
X = fy(5)) (X500 Uy(i(w))s W) -
The cost induced by the transition is: Lg(f(y))(xf(l,), Us(§(v)) Wl,).
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Some Details about the Method

4. Solve the Approximated Problem

The initial stochastic optimization problem boils down to
m”‘( > T Lo (K501 i o) + D 7T(V)K(xu)) :
veN\0-1(0) veo—1(T)
subject only to the dynamics constraints
x, = f—1(wy) Vv € 9*1(0) ,
X0 = Fofi)) (550> (i) W) v e N\ OTH0) .
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subject only to the dynamics constraints
x, = f—1(wy) Vv € 9*1(0) ,
X0 = fi i) (X50)1 Ur(50) W) v e N\ OTH0) .
The initial infinite dimensional stochastic optimization problem is

approximated by a finite dimensional deterministic problem, that
can be solved using relevant mathematical programming tools.
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4. Solve the Approximated Problem

The initial stochastic optimization problem boils down to
min( > 7)oy (X5 ey o) + D ”(”)K(Xv)> )
veN\6-1(0) ved—1(T)
subject only to the dynamics constraints
x, = f—1(wy) Vv € 9*1(0) ,
X0 = fi i) (X50)1 Ur(50) W) v e N\ OTH0) .
The initial infinite dimensional stochastic optimization problem is

approximated by a finite dimensional deterministic problem, that
can be solved using relevant mathematical programming tools.

Note that this approximation corresponds to an optimal control problem
with an arborescent (rather than linear) time structure.
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Dual Effect: it is mandatory that no dual effect holds true.
White noise: the noise process (W,,. .., Wy) may be correlated.
Perfect memory : this property is not required although useful.

Complexity: the amount of scenarios needed to achieve a given
accuracy grows exponentially w.r.t. the number of time steps T
of the problem (see [Shapiro, 2006]).

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 224 / 328



Stochastic Programming: the Scenario Tree Method Scenario Tree Method Ove

Some Details about the Method

Facts and Questions about the Scenario Tree Method

Dual Effect: it is mandatory that no dual effect holds true.
White noise: the noise process (W,,. .., Wy) may be correlated.
Perfect memory : this property is not required although useful.

Complexity: the amount of scenarios needed to achieve a given
accuracy grows exponentially w.r.t. the number of time steps T
of the problem (see [Shapiro, 2006]).

Tree structure: how to build a tree which is at the same time
representative of the problem and numerically tractable?

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 224 / 328



Stochastic Programming: the Scenario Tree Method Scenario Tree Method Overview

Some Details about the Method

Facts and Questions about the Scenario Tree Method

Dual Effect: it is mandatory that no dual effect holds true.
White noise: the noise process (W,,. .., Wy) may be correlated.
Perfect memory : this property is not required although useful.

Complexity: the amount of scenarios needed to achieve a given
accuracy grows exponentially w.r.t. the number of time steps T
of the problem (see [Shapiro, 2006]).

Tree structure: how to build a tree which is at the same time
representative of the problem and numerically tractable?

Extrapolation: how to obtain feedback laws once the optimal
decisions on the nodes of the scenario tree have been computed?
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Stochastic Programming: the Scenario Tree Method Scenario Tree Method Overview

Some Details about the Method

Facts and Questions about the Scenario Tree Method

Dual Effect: it is mandatory that no dual effect holds true.
White noise: the noise process (W,,. .., Wy) may be correlated.
Perfect memory : this property is not required although useful.

Complexity: the amount of scenarios needed to achieve a given
accuracy grows exponentially w.r.t. the number of time steps T
of the problem (see [Shapiro, 2006]).

Tree structure: how to build a tree which is at the same time
representative of the problem and numerically tractable?

Extrapolation: how to obtain feedback laws once the optimal
decisions on the nodes of the scenario tree have been computed?

A huge literature is available on the scenario tree method. . .
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Some Details about the Method

(Very) Compact View of the Scenario Tree Approach

The stochastic optimal control problem under consideration
depends on both a noise process W and a sequence of o-fields B.
It can thus be represented under the compact form:

V(W,B) = bnji%E(j(U, W)), with B=o(h(W)).
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It can thus be represented under the compact form:

V(W,B) = bnji%E(j(U, W)), with B=o(h(W)).

The aim of the scenario tree method is to

@ approximate the noise W by a “finite” noise W,

e and deduce the approximated information B, = o (h(W,)).

n
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depends on both a noise process W and a sequence of o-fields B.
It can thus be represented under the compact form:

V(W,B) = bnji%E(j(U, W)), with B=o(h(W)).

The aim of the scenario tree method is to

@ approximate the noise W by a “finite” noise W,

e and deduce the approximated information B, = o (h(W,)).

n

In this framework, an unique approximation is performed to obtain
the approximated solution V(W,,B,), and it is possible to prove
that V(W,, B,) — V(W,B) (see [Pennanen, 2005]).
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Some Details about the Method

(Very) Compact View of the Scenario Tree Approach

The stochastic optimal control problem under consideration
depends on both a noise process W and a sequence of o-fields B.
It can thus be represented under the compact form:

V(W,B) = bnji%E(j(U, W)), with B=o(h(W)).

The aim of the scenario tree method is to

@ approximate the noise W by a “finite” noise W,

e and deduce the approximated information B, = o (h(W,)).

n

In this framework, an unique approximation is performed to obtain
the approximated solution V(W,,B,), and it is possible to prove
that V(W,, B,) — V(W,B) (see [Pennanen, 2005]).

But the noise has been discretized in a very specific way. ..
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Working out an Example

. . . N lo-Based Discretization
Stochastic Optimal Control and Discretization Puzzles o =es SCretizatic

A simple SOC problem

in E(cU? + (W, w,)?

@ The noises Wo and W, are independent random variables,
each with a uniform probability distribution over [—1,1].

The initial state is X, = W,,.
The decision variable U is measurable w.r.t. W, : U = W,
@ The final state is X; = X, + U + W,.

The goal is to minimize the expectation of (eU2 + X12) where ¢ is
a "small” positive number (cheap control).
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Stochastic Optimal Control and Discretization Puzzles

A simple SOC problem

in E(cU? + (W, w,)?

@ The noises Wo and W, are independent random variables,
each with a uniform probability distribution over [—1,1].

The initial state is X, = W,,.
The decision variable U is measurable w.r.t. W, : U = W,
@ The final state is X; = X, + U + W,.

The goal is to minimize the expectation of (eU2 + X12) where ¢ is
a "small” positive number (cheap control).

Note that this example matches the Markovian setting.
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A Constructive Proposal

Exact Solution of the Problem

E(5U2+(WO+ U+ w1)2) _

E( WE + W2 +(1+2)U% + 2UW, +2 UW, +2 W, W, )
— =~ ——

——
1/3 1/3 0 0
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Working out an Example

Stochastic Optimal Control and Discretization Puzzles

Exact Solution of the Problem

E(5U2 (W, + U+ W1)2) -
E( WE + W2 +(1+2)U% + 2UW, +2 UW, +2 W, W, )
—~ =~ — =
1/3 1/3 0 0
@ The problem is thus equivalent to

2
min — +E<(1+5)U2+2UW0> ,
u=w, 3
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out an Example
ased Discretization

Stochastic Optimal Control and Discretization Puzzles .
Discretization

Exact Solution of the Problem

E(5U2+(WO+ U+ W1)2) -
E( WE + W2 +(1+2)U% + 2UW, +2 UW, +2 W, W, )
~— =~ —— ——
/3 1/3 0 0

@ The problem is thus equivalent to

2
min — +E<(1+5)U2+2UW0> ,
u=w, 3

@ By the first order optimality condition, the optimal solution is
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out an Example
sed Discretization

Stochastic Optimal Control and Discretization Puzzles
scretization

Exact Solution of the Problem

E(5U2+(WO+ U+ w1)2) _

E( WE + W2 +(1+2)U% + 2UW, +2 UW, +2 W, W, )
— =~ —_——  ——

1/3 1/3 0 0

@ The problem is thus equivalent to

2
Jmin = +E<(1 +e)U? +2UW0) ,

w, 3
@ By the first order optimality condition, the optimal solution is
yt = - Mo
1+¢

@ The associated optimal cost is readily calculated to be

1 1+ 2¢ 1
=2 = = ).
S=3x177 = 37006
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Working out an Example

Naive Monte Carlo-Based Discretization
Scenario Tree- 1 Discretization

A Constructive Proposal

Stochastic Optimal Control and Discretization Puzzles

Noise Discretization “a la Monte Carlo”

We crudely sample the optimization problem.

Wi

@ To that purpose, we first
consider a realization of a

° N-sample of the couple

(W,, W,), that is, points

in the square Q = [~1,1]? :

wil o ° {(WévW{)}i:I. N

@ This sample will be used to

approximate the expectation
by the Monte Carlo method.
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Discretized Information Structure

@ We consider the N realizations {u"},-zlm,v of the decision
variable U, corresponding to the discretization of the noise,
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Stochastic Optimal Control and Discretization Puzzles

Discretized Information Structure

@ We consider the N realizations {u"},-zlm,v of the decision
variable U, corresponding to the discretization of the noise,

@ and we have to keep in mind that U should be measurable
w.r.t. the first component W, of the noise (W, W,):

U=<Ww,.
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ing out an Example
Naive Monte Carlo-Based Discretization
Scenario Tree-B Discretization
A Constructive osal

Stochastic Optimal Control and Discretization Puzzles

Discretized Information Structure

@ We consider the N realizations {u"},-zlm,v of the decision
variable U, corresponding to the discretization of the noise,

@ and we have to keep in mind that U should be measurable
w.r.t. the first component W, of the noise (W, W,):

U=<Ww,.

@ To translate this condition in our discrete framework issued
from a Monte Carlo sample, we impose the constraint

Vij)e{l, .. NP2, wi=w) = u=u,

which prevents U from taking different values whenever two
samples of the noise display the same value on the first
component (corresponding to W/)).
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Naive Monte Carlo-Based Discretization
Scenario Tree- 1 Discretization

A Constructive Proposal

Stochastic Optimal Control and Discretization Puzzles

The Measurability Constraint is Not Effective!

The expression of the cost after discretization is

N
L(Za(u"f -+ (Wé + u' + W{)2) ,
i=1

and it is minimized w.r.t. (u!, ..., u™) under the constraints

u' =1 whenever wj=wj.
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The Measurability Constraint is Not Effective!

The expression of the cost after discretization is

N
1 2 i i 2
N<Z€(u) —|—(W0+u —|—W1) ,
i=1
and it is minimized w.r.t. (u!, ..., u™) under the constraints
u' =1 whenever wj= Wé .

Since the N sample trajectories (w, w{) of (W,, W,) are produced
by a Monte Carlo sampling over [—1,1]?, then, with probability 1,

w#w)  V(i,j) suchthat i#;j.
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Working out an Example

Naive Monte C ased Discretization
Scenario Tree- Discretization

A Constructive osal

Stochastic Optimal Control and Discretization Puzzles

The Measurability Constraint is Not Effective!

The expression of the cost after discretization is

Ib(ia(ui)2 -+ (Wé + u' + W{)2) ,
i=1
and it is minimized w.r.t. (u!, ..., u™) under the constraints
u' =1 whenever wj= Wé .
Since the N sample trajectories (w, w{) of (W,, W,) are produced
by a Monte Carlo sampling over [—1,1]?, then, with probability 1,
w#w)  V(i,j) suchthat i#;j.

The constraints are in fact never effective, so that the discretized
cost can be minimized independently for each individual sample i.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 233 / 328



Wor out an Example
. . . - Naive Monte Carlo-Based Discretization
Stochastic Optimal Control and Discretization Puzzles . B
Scenario Tree- d Discretization
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Something is Wrong. ..

The optimization problem associated to the i-th sample is

min =(u)? + (wf + '+ wd)”

which yields the optimal value and the optimal cost

i Wt w i (wg+wf)?
uy=——""—""- , Jp =€ —
1+e 1+¢
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A Constructive Proposal

Stochastic Optimal Control and Discretization Puzzles

Something is Wrong. ..

The optimization problem associated to the i-th sample is
min =(u)? + (wf + '+ wd)”
which yields the optimal value and the optimal cost
%:_%+M ’ﬂ:g%+Mf
1+¢ 1+4+¢
The averaged cost over the N samples is equal to

WO+W1) 2¢
— — —/— = 0+0(e).
Z 1+e¢ N—+oo 3(14¢) +06)
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Working out an Example

Naive Monte C ased Discretization
Scenario Tree-B Discretization

A Constructive posal

Stochastic Optimal Control and Discretization Puzzles

Something is Wrong. ..

The optimization problem associated to the i-th sample is
min =(u)? + (wf + '+ wd)”

which yields the optimal value and the optimal cost

wotwi o (wp+w)’

1ve P T T1ve

The averaged cost over the N samples is equal to

WO+W1) 2¢
— — —/— = 0+0(e).
Z 1+e¢ N—+oo 3(14¢) +06)

I
Ub——

This cost is far below the true optimal cost J# = 1/3 + O(e) !
However, any admissible solution (any U such that U < W)
cannot achieve a cost better than the optimal cost J%. ..
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Working out an Example

Naive Monte Carlo-Based Discretization
Scenario Tree- 1 Discretization

A Constructive Proposal

Stochastic Optimal Control and Discretization Puzzles

Real Value of the Discretized Problem Solution

@ The resolution of the discretized problem derived from the
Monte Carlo procedure yields N optimal values
Wé + W{
1+¢
but not a random variable. The associated cost value of order
€ is just a fake cost estimation, because we have not produced
an admissible control for the initial problem, namely a random
variable U, measurable with respect to W,,.

u, =

)
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Working out an Example

Naive Monte Carlo-Based Discretization
Scenario Tree-Based Discretization

A Constructive Proposal

Stochastic Optimal Control and Discretization Puzzles

Real Value of the Discretized Problem Solution

@ The resolution of the discretized problem derived from the
Monte Carlo procedure yields N optimal values

_wtw
1+4¢

but not a random variable. The associated cost value of order

€ is just a fake cost estimation, because we have not produced

an admissible control for the initial problem, namely a random
variable U, measurable with respect to W,,.

u, =

)

@ To evaluate the true cost of this naive approach, we must first
derive an admissible control for the initial problem, that is, a
random variable U, over [-1,1]? with constant value along
every vertical line of this square (since the horizontal axis
corresponds to the first component W, of the noise).
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Scenario Tree- d Discretization
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Stochastic Optimal Control and Discretization Puzzles

Construction of an Admissible Control

We assume that the sample points have been renumbered so that
the value of the sample first component wy is increasing with i.

Wy

i

Wifp-----mmmm - L)
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Working out an Example

Naive Monte Carlo-Based Discretization
Scenario Tree-Based Discretization

A Constructive Proposal

Stochastic Optimal Control and Discretization Puzzles

Construction of an Admissible Control

We assume that the sample points have been renumbered so that
the value of the sample first component wy is increasing with i.

Wi @ Divide the square into N

vertical strips by drawing
vertical lines in the middle
of segments [w{, wj™].

@ The i-th strip is given by
[a'~1, a'] x [~1,1], with:

i

Wifp-----mmmm - L)

a' = (wg+with)/2,

° fori=2,...,N—1,
(a° = —1 and aV = 1).
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Scenario Tree-Based Discretization
A Constructive Proposal

Construction of an Admissible Control

We construct a solution U, as the function of (wp, wy) which is
constant over each vertical strip defined on the square, the value

of U, in strip i being equal to the optimal value ulf = —W‘{i;vl:
N
Ub(Wo7 W1) = Z ué l[ai—17ai]X[_171](W0, W1) y
i=1

where (wo, wi) ranges in the square [—1,1]% and where 14(-) is the
indicator function of the set A:

1 ifxeA,
1a(x) = { 0 otherwise .
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A Constructive posal

Stochastic Optimal Control and Discretization Puzzles

Construction of an Admissible Control

We construct a solution U, as the function of (wp, wy) which is
constant over each vertlcal strip defined on the square the value

of U, in strip i being equal to the optimal value u|7 W‘{i;vl
N
Ub(Wo7 W1) = Z ué l[ai—17ai]X[_171](W0, W1) y
i=1

where (wo, wi) ranges in the square [—1,1]% and where 14(-) is the
indicator function of the set A:

1 ifxeA,
1a(x) = { 0 otherwise .

Note that the control U, depends on the N samples (wh, w)) by
means of the values of the mid-points a'’s and of the controls u;'s
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Naive Monte Carlo-Based Discretization
Scenario Tree-Based Discretization

A Constructive Proposal

Stochastic Optimal Control and Discretization Puzzles

Evaluation of the Expected Cost

The corresponding cost value E (e(U,)? + (W, + U, + W,)?)
can be evaluated analytically (integration w.r.t. (wo, wy) over
the square [—1,1]?), and is equal to

S g1 22— (5-1)2
+Z(1+52 (ug)2—|——( ) 2( )ug),

where the values a’ and u/ depend on the samples (w{, wy).
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A Constructive Proposal

Stochastic Optimal Control and Discretization Puzzles

Evaluation of the Expected Cost

The corresponding cost value E (e(U,)? + (W, + U, + W,)?)
can be evaluated analytically (integration w.r.t. (wo, wy) over
the square [—1,1]?), and is equal to

i—1

2 — 3 _ 22— (5-1)2
—I—Z(l—i—sz (ug)2—|——() 2( )ug),

where the values a’ and u/ depend on the samples (w{, wy).

In order to assess the value of this estimate, we now compute its
expectation when considering that the (w(, w!)'’s are realizations
of independent random variables (W}, W}). This calculation is
not straightforward because the wy's have been reordered, so
that we compute it numerically for different values of N.
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A Constructive Proposal

Stochastic Optimal Control and Discretization Puzzles

Evaluation of the Expected Cost

The cost provided by the admissible control U, is estimated 2/3.

12 cost

08/ \

0.6

Figure: Estimated cost as a function of the number N of samples
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Evaluation of the Expected Cost

The cost provided by the admissible control U, is estimated 2/3.
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Figure: Estimated cost as a function of the number N of samples

This value neither corresponds to the true optimal cost (1/3) nor
to the cost of the discrete problem (0). In fact, the value 2/3 is
equal to the one given by the best open-loop control: U, =0!
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The scenario tree approach leads to
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Scenario Tree Approach

The scenario tree approach leads to
No x Np scenarios:

{0 M5

J=1,...,No

@ Notice that the discretization Wé of
the first noise W, only depends on
j=1,..., Ny,

@ whereas the discretization VV{k of
the noise W, "hangs” from a given
Jj and dependson k=1,..., Nj.
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Scenario Tree Approach

The scenario tree approach leads to
No x Np scenarios:

{0 M5

J=1,...,No

@ Notice that the discretization Wé of
the first noise W, only depends on
j=1,..., Ny,

@ whereas the discretization VV{k of
the noise W, "hangs” from a given
Jj and dependson k=1,..., Nj.

From the measurability constraint, a
different value ¥ of the control U is

associated to each value Wé of 7
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Scenario Tree Optimal Solution

On the scenario tree, the original cost E(cU? + (W, + U + W,)?) is
approximated by

No Nl

/\Z > (s + Alllz:(uf +

j=1 k=1

S

n W{'k)2)

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 242 / 328



ut an Example
] nte Carlo-Based Discretization
Scenario Tree-Based Discretization
A Constructive Proposal

Stochastic Optimal Control and Discretization Puzzles

Scenario Tree Optimal Solution

On the scenario tree, the original cost E(cU? + (W, + U + W,)?) is
approximated by

No N ) )
;Oz (s + Ajlz(uf w4 wf?)
j=1 k=1

The solution of this approximated problem is

i W+ W i 1oL
=071 where W = — ) wl¥
=TI P
k=1
. | Wi w
to be compared with the naive Monte Carlo solution u; = g
€
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Scenario Tree Optimal Solution

On the scenario tree, the original cost E(cU? + (W, + U + W,)?) is
approximated by

No

2o 2 (2 D wd w )

j=1 k=1

The solution of this approximated problem is

W A N
=071 \where W= — Y w/
i 1+4+¢ ) 1 N, kz_:l 1 >
to be compared with the naive Monte Carlo solution u; = —%.
€

Note that W’l is an estimate of the expectation E(Wl) since we
assumed that W, and W, are independent random variables.
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Scenario Tree Optimal Cost

Let (%)% = N M (wi¥)2. The solution ué yields the cost

No _ o : ‘
No(11+s> S (e(wh)® + 2ewiw] — (W2 + (1 +)())) -
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Scenario Tree Optimal Cost

Let (%)% = N ks M (wi*)2. The solution ué yields the cost

No )
%(fm,z(e(%)wew (#)° + (1 +)(@)°)

The two estimates W’l and (6"1)2 converge as N goes to infinity
towards their asymptotic values, that is, 0 and 1/3, so that the
scenario tree optimal cost is such that

No
N0(1+5);<5(Wé) T3 ) Moot 3 706
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Scenario Tree Optimal Cost

Let (%)% = N ks M (wi*)2. The solution ué yields the cost

No )
%(fm,z(e(%)wew (#)° + (1 +)(@)°)

The two estimates W’l and (6"1)2 converge as N goes to infinity
towards their asymptotic values, that is, 0 and 1/3, so that the
scenario tree optimal cost is such that

No
N0(1+5);<5(Wé) T3 ) Moot 3 706

This cost is of the same order than the "“true” optimal cost!
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Scenario Tree Optimal Cost

Let (%)% = N ks M (wi*)2. The solution ué yields the cost

No )
%(fm,z(e(%)wew (#)° + (1 +)(@)°)

The two estimates W’l and (6"1)2 converge as N goes to infinity
towards their asymptotic values, that is, 0 and 1/3, so that the
scenario tree optimal cost is such that

No
N0(1+5);<5(Wé) T3 ) Moot 3 706

This cost is of the same order than the "“true” optimal cost!
However it does not correspond to an admissible solution. ..
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Admissible Control and Associated Cost

As in the naive Monte Carlo method, we derive from the Lré's an
admissible solution Ub for the initial problem (piecewise constant
fonction over Ny strips of the square [—1,1]?). The cost provided
by Uh is estimated 1/3, corresponding to the true optimal cost.

0.55  cost;

Figure: Estimated cost on a tree with N2 scenarios
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Where Do We Stand?

True Solution | Naive Monte Carlo Scenario Tree
Discrete Cost O(e) 1/3 + O(e)
Optimal Control | —W,/(1+¢) | —(wf+wi)/(1+¢) | —(wf+W))/(1+¢)
Induced Cost 1/3+ O(e) 2/34 0(¢) 1/3+ O(e)
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Stochastic Optimal Control and Discretization Puzzles

A Constructive Proposal

Where Do We Stand?

True Solution | Naive Monte Carlo Scenario Tree
Discrete Cost O(e) 1/3 + O(e)
Optimal Control | —W,/(1+¢) | —(wf+wi)/(1+¢) | —(wf+W))/(1+¢)
Induced Cost 1/3+ O(e) 2/34 0(¢) 1/3+ O(e)

@ The naive Monte Carlo method
o discretizes the noise process as a whole,
o deduces the discretization of the measurability constraint,
e yields a cost not better than the open-loop solution. ..

© The scenario tree approach
o discretizes the noise in a clever way (forward process),
o deduces the discretization of the measurability constraint,
e yields the optimal cost!

Clue: the conditional probability laws are well estimated.
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Monte Carlo Interpretation of the Scenario Tree
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Monte Carlo Interpretation of the Scenario Tree
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In a scenario tree, groups of samples are naturally aligned vertically!
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Voronoi Quantization

However, others quantizations of  are possible.

Given a set of points in the
square [—1,1]?, the Voronoi
tessellation minimizes the mean
quadratic error among finite
random variables taking given
values. We in fact consider a
discretized version of the random
variable (W,, W,), rather than a
Monte Carlo sampling.
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Independent Discretization of Noise and Information (1)

@ Choose a discretization of the noise (8 cells).

Noise
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Independent Discretization of Noise and Information

@ Choose a discretization of the noise (8 cells).

@ Choose a discretization of the information (5 cells).

a b c|d e

Noise Information
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o e- Discretization

Independent Discretization of Noise and Information  (3)

@ Choose a discretization of the noise (8 cells).
@ Choose a discretization of the information (5 cells).
e Combine both discretizations (21 non empty cells).

G
&)
Noise Information Mixing
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A Constructive Proposal

Independent Discretization of Noise and Information  (4)

w, ~ {a,b,c,d,e} , W, ~{1,2,3,4,56,7,8}.

a0 @

&5

®

)

®
®
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d Discretization
A Constructive Proposal

Independent Discretization of Noise and Information  (4)

w, ~ {a,b,c,d,e} , W, ~{1,2,3,4,56,7,8}.
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®

This approach does not necessarily produce a tree structure!
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Discretized Optimization Problem

Using the notation j(u, wo, w1) = cu? + (wo + u + wi)?, the
discretized optimization problem is

8
min Z Zﬁikj(uk, wh, wi) ,
W efan ey im1
where 7% is the probability weight of the cell ik, u* is the control
value on the cell k and w' the noise value on the cell i. Note that
some of the weights ©’s are equal to zero.
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Discretized Optimization Problem

Using the notation j(u, wo, w1) = cu? + (wo + u + wi)?, the
discretized optimization problem is

8
min Z Zﬁikj(uk, wh, wi) ,
W efan ey im1
where 7% is the probability weight of the cell ik, u* is the control
value on the cell k and w' the noise value on the cell i. Note that
some of the weights ©’s are equal to zero.

The solution of this discretized problem can be computed (finite
dimensional optimization). We expect that the optimal cost of the
discretized problem converges to the true optimal cost J as the
numbers of points in the 2 discrete sets associated to information
and noise ({a,...,e} and {1,...,8} in our example) go to infinity.
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© A General Convergence Result
@ Convergence of Random Variables
@ Convergence of o-Fields
@ The Long-Awaited Convergence Theorem
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A General Convergence Result

Problem and its Approximation

We consider the general form of a stochastic optimisation problem:

V(W,B) = {PEIEIE(J(U’ W)) )

subject to

U is B-measurable .

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 255 / 328



Random Variables

A General Convergence Result i Convergence Theorem

Problem and its Approximation

We consider the general form of a stochastic optimisation problem:
V(IW,B)=minE(j(U, W
(W,B) = min E(j(U, W)),

subject to

U is B-measurable .

We consider a sequence of random noises {Wn} N and another

sequence of o-fields {TB,,}HGN such that the W, 's and the B,'s
have “finite” representations, e.g.

oW =3" wlg, (Q1,...,9,) being a partition of Q,
o B,=0(Q,...,Q"), (QY,...,Q") being a partition of Q.
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Problem and its Approximation

We consider the general form of a stochastic optimisation problem:
V(IW,B)=minE(j(U, W
(W,B) = min E(j(U, W)),

subject to

U is B-measurable .

We consider a sequence of random noises {Wn}neN and another
sequence of o-fields {TB,,}HGN such that the W, 's and the B,'s
have “finite” representations, e.g.
oW =3" wlg, (Q1,...,9,) being a partition of Q,
o B,=0(Q,...,Q"), (QY,...,Q") being a partition of Q.

We are interested in the sequence of values {V(W,,B,)} _..
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© A General Convergence Result
@ Convergence of Random Variables
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Convergence of Random Variables
o-Fields
A General Convergence Result e nce Theorem

ergence Notions for W

These are standard and well known notions.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021



Convergence of Random Variables
Conve f o-Fields

A General Convergence Result The L ited Convergence Theorem

Convergence Notions for W

These are standard and well known notions.
e Convergence in distribution: W, 2w,
lim E(f(Wn)) = E(f(W)) for all continuous bounded f .

n——+00

This is the underlying concept in the Monte Carlo method:
the empirical law defined by a N-sample (W) ... W) of
W, thatis, 1377 ; d, (i) Weakly converges to Py .
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Convergence of Random Variables
Conv i
A General Convergence Result The g gence Theorem

Convergence Notions for W

These are standard and well known notions.

T D
e Convergence in distribution: W, — W.

lim E(f(Wn)) = E(f(W)) for all continuous bounded f .

n—-+o00
This is the underlying concept in the Monte Carlo method:
the empirical law defined by a N-sample (W) ... W) of
W, thatis, 1377 ; d, (i) Weakly converges to Py .

e Convergence in probability: W, ow.

ve>0, lim P(|W,— W], >c)=o0.

This notion is much stronger than the previous one.
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@ Convergence of o-Fields
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Convergence Notions for B

These notions and results are a little less well known. ..
Strong Convergence of o-fields: B, — B.
lim E(f | B,) 5 E(F | B) forall feL}(R).

n—-+o0o
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Convergence Notions for B

These notions and results are a little less well known. ..
Strong Convergence of o-fields: B, — B.
lim E(f | B,) 5 E(F | B) forall feL}(R).

n——+o00
Main properties.
@ The topology of the strong convergence is metrizable, so that

the space A* of sub-fields of A is a complete separable metric
space.
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Convergence Notions for B

These notions and results are a little less well known. ..

Strong Convergence of o-fields: B, — B.
. Lt 1
nﬂTooE(f | Bn) — E(f | B) forall feL'(R).

Main properties.

@ The topology of the strong convergence is metrizable, so that
the space A* of sub-fields of A is a complete separable metric
space.

@ The o-fields generated by a finite partition of £ are dense in
A* equipped with the previous metric.
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Convergence of Random Variables
Convergence of o-Fields
A General Convergence Result The Long-Awaited Convergence Theorem

Convergence Notions for B

These notions and results are a little less well known. ..

Strong Convergence of o-fields: B, — B.
1
lim E(f | B,) = E(f | B) forall feLY(R).
n——+o00
Main properties.
@ The topology of the strong convergence is metrizable, so that
the space A* of sub-fields of A is a complete separable metric
space.

@ The o-fields generated by a finite partition of £ are dense in
A* equipped with the previous metric.

© Let {Y, },en be a sequence of random variables such that

Y, -5 Y and o(Y,) C o(Y) Vn. Then, o(Y,) = o(Y).
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© A General Convergence Result

@ The Long-Awaited Convergence Theorem
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Convergence Theorem

Let W= LYQA,P;W) andU = L"(Q2, A,P; U), with
1<g<+4o0andl <r < +oo. Under the assumptions
Hy the sequence {B,} . strongly converges to B, and B, C B,
H, the sequence {W,} _ L9 converges to W (in L9-norm),
Hs the normal integrand j is such that
Y(u, ') € U, Y(w,w') € W2,
i(u, w) —j(u',w)| < aflu—ully + Bllw — w5
the convergence of the approximated optimal costs holds true
lim V(W,,B,) = V(W,B) .

n—-+400
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Convergence Theorem

Let W= LYQA,P;W) andU = L"(Q2, A,P; U), with
1<g<+4o0andl <r < +oo. Under the assumptions
Hy the sequence {B,} . strongly converges to B, and B, C B,
H, the sequence {W,} _ L9 converges to W (in L9-norm),
Hs the normal integrand j is such that
Y(u,u') € U?, Y(w,w') € W2,
i(u, w) = j(u', w')| < allu—dly+Bllw— v,

the convergence of the approximated optimal costs holds true
lim V(W,,B,) = V(W,B) .

n—-+400

Using epi-convergence, it is possible to obtain the same results under weaker
assumptions and to ensure the convergence of the sequence of the solutions.
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Conclusions

@ In the discretization of a SOC problem, there are two issues:
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Conclusions

@ In the discretization of a SOC problem, there are two issues:

e noise discretization,
e information discretization.

@ The naive Monte Carlo discretization provides a too weak
convergence notion (in distribution, not in probability).
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Conclusions

@ In the discretization of a SOC problem, there are two issues:

e noise discretization,
e information discretization.

@ The naive Monte Carlo discretization provides a too weak
convergence notion (in distribution, not in probability).

@ The scenario tree methodology provides an effective way to
discretize stochastic optimal control problem, but the two
discretizations of information and of noise are bundled.
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e noise discretization,
e information discretization.

@ The naive Monte Carlo discretization provides a too weak
convergence notion (in distribution, not in probability).

The scenario tree methodology provides an effective way to
discretize stochastic optimal control problem, but the two
discretizations of information and of noise are bundled.

Independent discretizations of noise and information offer
e a greater latitude to select discretization schemes,
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f Random Variables
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A General Convergence Result waited Convergence Theorem

Conclusions

In the discretization of a SOC problem, there are two issues:

e noise discretization,
e information discretization.

@ The naive Monte Carlo discretization provides a too weak
convergence notion (in distribution, not in probability).

The scenario tree methodology provides an effective way to
discretize stochastic optimal control problem, but the two
discretizations of information and of noise are bundled.

Independent discretizations of noise and information offer

e a greater latitude to select discretization schemes,
e a way to obtain proper convergence results.
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