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Deterministic Constrained Optimization Problem

General optimization problem (P)

min  J(u)
uelU»dcU

o U2 closed convex subset of an Hilbert space U,

@ J cost function U — R, satisfying some assumptions

convexity,
coercivity,
continuity,
differentiability.
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Extension of Problem () — Open-Loop Case

Consider Problem () and suppose that J is the expectation
of a function j, depending on a random variable W' defined
on a probability space (2, A,P) and valued on (W, W):

J(u) =E(j(u, W)) .
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Extension of Problem () — Open-Loop Case (1)

Consider Problem () and suppose that J is the expectation
of a function j, depending on a random variable W' defined
on a probability space (2, A,P) and valued on (W, W):

J(u) =E(j(u, W)) .

Then the optimization problem writes

min E(j(u, W)) .

ucyad
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Extension of Problem () — Open-Loop Case (1)

Consider Problem () and suppose that J is the expectation
of a function j, depending on a random variable W' defined
on a probability space (2, A,P) and valued on (W, W):

J(u) =E(j(u, W)) .

Then the optimization problem writes

min E(j(u, W)) .

ucyad

Decision u is a deterministic variable. The available information is
the probability law of W (no on-line observation of W), that is,
an open-loop situation. The information structure is trivial, but. ..
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Extension of Problem () — Open-Loop Case

Consider Problem () and suppose that J is the expectation
of a function j, depending on a random variable W' defined
on a probability space (2, A,P) and valued on (W, W):

J(u) =E(j(u, W)) .

Then the optimization problem writes

min E(j(u, W)) .

ucyad

Decision u is a deterministic variable. The available information is
the probability law of W (no on-line observation of W), that is,
an open-loop situation. The information structure is trivial, but. ..

~» main difficulty: calculation of the expectation.
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Extension of Problem () — Open-Loop Case (2)

Solution using Exact Quadrature

J(u) =E(j(u,W)) , VI(u)=E(Vj(u,W)) .
Projected gradient algorithm:
ulFY) = projad (u(k) - eVJ(u(k))> :
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Extension of Problem () — Open-Loop Case (2)

Solution using Exact Quadrature

J(u) =E(j(u,W)) , VI(u)=E(Vj(u,W)) .
Projected gradient algorithm:
ulFY) = projad (u(k) - eVJ(u(k))> :

Sample Average Approximation (SAA)

Obtain a realization (w(), ... w(k) of a k-sample of W
and minimize the Monte Carlo approximation of J:
k
ulk )Eargmln—ZJ (u, wy .
ueyad
Note that u(%) depends on the realization (w(®), ... w(F)i
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Extension of Problem (P) — Open-Loop Case (3)

Stochastic Gradient Method

Underlying ideas:
e incorporate the realizations (w1, ... w(¥) . ) of samples

of W one by one into the algorithm.

@ use an easily computable approximation of the gradient VJ,
e.g. replace VJ(ul) by V,j(ul), wlt1),
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Extension of Problem (P) — Open-Loop Case (3)

Stochastic Gradient Method

Underlying ideas:

e incorporate the realizations (w1, ... w(¥) . ) of samples

of W one by one into the algorithm.

@ use an easily computable approximation of the gradient VJ,
e.g. replace VJ(ul) by V,j(ul), wlt1),

These considerations lead to the following algorithm:

uFY) = projjad (u(k) — v, j(u®, W(k+1))) :

Iterations of the gradient algorithm are used a) to move towards
the solution and b) to refine the Monte-Carlo sampling process.
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Stochastic Gradient Algorithm

@ Stochastic Gradient Algorithm
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Stochastic Gradient Algorithm

Stochastic Gradient (SG) algorithm

Standard Stochastic Gradient Algorithm

min  E(j(u, W)) . (Por)

ueU2dCU

Q Let u(® € U2 and choose a positive real sequence {e(K)}, .

@ At iteration (k + 1), draw a realization w(**1) of the r.v. W.

© Compute the gradient of j and update u(k*1) by the formula:
ulkY) = proj ad (u(k) — v, j(w), W(k+1))> :

© Set k = k+1 and go to step 2.
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Stochastic Gradient Algorithm

Stochastic Gradient (SG) algorithm

Standard Stochastic Gradient Algorithm

min  E(j(u, W)) . (Por)

ueU2dCU

Q Let u(® € U2 and choose a positive real sequence {e(K)}, .

@ At iteration (k + 1), draw a realization w(**1) of the r.v. W.

© Compute the gradient of j and update u(k*1) by the formula:
ulkY) = proj ad (u(k) — v, j(w), W(k+1))> :

© Set k = k+1 and go to step 2.

Note that (w(®), ..., w(k) ) is a realization of a co-sample of W

~» numerical implementation of the stochastic gradient method.
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Stochastic Gradient Algorithm

Probabilistic Considerations

In order to study the convergence of the algorithm, it is necessary
to cast it in the adequate probabilistic framework:

UHD = proj e (U(k) — 0y, j(u), W(k+1))> ,

where {W)}, oy is a infinite-dimensional sample of W .3

~ lterative relation involving random variables.

*Note that (Q,.4,P) has to be “big enough” to support such a sample.
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Stochastic Gradient Algorithm

Probabilistic Considerations

In order to study the convergence of the algorithm, it is necessary
to cast it in the adequate probabilistic framework:

UHD = proj e (U(k) — 0y, j(u), W(k+1))> ,

where {W)}, oy is a infinite-dimensional sample of W .3
~ lterative relation involving random variables.

@ Convergence in law.

o Convergence in probability.

@ Convergence in LP norm.

@ Almost sure convergence (the “intuitive” one).

*Note that (Q,.4,P) has to be “big enough” to support such a sample.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 56 / 328



Stochastic Gradient Algorithm

Probabilistic Considerations

An iteration of the algorithm is represented by the general relation:

yk+1) — R(k)(u(k)7 W(k+1)) )
Let (X be the o-field generated by (W), ... w(k).
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Stochastic Gradient Algorithm

Probabilistic Considerations

An iteration of the algorithm is represented by the general relation:

yk+1) — R(k)(u(k)7 W(k+1)) )
Let (X be the o-field generated by (W), ... w(k).

@ Since UK is F(k)_mesurable for all k, we have

E(U(k) ’ g(k)) — y
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Stochastic Gradient Algorithm

Probabilistic Considerations

An iteration of the algorithm is represented by the general relation:

yk+1) — R(k)(u(k)7 W(k+1)) )
Let (X be the o-field generated by (W), ... w(k).
o Since U is 7(k)-mesurable for all k, we have
E(U(k) ’ g(k)) — y

e Since W+ is independent of F(¥), we have (disintegration)
that the conditional expectation of U+ w.r.t. F(K) merely
consists of a standard expectation:

E (U6 | 09) () = / RO (UO (W), W () dP(W) .
Q
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Stochastic Gradient Algorithm

Example: Estimation of an Expectation

Let W be a real-valued random variable defined on (Q2, A, P).
We want to compute an estimate of its expectation

E(W) = /Q W (w) dP(w) .
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Stochastic Gradient Algorithm

Example: Estimation of an Expectation

Let W be a real-valued random variable defined on (Q2, A, P).
We want to compute an estimate of its expectation

E(W) = /Q W (w) dP(w) .

Monte Carlo method: obtain a k-sample (W) ... W) of W
and compute the associated arithmetic mean:

x|

k
yo 1 S W)
=1

By the Strong Law of Large Numbers (SLLN), the sequence of
random variables { U9}, cn almost surely converges to E(W).
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Stochastic Gradient Algorithm

Example: Estimation of an Expectation

A straightforward computation leads to

1
(k+1) — yk) — = (yk) — wk+D)
u u K1 (U w ) .
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Stochastic Gradient Algorithm

Example: Estimation of an Expectation

A straightforward computation leads to

1
(k+1) — yk) — = (yk) — wk+D)
u u K1 (U w ) .

Using the notations ¢(¥) = 1/(k + 1) and j(u,w) = (v — w)2/2,
the last expression of U(k+1) writes

Ukt — gy — g, j(u®, wkty

which corresponds to the stochastic gradient algorithm applied to:*

1
min S ((u = W)?) .

*Recall that IE(W) is the point which minimizes the dispersion of W.
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Stochastic Gradient Algorithm

Example: Estimation of an Expectation

This example makes it possible to enlighten some features of the
stochastic gradient method.
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Stochastic Gradient Algorithm

Example: Estimation of an Expectation

This example makes it possible to enlighten some features of the
stochastic gradient method.

o The step size €(X) = 1/(k 4 1) goes to zero as k goes to +oc.
Note however that (%) goes to zero “not too fast”, that is,

Ze(k) = +00.

keN
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Stochastic Gradient Algorithm

Example: Estimation of an Expectation

This example makes it possible to enlighten some features of the
stochastic gradient method.

o The step size €(X) = 1/(k 4 1) goes to zero as k goes to +oc.
Note however that (%) goes to zero “not too fast”, that is,

Ze(k) = +00.

keN

@ It is reasonable to expect an almost sure convergence result for
the stochastic gradient algorithm (rather than a weaker notion
as convergence in distribution or convergence in probability).
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Stochastic Gradient Algorithm

Example: Estimation of an Expectation

This example makes it possible to enlighten some features of the
stochastic gradient method.

o The step size €(X) = 1/(k 4 1) goes to zero as k goes to +oc.
Note however that (%) goes to zero “not too fast”, that is,

Ze(k) = +00.

keN

@ It is reasonable to expect an almost sure convergence result for
the stochastic gradient algorithm (rather than a weaker notion
as convergence in distribution or convergence in probability).

@ As the Central Limit Theorem (CLT) applies to this case, we
may expect a similar result for the rate of convergence of the
stochastic gradient algorithm.
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Connexion with Stochastic Approximation

@ Connexion with Stochastic Approximation
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Connexion with Stochastic Approximation

Stochastic Approximation (SA) Framework

A classical problem in Stochastic Approximation is to determine
the zero of a function h: U — U, with U = R", in case that the
observation of h(u) is perturbed by an additive random variable &.

Given a random process {£(K)}, < and a filtration {F(K}, oy,
the standard SA algorithm consists in the following iteration:

ykty) — gy 4 6(k)(h(u(k)) I £(k+1)> ,
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Connexion with Stochastic Approximation

Stochastic Approximation (SA) Framework

A classical problem in Stochastic Approximation is to determine
the zero of a function h: U — U, with U = R", in case that the
observation of h(u) is perturbed by an additive random variable &.

Given a random process {£(K)}, < and a filtration {F(K}, oy,
the standard SA algorithm consists in the following iteration:

ykty) — gy 4 6(k)(h(u(k)) I £(k+1)> ,
Link with the stochastic gradient algorithm:

h(u) = =VJ(u)
k) — v Uk — v, j(uR, wk+i)y |

~ Finding v s.t. h(uf) = 0 is equivalent to solving VJ(uf) = 0.
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Connexion with Stochastic Approximation

Convergence Theorem (SA)

@ The random variable U©) is (9 _mesurable.
@ The mapping h : U — U is continuous, such that

o Juf €R", h(u*) =0 and (h(u),u— u*) <0, Vu# v
e 3a>0, VueR", |hw)|? < a(l+|u]?).

© The random variable £(¥) is F(K)-mesurable for all k, and
o E(¢l+D) | Fl) =0,
o 3d >0, E(Je*D|2 | FO) < d(1+ | UW|?).

@ The sequence {e(K)},cy is a o-sequence, that is,

Ze(k) = +00, Z (e(k))2 < +00.

keN keN
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Connexion with Stochastic Approximation

Convergence Theorem (SA)

Robbins-Monro Theorem

Under the previous assumptions, the sequence {U(k)}keN of
random variables generated by the Stochastic Approximation
algorithm almost surely converges to the solution uf of h(u) = 0.

For a proof, see [Duflo, 1997, §1.4].
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Connexion with Stochastic Approximation

Convergence Theorem (SA)

Robbins-Monro Theorem

Under the previous assumptions, the sequence {U(k)}keN of
random variables generated by the Stochastic Approximation
algorithm almost surely converges to the solution uf of h(u) = 0.

For a proof, see [Duflo, 1997, §1.4].

This theorem can be extended to more general situations.
@ A projection operator can be added:

UKD = proj e (Um + e (h(UR)y + £(k+1))> _

e A “small” additional term R(x*1) can be added:5

utk+l) — yk) e(k)(h(U(k)) + ¢+ 4 R(k+1)) )

®for example a bias on h(u), as considered in the Kiefer-Wolfowitz algorithm
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Connexion with Stochastic Approximation

Rate of Convergence (SA)

We recall a result about the asymptotic normality of the sequence
{UM} generated by the SA algorithm, that is, an estimation of its
rate of convergence.
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Connexion with Stochastic Approximation

Rate of Convergence (SA)

We recall a result about the asymptotic normality of the sequence
{UM} generated by the SA algorithm, that is, an estimation of its
rate of convergence.

We first need to be more specific about the notion of o-sequence.

Definition

A positive real sequence {€(X)},cn is a o(a, §,7)-sequence if it is

such that
(k) @

:m’
with >0, 3>0and 1/2 <y < 1.

A consequence of this definition is that a o(«, 3, v)-sequence is
also a o-sequence.
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Connexion with Stochastic Approximation

Rate of Convergence (SA)

@ h is continuously differentiable and, in a neighborhood of ut
h(u) = —H(u — u*) + O(||u — &*?) ,
where H is a symmetric positive-definite matrix.

@ The sequence {E (¢FD(gk+D)T | ?(k))}keN almost surely
converges to a symmetric positive-definite matrix I'.

© 36 > 0 such that supey E([|€<HD |20 | 700) < 400
@ The sequence {(K)} oy is a o(a, 8,7)-sequence.
© The square matrix (H — \/) is positive-definite, with

{ 0 ify<1,
A= 1

— ify=1.
2x "y
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Connexion with Stochastic Approximation

Rate of Convergence (SA)

We retain the assumptions ensuring the almost sure convergence.

Central Limit Theorem

Under all previous assumptions, the sequence of random variables
{(1/Ve®)(Uk — uﬁ)}keN converges in law towards a centered
gaussian distribution with covariance matrix ¥, that is,

1
e(k)

(U ) 2 N (0,T)
in which X is the solution of the so-called Lyapunov equation

(H=A)Z+E(H-X)=T.

For a proof, see [Duflo, 1996, Chapter 4].
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Connexion with Stochastic Approximation

Rate of Convergence (SA)

@ The result is valid only for unconstrained problems: U2 =T,
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Connexion with Stochastic Approximation

Rate of Convergence (SA)

@ The result is valid only for unconstrained problems: U2 =T,
@ The result can be rephrased as

k3 (U = i) 25 N (0,07)

so that 3 has in fact no influence on the convergence rate.
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Connexion with Stochastic Approximation

Rate of Convergence (SA)

@ The result is valid only for unconstrained problems: U2 =T,
@ The result can be rephrased as

k3 (U = i) 25 N (0,07)

so that 3 has in fact no influence on the convergence rate.

@ The choice v = 1 achieves the greatest convergence rate. We
recover the rate 1/v/k of a standard Monte Carlo estimator.
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Connexion with Stochastic Approximation

Rate of Convergence (SA)

@ The result is valid only for unconstrained problems: U2 =T,
@ The result can be rephrased as

k3 (U = i) 25 N (0,07)

so that 3 has in fact no influence on the convergence rate.

@ The choice v = 1 achieves the greatest convergence rate. We
recover the rate 1/v/k of a standard Monte Carlo estimator.

o If we refer back to the optimization problem (P,), that is,
h = —VJ, we notice that H is the Hessian matrix of J at uf:

H=vV?J(u"),
and that I is the covariance matrix of V,j evaluated at uf:

r— E(Vuj(uﬁ, W) (Vi W))T) '
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Asymptotic Efficiency and Averaging

© Asymptotic Efficiency and Averaging
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Asymptotic Efficiency and Averaging

Stochastic Newton Algorithm
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Asymptotic Efficiency and Averaging

Stochastic Newton Algorithm

Here, the step sizes ¢(¥) are built using the optimal choice v = 1.
The scalar gain « is replaced by a matrix gain A, where A is a
symmetric positive-definite matrix. The SG algorithm becomes

1
(k+1) — gyt _ 2 A iy kD
u u P Vuj(UY, ),
which in the Stochastic Approximation setting writes
1
(k+1) — (k) - (k) (k+1)
U U +k+ﬁ(Ah(U )+ AE )
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Asymptotic Efficiency and Averaging

Stochastic Newton Algorithm

Here, the step sizes ¢(¥) are built using the optimal choice v = 1.
The scalar gain « is replaced by a matrix gain A, where A is a
symmetric positive-definite matrix. The SG algorithm becomes

1

(k+1) _ (k) = A . (k) W(k-‘rl)
0} U — AW Jut, )
which in the Stochastic Approximation setting writes
1
(k+1) — ylk) L = (k) (k+1)
U U +k+ﬁ(Ah(U )+ AEKD)

The Central Limit Theorem is thus available, and we have
V(U = i) 2 N (0,34)

where % 4 is the unique solution of

(AH— é)LH—ZA(HA— é) — ATA.
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Asymptotic Efficiency and Averaging

Stochastic Newton Algorithm

Let Cy be the set of symmetric positive-definite matrices A, such
that AH — /2 is a positive-definite matrix.

Theorem

The choice A* = H~! for the matrix A minimizes the asymptotic
covariance matrix > 4 over the set Cy. The expression of the
minimal asymptotic covariance matrix is

Yu=HIHT.

Sketch of proof. Rewrite the covariance matrix ¥4 as Aq+ HITHL.
Then the matrix A4 satisfies a Lyapunov equation, whose solution is thus
semi-definite positive, hence the result. O
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Asymptotic Efficiency and Averaging

Stochastic Newton Algorithm

Definition

A stochastic gradient algorithm is Newton-efficient if the sequence
{U(k)}keN it generates has the same asymptotic convergence rate
as the optimal Newton algorithm, namely

V(U — ) 25 N (0, HITHY)

Note that the improvement is on the covariance matrix of the Gaussian
distribution. The rate of convergence remains 1/v/k.

Question. How to obtain an implementable Newton-efficient
stochastic gradient algorithm?
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Asymptotic Efficiency and Averaging

Stochastic Gradient Algorithm with Averaging (1)

[Polyak, 1992] proposed to implement a Newton-efficient algorithm
by incorporating a new averaging stage in the standard algorithm.
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Asymptotic Efficiency and Averaging

Stochastic Gradient Algorithm with Averaging (1)

[Polyak, 1992] proposed to implement a Newton-efficient algorithm
by incorporating a new averaging stage in the standard algorithm.

Assuming that the admissible set U?d is equal to the space U, the
standard stochastic gradient algorithm iteration

v+t = gk — g, ik, wlktby
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Asymptotic Efficiency and Averaging

Stochastic Gradient Algorithm with Averaging (1)

[Polyak, 1992] proposed to implement a Newton-efficient algorithm
by incorporating a new averaging stage in the standard algorithm.

Assuming that the admissible set U?d is equal to the space U, the
standard stochastic gradient algorithm iteration

v+t = gk — g, ik, wlktby

is replaced by
U+t — gk — g, ik wlkty

o) =
+)_ (N
Uy = §/1 U
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Asymptotic Efficiency and Averaging

Stochastic Gradient Algorithm with Averaging (1)

[Polyak, 1992] proposed to implement a Newton-efficient algorithm
by incorporating a new averaging stage in the standard algorithm.
Assuming that the admissible set U?d is equal to the space U, the
standard stochastic gradient algorithm iteration

uk+1) — yk) _ e(k)Vuj(U(k), W(k+1)) ’
is replaced by

U+t — gk — g, ik wlkty

k+1

(k+1)_ 1 ()
Uy, _k+1/z;U :

Note that an equivalent recursive form for the averaging stage is

k41 K
U1(\[+ )= U1£/I) + ﬁ(u(kﬂ Ul(w)) .
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Asymptotic Efficiency and Averaging

Stochastic Gradient Algorithm with Averaging (2)

Theorem

Under the additional assumption that the o(«, 3, v)-sequence
{e(M)} ke is such that o < 1, the averaged stochastic gradient
algorithm is Newton-efficient:

V(U — i) 2 N (0. HITHTY) .

For a proof, see [Duflo, 1996, Chapter 4].
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Asymptotic Efficiency and Averaging

Stochastic Gradient Algorithm with Averaging (2)

Theorem

Under the additional assumption that the o(«, 3, v)-sequence
{e(M)} ke is such that o < 1, the averaged stochastic gradient
algorithm is Newton-efficient:

V(U — i) 2 N (0. HITHTY) .

For a proof, see [Duflo, 1996, Chapter 4].

According to the standard theorem, the convergence rate achieved
by the sequence {U®)} o with v < 1 is smaller than 1/v/k and
hence not optimal. The “nice” convergence properties are obtained
regarding the averaged sequence {Uﬁ()}keN-
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Practical Considerations

@ Practical Considerations
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Practical Considerations

A Toy Problem

Let us consider the following optimization problem:
1
min E<7uTBu+ WTu) ,
ucR10 2

B being a symmetric positive definite matrix, and W being
a R1%valued Gaussian random variable A/(m,T).
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B being a symmetric positive definite matrix, and W being
a R1%valued Gaussian random variable A/(m,T).

The optimal solution of this problem is uf = —B~1m.
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Practical Considerations

A Toy Problem

Let us consider the following optimization problem:

1
min E<7uTBu+ WTu) ,
ueR10 2

B being a symmetric positive definite matrix, and W being
a R1%valued Gaussian random variable A/(m,T).

The optimal solution of this problem is uf = —B~1m.

It can be estimated either by Monte Carlo

k+1
~ (k+1) 1 -1 0
R D -
k41— ’

or by the standard stochastic gradient algorithm
yk+l) — yk) — 6(k)(,gu(k) + W(k+1)) )
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Practical Considerations

Tuning the Standard Algorithm

k) «

Let {¢(K)} ey be a o(a, 3,7)-sequence, that is, ¢() = Pk
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Practical Considerations

Tuning the Standard Algorithm

Ky _ @

Let {e(K)}4en be a o(a, 3,7)-sequence, that is, €

@ The best convergence rate is reached for v = 1.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 77 / 328



Practical Considerations

Tuning the Standard Algorithm

(6%
kY + 8

Let {¢(K)} ey be a o(a, 3,7)-sequence, that is, ¢() =

@ The best convergence rate is reached for v = 1.

@ The coefficient « influences the asymptotic behavior.
The covariance matrix a¥ grows as o goes to 400, but
using too small values for o may generate very small gradient
steps. The choice of « corresponds to a trade-off between
stability and precision.

®remember that ¥ depends on . . .
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Practical Considerations

Tuning the Standard Algorithm

k) «

Let {¢(K)} ey be a o(a, 3,7)-sequence, that is, ¢() = Pk

@ The best convergence rate is reached for v = 1.

@ The coefficient « influences the asymptotic behavior.
The covariance matrix a¥ grows as o goes to 400, but
using too small values for o may generate very small gradient
steps. The choice of « corresponds to a trade-off between
stability and precision.

o Ultimately, the coefficient 5 makes it possible to regulate the
transient behavior of the algorithm. During the first iterations,
the coefficient (¥ is approximately equal to a/3. If a/3 is
too small, the transient phase may be slow. On the contrary,
taking a too large ratio may lead to a numerical burst.

®remember that ¥ depends on . . .
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Practical Considerations

Tuning the Standard Algorithm (a/5 = 0.1)
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Practical Considerations

Tuning the Averaged Algorithm

Here, {¢(M},cn is a o(a, B, 7)-sequence, with 1/2 < v < 1.
The averaged stochastic gradient algorithm writes on our example
k+1

(k+1) _ gy(k) _ (k) (k+1) (k+1)
vttt =y kW—s—ﬁ(BU +wy oy k+1ZU
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Practical Considerations

Tuning the Averaged Algorithm

Here, {¢(M},cn is a o(a, B, 7)-sequence, with 1/2 < v < 1.

The averaged stochastic gradient algorithm writes on our example
k+1

yt+1) — ylk) _ m(BU(k + W(k+1)) , Ul(\11<+1 P Z u”

@ The value v = 2/3 is considered as a good choice.
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Practical Considerations

Tuning the Averaged Algorithm

Here, {¢(M},cn is a o(a, B, 7)-sequence, with 1/2 < v < 1.
The averaged stochastic gradient algorithm writes on our example

k+1

(k+1) _ (k) _ (k) (k+1) (k+1)
Ut = uy kW—s—ﬁ(BU + Wy Uy k+1ZU

@ The value v = 2/3 is considered as a good choice.

@ The tuning of parameters a and 3 is much easier than for the
standard algorithm. Indeed, the problem of “too small” step
sizes arising from a bad choice of « is not so critical because
the term k—7 goes down more slowly towards zero. Of course,
the ratio o/ must be chosen in such a way that numerical
bursts do not occur during the first iterations of the algorithm.
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Practical Considerations

Tuning the Averaged Algorithm (/3 = 0.1)
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