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Deterministic Constrained Optimization Problem

Making decisions in a rational way is a problem which can be
mathematically formulated as an optimization problem. Generally,
several conflicting goals must be taken into account simultaneously.
A choice has to be made about which goals are formulated as
constraints, and which goal is reflected by a cost function.

General Problem (PG )

min
u∈Uad⊂U

J(u) (1a)

subject to

Θ(u) ∈ −C ⊂ V . (1b)

Duality theory for constrained optimization problems provides
a way to analyze the sensitivity of the best achievable cost as
a function of (given) constraint levels.
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Deterministic Optimal Control Problem

In a deterministic setting, problems that involve systems evolving
in time enter the realm of optimal control.

Dynamic Problem (PD)

min
(u0,...,uT−1,x0,...,xT )

T−1∑
t=0

Lt(xt , ut) + K (xT ) (2a)

subject to{
x0 = xini given ,
xt+1 = ft(xt , ut) , t = 0, . . . ,T − 1 .

(2b)

There are at least two points of view on optimal control:

Maximum Principle (variational approach),

Dynamic Programming (state space approach).
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Attitudes when Facing Uncertainty

In general, when making decisions, one is faced with uncertainties
which affect the cost function and the constraints. Let us mention
two possibilities (among others) for mathematically formulating
decision making problems under uncertainty.

Worst case design. We assume that uncertainties lie in a
bounded subset. We consider the worst situation to be faced
and try to make it as good as possible. In more mathematical
terms, one has to minimize the maximal possible value that
Nature can give to the cost (robust control).

Probabilistic approach. Uncertainties are viewed as random
variables following a priori probability laws. Then the cost to
be minimized is the expectation of some performance index
depending on those random variables and on decisions
(stochastic programming, stochastic optimal control).
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Decisions in the Probabilistic Framework (1)

We consider optimization problems in the probabilistic approach.

The decisions in such problems usually become random variables
defined on the underlying probability space (Ω,A,P). As a matter
of fact, decisions U may depend on the uncertainties W that
affect the problem, and are therefore themselves random variables.

An easy case is when those decisions are deterministic, that is,
constant functions of the uncertainties : U (ω) = u ∀ω ∈ Ω.
Such decisions are termed open-loop1 decisions.

A typical example of this situation is the investment problem: a
decision maker has to make an investment in one time facing an
uncertain future, so that its decision results from an (optimal)
trade-off between all possible outcomes of the noise.

1here and now decisions in the stochastic programming terminology
P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 13 / 328
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Decisions in the Probabilistic Framework (2)

But the decisions may also be true random variables because they
are produced by applying functions to the uncertainties. Here, we
enter the domain of closed-loop (feedback) decisions U = ϕ(W ),
which plays a prominent part in optimization under uncertainty.

A well studied example of this situation is the so-called two-stage
recourse problem. Here a decision maker takes a first decision u0

(e.g. investment), after which a random event W1 occurs. Then
a second recourse decision U1 (e.g. operation) is made assuming
the noise known, that corrects the result of the first-stage decision.

More generally, we may consider multi-stage problems, for which a
decision has to be taken at each time step of a given time horizon.

u0  W1  U1  W2  U2 . . . WT−1  UT−1  WT

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 14 / 328



General Introduction
Problem Formulation and Information Structure

Content of the course

Decision Making as an Optimization Problem
Facing the Uncertainty
The Role of Information

Decisions in the Probabilistic Framework (2)

But the decisions may also be true random variables because they
are produced by applying functions to the uncertainties. Here, we
enter the domain of closed-loop (feedback) decisions U = ϕ(W ),
which plays a prominent part in optimization under uncertainty.

A well studied example of this situation is the so-called two-stage
recourse problem. Here a decision maker takes a first decision u0

(e.g. investment), after which a random event W1 occurs. Then
a second recourse decision U1 (e.g. operation) is made assuming
the noise known, that corrects the result of the first-stage decision.

More generally, we may consider multi-stage problems, for which a
decision has to be taken at each time step of a given time horizon.

u0  W1  U1  W2  U2 . . . WT−1  UT−1  WT

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 14 / 328



General Introduction
Problem Formulation and Information Structure

Content of the course

Decision Making as an Optimization Problem
Facing the Uncertainty
The Role of Information

Decisions in the Probabilistic Framework (2)

But the decisions may also be true random variables because they
are produced by applying functions to the uncertainties. Here, we
enter the domain of closed-loop (feedback) decisions U = ϕ(W ),
which plays a prominent part in optimization under uncertainty.

A well studied example of this situation is the so-called two-stage
recourse problem. Here a decision maker takes a first decision u0

(e.g. investment), after which a random event W1 occurs. Then
a second recourse decision U1 (e.g. operation) is made assuming
the noise known, that corrects the result of the first-stage decision.

More generally, we may consider multi-stage problems, for which a
decision has to be taken at each time step of a given time horizon.

u0  W1  U1  W2  U2 . . . WT−1  UT−1  WT

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 14 / 328



General Introduction
Problem Formulation and Information Structure

Content of the course

Decision Making as an Optimization Problem
Facing the Uncertainty
The Role of Information

Stochastic Programming and Stochastic Control

u0  W1  U1  W2 . . .  Ut−1  Wt  Ut  Wt+1 . . .

Stochastic Programming (SP) is the natural extension of
Mathematical Programming to the stochastic framework. As
such, numerical resolution methods are based on variational
techniques. SP deals with static, two-stage and multi-stage
problems. The question of information structure pops up in
the field with multi-stage problems, at least to handle the
constraints of nonanticipativeness: Ut = ϕt(W1, . . . ,Wt).

Stochastic Optimal Control (SOC) is the extension of the
theory of deterministic optimal control to the situation when
uncertainties are present and modeled by random variables.
SOC deals with dynamic problems. The standard resolution
approach is Dynamic Programming (DP), which naturally
delivers optimal feedbacks (as functions of the state).
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Uncertainty and Information (1)

In a deterministic environnement, everything is known in advance!!!

In an uncertain environnement, the situation is quite different since
trajectories are not predictable in advance because they depend on
the realizations of random variables. Available observations of the
noise reveal some information about those realizations. Using this
information, one can do better than applying a naive open-loop
control, as illustrated by the following example:

min
U=u

E
(
(U −W )2

)
versus min

U∈L0(Ω,R)
E
(
(U −W )2

)
.

The achievable performance depends on the information pattern
(information structure) of the problem: an optimization problem
under uncertainty is not well-posed until the exact amount of
information available prior to making a decision has been defined.
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Uncertainty and Information (2)

Solving stochastic optimization problems is not just a matter of
optimization: it is also the question of handling specific constraints
representing the information structure. There are essentially two
ways of dealing with such constraints.

That used by the DP approach is a functional way: decisions
are searched for as functions of observations (feedback).
Another way is to consider all variables as random variables:
then the information constraints are expressed by the notion
of measurability, mathematically captured by σ-algebras.

A tricky aspect of information patterns is that future information may be

affected by past decisions, leading to the so-called dual effect. Indeed a

decision has two objectives: contributing to optimizing the cost function,

and modifying the information structure for future decisions. Problems

with dual effect are generally among the most difficult.
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Let’s Summarize

In summary, solving stochastic optimization problems is not only a
matter of optimizing a criterion under conventional constraints.
Issues and expected difficulties are the following.

1 How to compute mathematical expectations?

generally a difficult task by itself. . .

2 How to formulate and how to deal with constraints:

in an almost-sure sense?
in expectation?
in probability?

3 How to properly handle informational constraints?
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Extension of the General Problem (PG ) (1)

We start from Problem (1), and assume now that the control is a
random variable U defined on the probability space (Ω,A,P) and
valued on (U,U). The cost j is affected by a noise W :2

J(U ) = E
(
j(U ,W )

)
.

Denote by F the σ-field generated by W . The (interesting part
of) information available to the decision maker is a piece of the
information revealed by the noise W , and thus is represented by
a σ-field G included in F. Then the optimization problem writes

min
U� G

E
(
j(U ,W )

)
,

where U � G means that U is measurable w.r.t. the σ-field G.
2There is here a tricky point in the notations. . .
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Extension of the General Problem (PG ) (2)

min
U� G

E
(
j(U ,W )

)
.

Examples.

1 G = {∅,Ω}: this corresponds to the open-loop case:

min
u∈U

E
(
j(u,W )

)
.

2 G ⊃ σ
(
W
)
: we have by the interchange theorem:

E
(

min
u∈U

j(u,w)
)
, ∀w ∈W .

3 G ⊂ σ
(
W
)
: the problem is equivalent to

E
(

min
u∈U

E
(
j(u,W )

∣∣ G)) .
These three examples correspond to a static information structure,
that is, the case where the σ-field G is fixed.
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Extension of the General Problem (PG ) (3)

When time is involved in the problem, the decision U rewrites as a
collection (U0, . . . ,UT−1) of random variables, each subject to its
own measurability constraint:

Ut � Gt .

The problem is dynamic (time), but involves a static information
structure as soon as each σ-field Gt is fixed, that is, the information
available at time t is not modified by past controls. This is surely
the case when dealing with non anticipativy constraints:

Gt = σ(W1, . . . ,Wt) .

The situation of dynamic information structure occurs when Gt

depends on past controls, as in G1 = σ(W1), G2 = σ(U1,W2).
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Extension of the General Problem (PG ) (4)

Generally, the σ-field G is generated by an observation, that is, a
random variable Y : G = σ

(
Y
)
. Then, the information constraint

writes U � Y , and the optimization problem is:

min
U�Y

E
(
j(U ,W )

)
.

In this setting, a static information structure may correspond to
an observation depending only on the noise: Y = g(W ), and
a dynamic information structure to an observation depending on
both the control and the noise: Y = g(U ,W ).
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Extension of the Dynamic Problem (PD) (1)
The natural stochastic extension of Problem (2) consists in adding
a perturbation Wt at each time step t:

min
(U0,...,UT−1

,X0,...,XT
)
E
( T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT )

)
subject to:

X0 = f−1(W0) ,

Xt+1 = ft(Xt ,Ut ,Wt+1) , t = 0, . . . ,T − 1 .

Problem not well-posed: the information structure not defined!

We denote by Ft the σ-field generated by noises prior time t:

Ft = σ
(
W0, . . . ,Wt

)
, t = 0, . . . ,T .
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Extension of the Dynamic Problem (PD) (2)

Information Structure.

A new observation becomes available at each time t:

Zt = ht(Xt ,Wt) , t = 0, . . . ,T − 1 .

Zt = Wt : observation of the noise,
Zt = Xt : observation of the state.

Information at time t is a function of past observations:

Yt = Ct

(
Z0, . . . ,Zt

)
, t = 0, . . . ,T − 1 .

Yt = Zt : memoryless information.
Yt = (Z0, . . . ,Zt): perfect memory.

Information constraints: Ut � Yt , t = 0, . . . ,T − 1
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Extension of the Dynamic Problem (PD) (3)

Functional Approach: Stochastic Optimal Control

 Assumptions on the noise process {Wt}t=0,...,T .

Markovian case: Zt = Xt / Yt � Zt .
Solution may be computed by the Dynamic Programming
approach, developed on the state Xt : Ut = ϕt

(
Xt

)
.

 Curse of dimensionality.

Classical case: Zt = ht(Xt ,Wt) / Yt = (Z0, . . . ,Zt).
The Dynamic Programming approach is still available, the
state being the probability law of Xt rather than Xt itself.

General case: Zt = ht(Xt ,Wt) / Yt = Ct

(
Z0, . . . ,Zt

)
.

We are usually not able to solve the optimality conditions
(dual effect, Witsenhausen counterexample).
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The Stochastic Programming Approach
The Stochastic Optimal Control Approach
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Extension of the Dynamic Problem (PD) (4)

Some remarks on the Markovian case

We assume that the noise process is a white noise, that is, the
random variables {Wt}t=0,...,T are independent of each other.

The Markovian case is the situation when the information Yt

available at time t is a perfect observation of the state Xt . If the
observation is partial or noisy, the Markovian situation is broken.

Note that, in the Markovian case, the information does depend,
in general, upon past controls {Us}s<t , hence dual effect.
But we would not do better replacing σ(Yt) by σ(W0, . . . ,Wt)!
The Markovian case, although falling into the category of problems
with a dual effect, is in fact not so complex. . .
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Witsenhausen’s Couterexample (1)

This problem was proposed by Hans Witsenhausen in 1968 as
evidence that a LQG problem may lead to nonlinear feedback
solutions whenever the information structure is not classical.

min
U0�Y0,U1�Y1

E
(
αU2

0 + X 2
2

)
s.t. X0 = W0 ,

X1 = X0 + U0 ,

X2 = X1 −U1 ,

Y0 = X0 ,

Y1 = X1 + W1 .

The observation of the state is noisy!
The perfect memory assumption is not satisfied!

The exact solution is so far unknown!
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Witsenhausen’s Couterexample (2)

Let’s try to give the feeling of how dual effect works.

In order to have the second cost term X 2
2 as close as possible

to zero, we have to guess the value of W0 at t = 1!
(indeed we have X2 = X0 + U0 −U1, with X0 = W0 and U0 �W0).

If we use a linear strategy at t = 0: U0 = (κ− 1)W0,

then the information available at t = 1 is Y1 = κW0 + W1,

so that if κ is big enough, Y1/κ ≈W0:

the decision maker at t = 1 may accurately know W0.

But increasing κ increases the first cost term αU2
0 . . .

In the classical case Y0 = X0, Y1 = (X0,X1 + W1) (perfect

memory), the optimal solution is known: (U ]
0,U

]
1) = (0,X0).
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The Noisy Communication Channel

Two agents try to communicate through a noisy channel. The first
agent gets a message, here simply a random variable W0, and he
wants to communicate it to the other agent.The first agent knows
that the channel adds a noise W1 to the message, so he choose to
encode the original signal into another variable U0 = γ0(W0) sent
through the channel. The second agent receives the noisy message
U0 + W1, and make a decision U1 = γ1(U0 + W1) about what
was the original message W0 by decoding, in an optimal manner,
the received signal.

transmitted
channel

received restoredsignal

en
co

di
ng

decodingW 0

W 1

U0 = γ0 W 0 U1 = γ1 Y 1Y 1 = U0 + W 1

Similar to the Witsenhausen’s couterexample.
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General Introduction
Problem Formulation and Information Structure

Content of the course

Part of the Course by Pierre Carpentier
Part of the Course by Vincent Leclère

Goals of this Part of the Course

Objectives

General objective: present numerical methods (convergence
results, discretization schemes, algorithms. . . ) in order to be
able to solve optimization problems in a stochastic framework.

Specific objective: be able to deal with large scale system
problems for which standard methods are no more effective
(dynamic programming, curse of dimensionality).

Problems under consideration

Open-loop problems: decisions do not depend on specific
observation of the uncertainties.

Closed-loop problems: available observations reveal some
information and decisions depend on these observations, so
that it is mandatory to model the information structure.
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Part of the Course by Vincent Leclère

Extension of Problem (PG ) — Open-Loop Case (1)

Consider Problem (1) without explicit constraint Θ, and suppose
that J is in fact the expectation of a function j , depending on a
random variable W defined on a probability space (Ω,A,P) and
valued on a measurable space (W,W):

J(u) = E
(
j(u,W )

)
.

Then the optimization problem writes

min
u∈Uad

E
(
j(u,W )

)
.

The decision u is a deterministic variable, which only depends on
the probability law of W (and not on on-line observations of W ).
The information structure is trivial, but. . .

 main difficulty: calculation of the expectation.
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Extension of Problem (PG ) — Open-Loop Case (2)

Solution using Exact Quadrature

J(u) = E
(
j(u,W )

)
, ∇J(u) = E

(
∇u j(u,W )

)
.

Projected gradient algorithm:

u(k+1) = projUad

(
u(k) − ε∇J(u(k))

)
.

Sample Average Approximation (SAA)

Obtain a realization (w (1), . . . ,w (k)) of a k-sample of W
and minimize the Monte Carlo approximation of J:

u(k) ∈ arg min
u∈Uad

1

k

k∑
l=1

j(u,w (l)) .

Note that u(k) depends on the realization (w (1), . . . ,w (k))!
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Extension of Problem (PG ) — Open-Loop Case (3)

Stochastic Gradient Method

Underlying ideas:

use an easily computable approximation of ∇J based on
realizations (w (1), . . . ,w (k), . . .) of samples of W ,

incorporate the realizations one by one into the algorithm.

These considerations lead to the following algorithm:

u(k+1) = projUad

(
u(k) − ε(k)∇u j(u(k),w (k+1))

)
.

Iterations of the gradient algorithm are used a) to move towards
the solution and b) to refine the Monte-Carlo sampling process.

 Topic of the first three lessons.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 40 / 328



General Introduction
Problem Formulation and Information Structure

Content of the course

Part of the Course by Pierre Carpentier
Part of the Course by Vincent Leclère

Extension of Problem (PG ) — Open-Loop Case (3)

Stochastic Gradient Method

Underlying ideas:

use an easily computable approximation of ∇J based on
realizations (w (1), . . . ,w (k), . . .) of samples of W ,

incorporate the realizations one by one into the algorithm.

These considerations lead to the following algorithm:

u(k+1) = projUad

(
u(k) − ε(k)∇u j(u(k),w (k+1))

)
.

Iterations of the gradient algorithm are used a) to move towards
the solution and b) to refine the Monte-Carlo sampling process.

 Topic of the first three lessons.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 40 / 328



General Introduction
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Content of the course
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Open-loop stochastic optimization problems

Stochastic gradient method overview

Stochastic gradient algorithm and stochastic approximation.
Asymptotic efficiency and averaging.
Practical considerations.
Machine Learning point of view

Generalized stochastic gradient method

Auxiliary Problem Principle in the deterministic setting.
Auxiliary Problem Principle in the stochastic setting.
Extension to constrained problems.

Applications of the stochastic gradient method

Simple exercices.
Option pricing problem and variance reduction.
Spatial rendez-vous under probability constraint.
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Extension of Problem (PG ) — Closed-Loop Case

Algebraic approach: Stochastic Programming

Rather than looking for the solution of the problem as feedback
functions depending on information (Dynamic Programming
point of view), we seek at obtaining the problem solution as
random variables satisfying the information constraints:

σ
(
U
)
⊂ σ

(
Y
)
.

First issue: characterize the class of problems that can be
solved by this approach. The problem is much more intricate
if dual effect is present (Y depends on U ).

Second issue: obtain a finite approximation of the problem,
and more specifically discretize the information constraints.

 Topic of the penultimate lesson.
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Extension of the Dynamic Problem

Dynamic Programming and decomposition

On the one hand, Dynamic Programming can not be used in a
straightforward manner to large scale stochastic optimal control
problems. On the other hand, decomposition and coordination
methods such as Lagrangian relaxation apply, but subproblems
can not be solved optimally by DP.

First issue: have a close look to stochastic optimal control
problems in discrete time in order to highlight the associated
opportunities of decomposition.

Second issue: devise an approximate decomposition and
coordination method such that subproblems can be solved
by Dynamic Programming.

 Topic of the last lesson.
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Closed-loop stochastic optimization problems

Stochastic optimization and discretization

Stochastic Programming: the scenario tree method.
Stochastic Optimal Control and discretization puzzles.
General convergence result.

Stochastic optimization and decomposition

Decomposition and coordination.
Dual Approximate Dynamic Programming.
Theoretical questions.
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Mathematical foundations of stochastic optimization

Convex analysis and convex optimization

Fenchel conjugate, subdifferential calculus.
Lagrangian duality and duality by perturbations.
Marginal interpretation of multipliers.

Integration and measure theory

Subdifferential of an expectation, normal integrands.
Exchange of min and expectation.
Uniform law of large numbers.
Newsvendor problem

Stochastic programming and the two-stage case

Optimization under uncertainty.
Stochastic programming approach.
Information and discretization.
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Dynamic stochastic optimization

Scenario decomposition: L-Shaped and Progressive Hedging

Information frameworks.
Lagrangian decomposition.
L-Shaped decomposition method.

Bellman operators and Stochastic Dynamic Programming

Bellman operators abstract framework.
Stochastic Dynamic Programming.

Stochastic Dual Dynamic Programming (SDDP)

Kelley’s algorithm.
Deterministic case.
Stochastic case.
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