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Issues and Problems in Decision Making under

Uncertainty

1.1 Introduction

The future cannot be predicted exactly, but one may learn from past observa-
tions. Past decisions can also improve future predictability. This is the context
in which decisions are generally made. Herein, we discuss some mathematical
issues pertaining to this topic.

1.1.1 Decision Making as Constrained Optimization Problems

Making decisions in a rational way is a problem which can be mathematically
formulated as an optimization problem. Generally, several conflicting goals
must be taken into account simultaneously. A choice must be made about
which goals are formulated as constraints to be satisfied at a certain “level”
(apart from constraints which are imposed by physical limitations), and which
goals are reflected by (and aggregated within) a cost function.1 Duality theory
for constrained optimization problems provides a way to analyze, afterwards,
the sensitivity of the best achievable cost as a function of constraint levels
which were fixed a priori, and, possibly, to tune those levels to achieve a
better trade-off between conflicting goals.

Problems that involve systems evolving in time enter the realm of Optimal
Control. In a deterministic setting, Optimal Control has a long history dat-
ing back to the fifties with famous names such as Lev Pontryagin [124] and
Richard Bellman [15]. The former, with his Maximum Principle, was more
in the line of a variational approach of such problems, whereas the latter in-
troduced the Dynamic Programming (DP) technique in connection with the
state space approach.

1 Throughout this book, without loss of generality, optimization problems are for-
mulated as minimization problems, hence the objective function to be minimized
is called a cost.
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1.1.2 Facing Uncertainty

In general, when making decisions, one is faced with uncertainties which af-
fect the cost function and, generally, the constraints. There are several possi-
ble attitudes associated with uncertainties, and consequently, several possible
mathematical formulations of decision making problems under uncertainty.
Let us mention two main possibilities.

Worst Case Design

The assumption here is that uncertainties lie in particular bounded subsets
and, that one must consider the worst situation to be faced and try to make
it as good as possible. In more mathematical terms, and considering the cost
only for the time being (see hereafter for constraints), since one would like to
minimize that cost, one must minimize the maximal possible value Nature can
give to that cost by playing with uncertainties within the assumed bounded
subsets. That is, a min-max (game like) problem is formulated and a guaran-
teed performance can be evaluated (as long as assumptions on uncertainties
hold true).

The treatment of constraints in such an approach should normally follow
the same lines of thought (one must fight against the worst possible uncer-
tainty outcomes from the point of view of constraint satisfaction). Sometimes
the terminology of robust decision making (or control) is used for approaches
along those lines [16].

Stochastic Programming or Stochastic Control

Here, uncertainties are viewed as random variables following a priori prob-
ability laws. We shall call them “primitive” random variables as opposed to
other “secondary” random variables involved in the problem and which are
derived from the primitive ones by applying functions such as dynamic equa-
tions, feedback laws (see hereafter), etc. Then the cost to be minimized is
the mathematical expectation of some performance index depending on those
random variables and on decisions.

For this mathematical expectation to make sense, the decisions must also
become random variables defined on the same underlying probability space. A
trivial case is when those decisions are indeed deterministic: we shall call them
open-loop decisions or“controls” later on. But they may also be true random
variables because they are produced by applying functions to either primitive
or secondary random variables. Here, we enter the domain of feedback or
closed-loop control which plays a prominent part in decision making under
uncertainty.

Let us now say a few words about constraint satisfaction. Constraints may
be imposed as almost sure (a.s.) constraints. This is generally the case of equal-
ity or inequality constraints expressing physical laws or limitations. Other
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constraints may be formulated with mathematical expectations, although it
is generally difficult to give a sound practical meaning to this approach. If
a.s. requirements may sometimes be either unfeasible or not economically
viable, one may appeal to “constraints in probability”: the satisfaction of
those constraints is required only “sufficiently often”, that is, with a certain
prescribed probability. We do not pursue this discussion here, as we mostly
consider a.s. constraints in this book.

In the title of this section, we have used the words “Stochastic Program-
ming” and “Stochastic Control”. Stochastic Control, or rather Stochastic Op-
timal Control (SOC), is the extension of the theory of Deterministic Optimal
Control to the situation when uncertainties are present and modeled by ran-
dom variables, or stochastic processes since control theory mostly addresses
dynamic problems. SOC problems were introduced not long after their deter-
ministic counterparts, and the DP approach has been readily extended (under
specific assumptions) to the stochastic framework. “Pontryagin like” or “vari-
ational” approaches appeared much later in the literature [25] and we shall
come back to explanations for this fact. SOC is used to deal with dynamic
problems. The notion of feedback, as naturally delivered by the DP approach,
plays a central part in this area.

Stochastic Programming (SP), which can be traced back to such early
contributors as George Dantzig [50], is the extension of Mathematical Pro-
gramming to the stochastic framework. As such, the initial emphasis is on
optimization, possibly in a static setting, and numerical resolution methods
are based on variational techniques; randomness is generally addressed by ap-
pealing to the Monte Carlo technique which, roughly speaking, amounts to
representing this uncertainty through the consideration of several “samples”
or “scenarios”. This is why, historically, the notions of feedback and informa-
tion were less present in SP than they were in SOC.

However, the SP community2 has progressively considered two-stage, and
then multi-stage problems. Inevitably, the question of information structures
popped up in the field, at least to handle the elementary constraint of nonan-
ticipativeness : one should not assume that the exact realizations of random
variables at and after stage t+1 are known when making decisions at stage t;
only a probabilistic description of future occurrences can be taken into ac-
count.

It is therefore natural that the two communities of SOC and SP tend to
merge and borrow ideas from each other. The concepts of information and
feedback are more developed in the former, and the variational and Monte
Carlo approaches are more widespread in the latter. Getting closer to each
other for the two communities should perhaps begin with unifying the termi-
nology: as far as we understand, recourse in the SP community is used as a
substitute for feedback. This book is an attempt to close the gap. The com-

2 The official web page of the SP community http://www.stoprog.org/ offers links
to several tutorials and examples of applications of SP.
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parison between SOC and SP approaches is already addressed by Varaiya and
Wets in this interesting paper [148].

1.1.3 The Role of Information in the Presence of Uncertainty

In Deterministic Optimal Control, as mentioned previously, there are two main
approaches in connection with Pontryagin’s and Bellman’s contributions. The
former focuses on open-loop controls, whereas the latter provides closed-loop
solutions. By open-loop controls, we mean that the decisions are given as a
function of time only, whereas closed-loop strategies compute the control to be
implemented at each time instant as a function of both time and observations ;
the observations may be the state itself.

In fact, there are no discrepancies in the performance achieved by both
approaches because, in a deterministic situation, everything is uniquely de-
termined by the decision maker. Therefore, if closed-loop strategies are imple-
mented, one can simulate the closed-loop dynamic system, record the trajec-
tories of state, control and observations variables, substitute those trajectories
in the control strategy, and compute an open-loop control history that would
generate exactly the same trajectories.

The situation is quite different in an uncertain environment, since tra-
jectories are not predictable in advance (off-line) because they depend on
on-line realizations of random variables. Available observations reveal some
information about those realizations, at least on past realizations (because of
causality). By using this on-line information, one can do better than simply
apply a blind open-loop control which has been determined only on the basis
of a priori probability laws followed by the random “noises”.

This means that the achievable performance is dependent on what we call
the information pattern or information structure of the problem: a decision
making problem under uncertainty is not well-posed until the exact amount of
information available prior to making every decision has been defined. Open-
loop problems are problems in which no actual realization can be observed,
and thus, the optimal decisions solely depend on a priori probability laws. In
dynamic situations, every decision may depend on certain on-line observations
that must be specified. Of course, the optimal decisions also depend on a priori
probability laws since, generally, not all random realizations can be observed
prior to making decisions, if only because of causality or nonanticipativeness.

Because of these considerations, one must keep in mind that solving
stochastic optimization problems, especially in dynamic situations when on-
line observations are made available, is not just a matter of optimization,
of dealing with conventional constraints, or even of computing or evaluating
mathematical expectations (which is generally a difficult task by itself); it is
also the question of properly handling specific constraints that we shall call in-
formational constraints. Indeed, as this book illustrates, there are essentially
two ways of dealing with such constraints. That used by the DP approach
is a functional way: decisions are searched for as functions of observations
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(feedback laws). But another way, which is more adapted to variational ap-
proaches in stochastic optimization, may also be considered: all variables of the
problem, including decisions, are considered as random variables or stochas-
tic processes; then the dependency of decisions upon observations must go
through notions of measurability as used by Measure Theory. We shall call
this alternative approach an algebraic handling of informational constraints
(this terminology stems from the fact that information may be mathemati-
cally captured by σ-algebras, also called σ- fields, another important notion
introduced by Measure Theory). A difficult aspect of numerical resolution
schemes is precisely the practical translation of those measurability or alge-
braic constraints into the numerical problem.

An even more difficult aspect of dynamic information patterns is that
future information may be affected by past decisions. Such situations are called
situations with dual effect, a terminology which tries to convey the idea that
present decisions have two, very often conflicting, effects or objectives: directly
contributing to optimizing the cost function on the one hand, modifying the
informational constraints to which future decisions are subject, on the other.
Problems with dual effect are generally among the most difficult decision
making problems (see again [148] about this topic).

1.2 Problem Formulations and Information Structures

In this section, two formulations of stochastic optimization problems are pro-
posed: they pertain to the two schools of SOC and SP alluded to above. The
important issue of information structures is also discussed.

1.2.1 Stochastic Optimal Control (SOC)

General Formulation

We consider the following formulation of a stochastic optimal control (SOC)
problem in discrete time: for every time instant t, Xt (“state”

3), Ut (control)
and Wt (noise) are all random variables over a probability space (Ω,A,P).
They are related to each other by the dynamics

Xt+1 = ft(Xt,Ut,Wt+1) (1.1a)

which is satisfied P-almost surely for t = 0, ..., T − 1. Here, to keep things
simple, T , the time horizon, should be a given deterministic integer value, but
it may be a random variable in more general formulations. The variable X0

is a given random variable. It is convenient to view X0 as a given function of
some other random variable calledW0, in such a way that all primitive random

3 Those quotes around the word state become clearer when discussing the Marko-

vian case by the end of this subsection.
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variables are denoted Ws, s = 0, . . . , T , whereasW denotes the corresponding
stochastic process {Ws}s=0,...,T . The purpose is to minimize a cost function

E

( T−1
∑

t=0

Lt(Xt,Ut,Wt+1) +K(XT )

)

(1.1b)

in which K is the final cost whereas Lt is called the instantaneous cost. The
symbol E(·) denotes expectation w.r.t. P (assuming of course that the func-
tions involved are measurable and integrable). The minimization is achieved
by choosing the control variable Ut at each time instant t, but as previously
mentioned, this is done after some on-line information has been collected (in
addition to the off-line information composed of the model — dynamics and
cost — and the a priori distribution of {Ws}s=0,...,T ). This on-line informa-
tion is supposed to be at least causal or nonanticipative, that is, the largest
possible amount of information available at time instant t is equivalent to the
observation of the realizations of the random variables Ws for s = 0, . . . , t
(but not beyond t). In the language of Probability Theory, this amounts to
saying that Ut, as a random variable, is measurable w.r.t. the σ-field generated
by {Ws}s=0,...,t which is denoted Ft:

Ft = σ
(

{Ws}s=0,...,t

)

(1.1c)

(the reader may refer to Appendix B for all those standard notions). Of course,
this σ-field increases as time passes, that is, Ft ⊂ Ft+1: it is then called a
filtration.

Remark 1.1. Observe that in the right-hand side of (1.1a), Ut must be cho-
sen before Wt+1 is observed: this is called the decision-hazard framework, as
opposed to the hazard-decision framework in which the decision maker plays
after “nature” at each time stage. This is why we put Wt+1 rather than Wt

in the right-hand side of (1.1a). ♦

It may be that Ut is constrained to be measurable w.r.t. some σ-field Gt

smaller than Ft:

Ut is Gt-measurable, Gt ⊂ Ft, t = 0, . . . , T − 1 . (1.1d)

Unlike Ft, the σ-field Gt is not necessarily increasing with t (see hereafter).

Information Structure

Very often, Gt itself is a σ-field generated by some random variable Yt called
observation. Actually, Yt should be considered as the collection of all obser-
vations available at t. That is, if Zt denotes a new observation made available
at t, but if the decision maker has perfect memory of all observations made so
far, then Yt = {Zs}s=0,...,t. In this case, as for Ft, the σ-field Gt is increasing
with t, but this is not necessarily always true.
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The σ-fields Ft, generated by {Ws}s=0,...,t, are of course only dependent
upon the data of the problem, and this is also the case of the Gt if the obser-
vations Yt are solely dependent on the primitive random variables Ws. But
if the observations depend also on the controls Us (for example, if Zt is a
function of the “state” Xt, possibly a function corrupted by noise), it is likely
that the σ-field Gt depends on controls too, and therefore, the measurability
constraint (1.1d) is an implicit constraint in that control is subject to con-
straints depending on controls! Fortunately, thanks to causality, this implicit
character is only apparent, that is, the constraint on Ut depends on controls
Us with s strictly less than t.

Nevertheless, this is generally a source of huge complexity in SOC problems
which is known under the name of the dual effect of control. This terminology
tries to convey the fact that when making decisions at every time instant s,
the decision maker has to take care of the following double effect: on the one
hand, his decision affects cost (directly, at the same time instant, and in the
future time instants, through the “state” variables); but, on the other hand,
it makes the next decisions Ut, t > s more or less constrained through (1.1d).

Example 1.2. Let us give an example of this double or dual effect in the real
life: the decision of investing in research in any industrial activity. On the
one hand, investing in research costs money. On the other hand, an improved
knowledge of the field of activity may help save money in the future by allowing
better decisions to be made. This example shows that this future effect is very
often contradictory with immediate cost considerations and thus the matter
of a trade-off to be achieved. △

We now return to our general discussion of information structure in SOC
problems. Even if the observations Yt depend on past controls, it may hap-
pen than the σ-fields Gt they generate do not depend on those controls. This
tricky phenomenon is discussed in Chapter 10. Apart from this rather excep-
tional situation, there are other circumstances when things turn out to be less
complex than it may have seemed a priori.

The most classical such case is the Markovian case. Suppose the stochastic
process W is a “white noise”, that is, the random variables {Ws}s=0,...,T ,
are all mutually independent. Then, Xt truly deserves the name of the state
variable at time t (this is why, until now, we put the word “state” between
quotes — see Footnote 3). Indeed, because of this assumption of white noise,
the past realizations of the noise processW provide no additional information
about the likelihood of future realizations. Hence, rememberingXt is sufficient
information to keep to predict the future evolution of the system after t.
That is, Xt “summarizes” the past and additional observations are therefore
useless. The Markovian case is defined as the situation when W is a white
noise stochastic process and Gt is generated at each time t by the variable Xt.
Otherwise stated, the available observation Yt at time t is simply Xt. This
is a perfect (noiseless) and full size observation of the state vector. If the
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observation is partial (a non injective function of Xt) and/or a noisy such
function, then the Markovian situation is broken.

In the Markovian case, Gt does depend, in general, upon past controls
Us, s < t, but we would not do better with Ft replacing Gt. This is why the
Markovian case, although potentially falling into the most difficult category of
problems with a dual effect, is not so complex as more general problems in this
category. The Markovian feature is exploited by the Dynamic Programming
(DP) approach (see §4.4) which is conceptually simple, but quickly becomes
numerically difficult, and, indeed, impossible when the dimension of the state
vector Xt becomes large.

1.2.2 Stochastic Programming (SP)

Formulation

Here we consider another formulation of stochastic optimization problems
which ignores “intermediate” variables (such as the “state” X in the previous
SOC formulation) and which concentrates on the essential items, namely, the

control or decision U : a random variable over a probability space (Ω,A,P)
with values in a measurable space (U,U);

noise W : another random variable with values in a measurable space (W,W);
cost function : a measurable mapping j : U×W→ R;
σ-fields : F denotes the σ-field generated by W whereas G denotes the one

w.r.t. which U is constrained to be measurable; generally, G is generated
by an

observation Y : another random variable with values in a measurable space
(Y,Y); in this case, we use the notation

U � Y (1.2)

to mean that U is measurable w.r.t. (the σ-field generated by) Y . As we
see in Chapter 3, this relation between random variables corresponds to
an order relation. We also use this notation in constraints as U � G to
mean that the random variable U is measurable w.r.t. the σ-field G.

With these ingredients at hand, the problem under consideration is set as
follows:

min
U�G

E
(

j(U ,W )
)

or min
U�Y

E
(

j(U ,W )
)

. (1.3)

Without going into detailed technical assumptions, we assume that expecta-
tions do exist, and that infima are reached (hence the use of the min symbol).

Typology of Information Structures

According to the nature of G or Y , we distinguish the following three cases.
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Open-loop optimization: this is the case when G is the trivial σ-field
{∅, Ω}, or equivalently, Y is any deterministic variable (that is, a con-
stant map over Ω). In this case, an optimal decision is based solely on the
a priori (off-line) knowledge of the model, and not on any on-line observa-
tion. Therefore, the decision itself is a deterministic variable u ∈ U which
must minimize a cost function J(u) defined as an expectation of j(u,W ).
The numerical resolution of such problems is considered in Chapter 2.

Static Information Structure (SIS): this is the case when G or Y are non
trivial but fixed, that is, a priori given, independently of the decision U .
The terminology “static” does not imply that no dynamics such as (1.1a)
are involved in the problem formulation. It just expresses that the σ-field G

constraining the decision is a priori given at the problem formulation stage.
If time t is involved, one must rewrite the measurability constraint as
prescribed at each time stage t as “Ut is Gt-measurable” as in (1.1d), and
this does leave room for information made available on-line as time evolves.
“Static” just says that this on-line information cannot be manipulated by
past controls.

Remark 1.3. When the collection {Us}s=0,...,T−1 of random variables is in-
terpreted as a random vector over the probability space (Ω,A,P), then its
measurability is characterized by the σ-field σ({Us}s=0,...,T−1) on (Ω,A).
However, with this interpretation, the collection of constraints (1.1d) can-
not in general be reduced to a single “vector” constraint U � G where
U would be the “vector” {Us}s=0,...,T−1 and G a σ-field on (Ω,A), like
σ({Us}s=0,...,T−1) is. For example, over a probability space (Ω,A,P), with
T = 2, G0 = {∅, Ω} and G1 = A, consider a random variable U1 such that
σ(U1) = A. Writing U � G implies that G would be the σ-field A, which
does not translate that U0 must be a constant (deterministic) variable as
implied by U0 � G0. ♦

Remark 1.4. If G is generated by an observation Y , either Y does not
depend on U , or the σ-field it generates is fixed despite Y does depend
on U (as already mentioned, this may also happen in some special situa-
tions addressed in Chapter 10). One may also wonder whether Y has any
relation with W , for example, whether Y is given as a function h(W ),
in which case G would be a sub-σ-field of F, the σ-field generated by W .
For example, in the SOC problem (1.1), Yt may be the complete or par-
tial observation of past noises Ws, s = 0, . . . , t, so that Gt ⊆ Ft ⊂ FT .
Nevertheless, the fact that Y does or does not have a connection with W

is not fundamental. Indeed, by manipulating notation, one can consider
that this connection does exist. As a matter of fact, one can redefine the
noise variable as the couple W

′ = (W ,Y ) so that Y is a function of
W

′. That the cost function j does not depend on the “full” W
′ does not

matter. ♦
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Dynamic Information Structure (DIS): this is the situation when G or
Y depends on U , which yields a seemingly implicit measurability con-
straint. Actually, it is difficult to imagine such problems without explic-
itly introducing several stages at which decisions must be taken based on
observations which may depend on decisions at other stages.
Those stages may be a priori ordered, and the order may be a total order.
This is the case of SOC problems (1.1); but other examples are considered
hereafter in which those stages are not directly interpreted as “time in-
stants” but rather as “agents” acting one after the other. As soon as such
a total order of stages can be defined a priori, the notion of causality (who
is “upstream” and who is “downstream”) is natural and helps untangling
the implicit character of the measurability constraint. Nevertheless, the
difficulty of such problems with DIS still remains sometimes tremendous
as it is shown with help of an example in §1.3.3.
More general problems may arise in which the order of stages or agent
actions is only partial, and the situation may be even worse if this order
itself depend on outcomes of the decisions and/or of hazard. At least in
the case of a fixed but partial order, it turns out that two notions are
paramount for the level of difficulty of the problem resolution:
• Who influences the available observations of whom?
• Who knows more than whom?

We shall not pursue the discussion of this difficult topic here. It is more
thoroughly examined in Chapter 9. The forthcoming examples help us
scratch the surface.

1.3 Examples

This section introduces a few simple examples in order to illustrate the im-
pact of information structures on the formulation of stochastic optimization
problems. The stress is more on this aspect than on being fussy about math-
ematical details (in particular, we assume that all expectations make sense
without going into more precise assumptions).

1.3.1 A Basic Example in Static Information

Consider two given scalar random variables, W and Y , plus the decision U ,
and finally the following problem of type (1.3):

min
U�Y

E
(

(W −U )2
)

. (1.4)

It is well known that the solution of this problem, which consists in finding
the best approximation of W which is Y -measurable (that is, the projection
of W onto the subspace of Y -measurable random variables), is given by
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U
♯ = E(W | Y ), that is, the conditional expectation of W knowing Y

(see §3.5.3 and Definition B.5).
Generally speaking, as we see it later on in §3.5.2 and §8.3.5, Problem (1.3)

can be reformulated as follows:

E

(

min
u∈U

E
(

j(u,W )
∣

∣ Y
)

)

. (1.5)

In this form, since the conditional expectation subject to minimization is
indeed a Y -measurable random variable, it should be understood that the
minimization operates parametrically for every realization driven by ω and
this yields an argmin also parametrized by ω, that is, in fact, a random
variable which is also Y -measurable. When using this new formulation for
Problem (1.4), the solution is readily derived (Hint: expand the square in the
cost function and observe that Y -measurable random variables “get out” of
the inner conditional expectation).

1.3.2 The Communication Channel

Description of the Problem

This is the story of two agents trying to communicate through a noisy channel.
This story is depicted in Figure 1.1. The first agent (called the “encoder”)

transmitted
channel

received restoredsignal

en
co

di
ng

decodingW 0

W 1

U0 = γ0

(

W 0

)

U1 = γ1

(

Y 1

)

Y 1 = U0 + W 1

Fig. 1.1. Communication through a noisy channel

gets a “message”, here simply a random variable W0 supposed to be centered
(E(W0) = 0), and he wants to communicate it to the other agent. We may
consider that the encoder’s observation Y0 is precisely this W0. He knows that
the channel adds a noise, say a centered random variable W1, to the message
he sends, and so he must choose which “best” message to send. He has to
“encode” the original signal Y0 into another variable U0 (what he decides
to send through the channel), but the other agent (the “decoder”) receives
a noisy message U0 +W1. Finally, the decoder has to make his decision U1

about what was the original message W0, based on his observation, namely
Y1 = U0 +W1, the message he received. That is, he has to “decode”, in an
“optimal” manner, the signal Y1 which is his observation.

This game is cooperative in that the encoder and the decoder try to help
each other so as to reduce the error of communication as much as possible
(a problem in “team theory” [104], which deals with decision problems in-
volving several agents or decision makers with a common objective function
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but possibly different observations). Mathematically, this can be expressed by
saying that they seek to minimize the expected square error E

(

(U1 −W0)
2
)

.
However, without any other limitation or penalty, such a problem turns out
to be rather trivial. For example, if the encoder sends an amplified signal
U0 = kY0 where k is an arbitrarily large constant, then the noise W1 added
by the channel is negligible in front of this very large signal, and the decoder
can then decode it by dividing it by the same constant k. For the game to
be interesting and realistic, one must put a penalty on the “power” E(U2

0 )
sent over the channel, either with help of a constraint limiting this power to
a maximum level, or by introducing an additional term proportional to this
power into the cost. To stay closer to the generic formulation (1.3), we choose
the latter option. Finally, the problem under consideration is the following:

min
U0,U1

E
(

αU2
0 + (U1 −W0)

2
)

(1.6a)

s.t. U0 � Y0 , U1 � Y1 . (1.6b)

The positive parameter α is the unit cost for the power transmitted over the
channel. The measurability constraints (1.6b) reflect what each agent knows
before making his decision.

Discussion

There are a few remarks to make at this point:

• there is no time index t explicitly involved in this formulation, but still
there is a natural order of the agents: the encoder acts first in that his
action has an influence on what the decoder observes;

• there is no inclusion (in either direction) between the information available
to the encoder and to the decoder although, as just highlighted, the de-
coder is “downstream” the encoder; if we interpret agents as time stages,
it means that, at the second time stage, not all the information available
at the first time stage has been retained, a fact referred to as “no perfect
memory”.

The fact that the encoder can influence what the decoder observes, whereas
the decoder does not know as much as the encoder knows, is a source of
tremendous difficulties. We are actually here in the heart of what we called
“dual effect” earlier: the encoder, when making his decision, should not spend
too much money according to the cost function (in particular, he should limit
the power send over the channel) but, at the same time, he should be aware
of the fact that his encoding impacts the information revealed to the decoder.
To make this consideration more concrete, we discuss it further in a simplified
setting in the next paragraph.

At this stage, let us say what is known about the resolution of Prob-
lem (1.6) [154, 84].
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• The exact solution is yet unknown in the general case (see hereafter).
• There are particular cases when the solution is known, namely when the
dimension of the message to be transmitted is exactly the same as the
dimension of the encoded message, that is, when dimW0 = dimU0 (with
certain additional assumptions, in particular Gaussian noises). Then, the
encoder simply sends the original message (U0 = W0) and the decoder
computes the conditional expectation U1 = E(W0 | Y1), which is a linear
function of the observation Y1 when assuming that all primitive random
variables are Gaussian. But what is important to notice is that the solution
is proved to be optimal not because it satisfies some optimality condition
(that, at present, nobody knows how to write), but because it achieves
the lower bound of the expected square error provided by the Information
Theory of Claude Shannon [11].

• When dimW0 < dimU0 (redundancy in coding) or dimW0 > dimU0

(compression in coding), the exact solution is not known yet, but it is
known to be a nonlinear function of observations. Indeed, on the one
hand, the best linear feedback strategy satisfying (1.6b) can easily be ob-
tained, and, on the other hand, clever nonlinear feedback strategies have
been proposed which outperform the best linear strategy (although they
are not claimed to be optimal). This appearance of nonlinear strategies
in a Linear-Quadratic-Gaussian (LQG) stochastic optimization problem
is an illustration of what is known under the name of signaling: by using
tricky nonlinear strategies, the encoder tries to provide to the decoder as
much information about his observation as possible (here, the message to
communicate) at the cheapest cost, using the system “dynamics” itself as
the medium of this information transmission. Note that these signaling
strategies would be impossible if the encoder could not influence the de-
coder’s observation. In addition, it would be useless if the decoder knew
at least as much information as the encoder knows (this would be the case
of “perfect memory” in SOC problem (1.1)).

How Signaling Works?

We try to give the feeling of how signaling works, assuming that the encoder
uses only linear strategies. Thus, let U0 = kW0. Of course, the decoder knows
k because the strategy is elaborated (off line) jointly by the two decision
makers. On line, the decoder observes the value of Y1 = kW0 + W1 from
which he must guess the value realized by W0.

The primitive random variables of the problem are the couple (W0,W1).
For the purpose of graphical representation, we assume that this couple lies in
the square [0, 1]× [0, 1]. Figure 1.2 represents this square and the parallel lines
corresponding to equations w1 = −kw0+ y1 (with slope −k and value-at-zero
y1). Therefore, after the realized value of Y1 has been observed, the decoder
knows on which particular line the true realization of the noises is located.
Given that his purpose is to determine the realization of W0, it is graphically
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Fig. 1.2. Partition generated by Y1

intuitive that the uncertainty about this value decreases as |k| (that is, the
slope, be it negative or positive) increases. In terms of Communication Theory,
this means that the ratio signal/noise improves as |k| increases. This shows
how the encoder can make the problem of the decoder more or less tractable
by choosing his own strategy. But remember that large values of |k|, and hence
of E

(

(U0)
2
)

, cause a large cost (see (1.6a)).

1.3.3 Witsenhausen’s Celebrated Counterexample

The following problem was proposed by Hans Witsenhausen in 1968 [155] as
evidence that LQG problems may lead to nonlinear feedback solutions when-
ever the information structure is not “classical” (say, here, when it does not
reflect perfect memory). This information feature is similar to that of the pre-
vious problem (§1.3.2) and several other features are similar (linear dynamics,
dimensions, etc.). The main difference lies in the fact that Witsenhausen’s
problem belongs to the SOC class (1.1); therefore its cost function is additive
in time as (1.1b), whereas (1.6a) is not so because of the cross-productU1W0.
The statement of this problem is as follows:

min
U0,U1

E
(

k2U2
0 +X

2
2

)

(1.7a)

s.t. U0 � Y0 , U1 � Y1 , (1.7b)

X1 = X0 +U0 , (1.7c)

X2 = X1 −U1 , (1.7d)

Y0 = X0 , (1.7e)

Y1 = X1 +W . (1.7f)
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We have kept Witsenhausen’s original notation, but to enhance the parallelism
with the previous problem, we could have changed k2 into α andX0 (resp.W )
into W0 (resp. W1).

This problem is discussed at length later on in this book (see §4.2), so
we just mention it here as another celebrated, yet simple, example of all the
difficulties encountered when the assumption of perfect memory is dropped
(here again, the observation Y1 is not “richer” than Y0). Bansal and Basar
[11] discuss the fact that Problem (1.6) (sometimes) admits linear feedback
solutions whereas Problem (1.7) has a nonlinear solution. See also a review of
this problem by Y. C. Ho [80] and references therein.

1.4 Discretization Issues

So far, several formulations of stochastic optimization problems have been
considered, and the role and importance of their information structure have
been discussed. Those problems involve random variables and measurability
or informational constraints, and they are infinite-dimensional problems for
which closed-form solutions are scarcely obtainable. Therefore, a numerical
resolution goes through some discretization process to make them amenable
to a finite-dimensional approximation. However, due to the particular nature
of informational constraints, this discretization process requires special care.

1.4.1 Problems with Static Information Structure (SIS)

Most problems with DIS are presently out of reach from the numerical point of
view, sometimes even at the early stage of writing down optimality conditions.
An exception is provided by problems which are amenable to a Markovian
formulation with a very moderate state space dimension. This book mainly
concentrates on problems with SIS (nevertheless, problems with no dual effect
are also in principle amenable to a SIS formulation).

Accordingly, we may consider problems under the SOC formulation (1.1)
or under the more compact SP formulation (1.3).

The subclass of open-loop problems are simpler in that their solution is
deterministic (the solution is an element of the control space U and not an
application from Ω to U). However, the cost function involves computing
an expectation, a task that cannot generally be achieved analytically. Thus,
one must appeal to some sort of Monte Carlo sampling one way or another.
Chapter 2 considers different ways of exploiting this idea and combining it
with numerical optimization itself.

The more general SP or SOC problems with SIS involve the same issue
of computing expectations, if not even conditional expectations, but their so-
lution, unlike in open-loop problems, are random variables. In addition, this
solution is subject to informational or measurability constraints. Such con-
straints must be reflected, one way or another, in a discretized version of the
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problem, since, in general, some discretization technique must be used to come
up with a numerical problem that can be solved with a computer. It turns
out that this twofold aspect of discretization, namely,

• Monte Carlo like sampling for estimating expectations or conditional ex-
pectations;

• finite dimensional representation of random variables with mutual mea-
surability constraints;

is a rather subtle issue that must be handled very carefully for, otherwise,
a completely irrelevant discrete problem may result. An example is given
hereafter.

As already mentioned at the end of §1.1.3, there are two different ways of
translating informational constraints: one called functional (essentially, some
random variables are represented as functions of other random variables),
and the other one called algebraic (some random variables must be measur-
able with respect to other random variables). This translates into different
numerical requirements, but in any case the interaction of the informational
constraint representation with the Monte Carlo sampling in order to come up
with a meaningful discrete problem is a tricky point as illustrated now by an
example.

1.4.2 Working out an Example

The Problem

Consider two independent random variables W0 and W1, each with a uniform
probability distribution over [−1, 1] (zero mean, variance 1/3). The unique
decision variable U may only use the observation of W0 (which we view as
the initial state X0). The final state X1 is equal to W0+U +W1. The goal is
to minimize E(εU2+X

2
1 ), where ε is a given “small” positive number (“cheap

control”). The statement is thus

min
U�W0

E
(

εU2 + (W0 +U +W1)
2
)

. (1.8)

Exact Solution

We have that

E
(

εU2 + (W0 +U +W1)
2
)

= E
(

W
2
0 +W

2
1 + (1 + ε)U2

+ 2UW0 + 2UW1 + 2W0W1

)

.

The last two terms on the right-hand side yield zero in expectation since W0

and W1 are centered independent random variables and since U is measurable
with respect to W0. The first two terms yield twice the variance 1/3 of the
noises. Therefore, we remain with the problem of minimizing
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2

3
+ E

(

(1 + ε)U2 + 2UW0

)

(1.9)

by choosing U as a measurable function of W0. Using (1.5), one can prove
that the solution is given by the feedback rule

U = − W0

1 + ε
,

and the corresponding optimal cost is readily calculated to be

1

3

1 + 2ε

1 + ε
≈ 1

3
. (1.10)

Monte Carlo Discretization

We now proceed to some discretization of this problem. To that purpose, we
first consider N noise trajectories (wi

0, w
i
1), i = 1, . . . , N, which are N sample

realizations of a two-dimensional vector (W0,W1) with uniform probability
distribution over [−1, 1]2. Those samples serve to approximate the cost expec-
tation by a usual Monte Carlo averaging.4

However, in this process, we must also consider N corresponding realiza-
tions {ui}i=1,...,N of the random decision variable U . But, we must keep in
mind that this random variable should be measurable with respect to the first
component W0 of the previous vector.

To that purpose, we impose the constraint

∀i, j, ui = uj whenever wi
0 = wj

0 , (1.11)

which preventsU from taking different values wheneverW0 assumes the same
value in any two sample trajectories. For each sample i, the cost is

ε(ui)2 +(wi
0 + ui +wi

1)
2 = (ε+1)(ui)2 +2(wi

0 +wi
1)u

i + (wi
0 +wi

1)
2 . (1.12)

This expression must be minimized in ui for every i = 1, . . . , N, under the
constraint (1.11). Indeed, if the N sample trajectories are produced by a
random drawing with the uniform probability distribution over the square
[−1, 1]2, then, with probability 1, wi

0 is different from wj
0 for any couple (i, j)

with i 6= j. Therefore, with probability 1, the constraint (1.11) is not binding,
that is, (1.12) can be minimized for each value of i independently. This yields
the optimal value

ui = −wi
0 + wi

1

1 + ε
(1.13)

and the corresponding contribution to the cost ε(wi
0 + wi

1)
2/(1 + ε). This is

of order ε, and so is the average over N samples

4 What we call here “N samples or sample realizations” may be referred elsewhere
in this book as a N-sample, whereas N is referred to as the number of samples

or as the size of the N-sample.
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1

N(1 + ε)

N
∑

i=1

ε(wi
0 + wi

1)
2 (1.14)

even when N goes to infinity. This is far from the actual optimal cost given
by (1.10).

What Is the Real Value of this “Solution”?

However, any admissible solution (any U such that U �W0) cannot achieve
a cost better than the optimal cost (1.10). The value (1.14) is just a “fake”
cost estimation. The resolution of the discretized problem derived from the
previous Monte Carlo procedure yielded an optimal value ui (see (1.13)) asso-
ciated with each sample noise trajectory represented by a point (wi

0, w
i
1) in the

square [−1, 1]2. Hence, before trying to evaluate the cost associated with this
“solution”, we must first derive from it an admissible solution for the original
problem, that is, a random variable U over Ω = [−1, 1]2, but with constant
value along every vertical line of this square (since the abscissa represents the
first component W0 of the 2-dimensional noise (W0,W1)).

A natural choice is as follows:

• we first renumber the N sample points so that the first component wi
0 is

increasing with i;
• then, we divide the square into N vertical strips by drawing vertical lines
in the middle of segments [wi

0, w
i+1
0 ] (see Figure 1.3), that is, the i-th strip

is [ai−1, ai]× [−1, 1] with ai = (wi
0+wi+1

0 )/2 for i = 2, . . . , N−1, a0 = −1,
and aN = 1;5

• then, we define the solution U as the function of (w0, w1) which is piece-
wise constant over the square divided into those N strips, using of course
the optimal value ui given by (1.13) in strip i; that is, we consider

U (w) =

N
∑

i=1

ui1[ai−1,ai]×[−1,1](w) , (1.15)

where w ranges in the square [−1, 1]2 and 1A(·) is the indicator function
which takes the value 1 in A and 0 elsewhere.

Since this is an admissible solution for the original (continuous) problem,
the corresponding cost value E(εU2 + X

2
1 ) can be evaluated. Here, the ex-

pectation is over the argument w considered as a random variable over the
square with uniform distribution.

According to (1.9), this expected cost is easily evaluated analytically as

5 Later on in this book (see §6.1), we discuss the concept of Voronoi cells: here we
are defining the N Voronoi cells of the segment [−1, 1] which are based on the
“centroids” wi

0.
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Fig. 1.3. Building an admissible solution for problem (1.8)

2

3
+

N
∑

i=1

(

(1 + ε)(ui)2
∫ ai

ai−1

1

2
dw0 + 2ui

∫ ai

ai−1

w0

2
dw0

)

=
2

3
+

N
∑

i=1

(

(1 + ε)(ui)2
ai − ai−1

2
+ ui (a

i)2 − (ai−1)2

2

)

. (1.16)

Although this is an “expected” cost, it is still a random variable since ui

and ai are functions of the wi
0’s which result from random drawings (ui also

depends upon the wj
1’s). Indeed, (1.16) should be considered as an estimation

of the optimal cost resulting from the (random) estimation (1.15) of the true
solution.

In order to assess the value of this estimate, and first of all of its possible
bias (not to speak of its variance), we must compute the expectation of (1.16)
when considering that the wi

0’s are realizations of N independent random
variables W i

0 , each uniformly distributed over [−1, 1]. This calculation is not
straightforward. The expression of the ai’s as functions of the wi

0’s is mean-
ingful as long as the wi

0’s have been reordered into an increasing sequence.
Therefore, although those N random numbers are the result of independent
drawings, the calculation of expectations is made somewhat tricky by this
reordering. We therefore skip it here. But, we have used a simple computer
program using a pseudo-random number generator to evaluate the mean and
standard deviation of this estimated cost as functions of the number N of used
samples (for each value of N , the program uses 1,000 series of N drawings in
order to evaluate those statistics). Figure 1.4 shows the results: the averaged
cost ± the standard deviation are depicted as functions of N (here ε is taken
equal to 1/100).

By observing Figure 1.4, as N goes to infinity, the expected value of (1.16)
goes to 2/3. Remember that the true optimal cost (see (1.10)) was close
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Fig. 1.4. Cost provided by the naive Monte Carlo method as a function of the
number N of samples

to 1/3! Moreover, it is readily checked that the optimal open-loop solution,
that is the optimal U which is measurable w.r.t. the trivial σ-field {∅, Ω},
is equal to 0 and that the corresponding cost is also 2/3. Hence the solution
we have produced with our naive Monte-Carlo approach (and especially the
naive way (1.11) of handling the information structure of the problem) is not
better than the open-loop solution!

How to Improve the Monte Carlo Approach? The Idea of Scenario
Trees

Reviewing the previous procedure to provide an estimate of the solution of the
original problem, one realizes that a crucial step, after the somewhat classical
one of Monte Carlo sampling, is to translate the informational constraint
U �W0 into the discretized version of the problem. The constraint (1.11) is
rather ineffective, and it leads to the fact that the optimal value ui (see (1.13))
found for sample i is “anticipative”: ui depends on wi

1, which should not be
the case. This explains why the apparent cost (that evaluated by averaging
over the N samples) is very optimistic (of order ε whereas the true optimal
cost is 1/3).

On the other hand, when one is required to propose an admissible solution
for the continuous problem, (namely (1.15) which satisfies the measurability
constraint), this avoids the drawback of anticipativity, but then we have seen
that the corresponding cost is as bad as that of the open-loop solution.

The question is thus: how to make another constraint translating the in-
formational constraint in the discretized problem more effective than (1.11)?
An obvious answer is that, in our collection of sample trajectories used in the
discrete optimization problem, there should really be distinct samples with
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the same value of component w0. This can be viewed as the origin of the idea
of “scenario trees”. Here “scenario” is another terminology for “sample” and
“tree”6 refers to the shape depicted in Figure 1.5. In this figure, one must

W0 W1

.

.

.

.

.

.

.

.

.

Fig. 1.5. A scenario tree on two stages

imagine that a certain sample value wj
0 is attached to each node j of the first

stage in the tree and that sample values wk
1 are likewise attached to nodes k

at the second stage. Therefore, since distinct scenarios correspond to distinct
“leaves” of the tree (they are still numbered with i ranging from 1 to N),
the tree shape implies that several scenarios (couples (wi

0, w
i
1)) share common

values wi
0. For ease of notation, we assume that all nodes of the first level

(numbered with j = 1, . . . , N0) have the same number N1 of “sons” (succes-
sors at the second stage, numbered with k = 1, . . . , N1 for each j). Hence
N = N0 ×N1.

Admittedly, if the scenarios are produced randomly (according to the joint
uniform probability law of (W0,W1) over the square [−1, 1] × [−1, 1]), or if
they have been recorded from real life observations, there is a probability
zero that a tree shape pops up spontaneously, for any arbitrary large, but
finite, N . The question of how a scenario tree can be derived from real recorded
data is considered in Chapter 6. The situation is easier if one knows the
underlying probability law. In our example, since W0 and W1 are known to
be independent (the white noise case), any element in a set of N0 samples of
W0 can be combined with the same, or N0 distinct, sets of N1 samples of W1

to produce such a tree. Even if W0 and W1 were not independent, one could
first generate N0 samples of W0 using the marginal probability law of this
variable, and then, using each sample w0j and the conditional probability

6 Actually, in Figure 1.5, a “forest”, that is, a collection of trees, rather than a
“tree”, is depicted since there are several “root nodes” which are the nodes at the
first level. But we keep on speaking of “trees” to match the traditional terminology
of “scenario tree”.
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law of W1 knowing that W0 assumes the value wj
0, one could generate N1

associated samples wk
1 of W1 (“sons” of that wj

0).
It is not our purpose now to discuss the production of “good” scenario

trees. We just assume that such a scenario tree has been obtained, and that
it reflects good statistical properties w.r.t. the underlying probability law of
the noises when N0 and N1 go to infinity, in a sense that we leave to the
reader’s intuition at this stage. Our purpose is to revisit the resolution of
the discretized problem formulated with this scenario tree and to examine
its asymptotic behavior when the number of samples becomes very large. To
fix notations, we consider scenarios {(wj

0, w
jk
1 )}k=1,...,N1

j=1,...,N0
and we introduce the

following additional symbols:

wj
1 =

1

N1

N1
∑

k=1

wjk
1 , (σj

1)
2 =

1

N1

N1
∑

k=1

(wjk
1 )2 . (1.17)

Notice that wj
1 can be interpreted as an estimate of the conditional expectation

of W1 knowing that W0 = wj
0. Likewise, (σj

1)
2 can be interpreted as an

estimate of the conditional second order moment.
To each node of the first level of the tree is attached a control variable uj .

The cost of the discretized problem is

1

N0

N0
∑

j=1

(

ε(uj)2 +
1

N1

N1
∑

k=1

(uj + wj
0 + wjk

1 )2
)

.

The argmin is

uj = −wj
0 + wj

1

1 + ε
, j = 1, . . . , N0 , (1.18)

to be compared with (1.13). This yields the optimal cost

1

N0(1 + ε)

N0
∑

j=1

(

ε(wj
0)

2 + 2εwj
0w

j
1 − (wj

1)
2 + (1 + ε)(σj

1)
2
)

, (1.19)

to be compared with (1.14) and (1.10). If we assume that the estimates (1.17)
converge towards their right values (respectively, 0 and 1/3) as N1 goes to
infinity, then (1.19) gets close to

1

N0(1 + ε)

N0
∑

j=1

(

ε(wj
0)

2 +
1 + ε

3

)

.

Now, the expression (1/N0)
∑N0

j=1(w
j
0)

2 can also be viewed as an estimate of
the second order moment of W0 and, if we assume that it converges to the
true value 1/3 when N0 goes to infinity, then we recover, in the limit, the true
optimal cost (1.10). Therefore, unlike with the previous naive Monte Carlo
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method (see (1.14)), here the optimal cost obtained in the discrete problem
appears to converge to the right value.

As seen earlier (see (1.16)), it is also interesting to evaluate the real cost
associated with an admissible solution derived from the collection of “opti-
mal” values (1.18) by plugging those values into the formula (1.15) (with
N replaced by N0). Again, we have appealed to a computer program using
1,000 experiments, each consisting in:

• drawing N0 values wj
0 at random;

• associated with each of those values, drawing a set of N1 values wjk
1 at

random;
• computing the wj

1’s (see (1.17)), the uj ’s (see (1.18)) and forming the
admissible solution (1.15) (N replaced by N0) with those values after
reordering the indices j so that wj

0 is increasing with j;
• evaluating the true cost E(εU2 + X

2
1 ) by analytic integration w.r.t. the

couple w = (w0, w1) with uniform probability distribution over the
square [−1, 1]2.

Remember that this integral w.r.t. argument w appearing in (1.15) is done

for random values uj depending on the random drawings wj
0 and wjk

1 . The
1,000 experiments are used to evaluate the mean and standard deviation of
the random cost so obtained. In those experiments, we took N0 = N1, that
is, N0 =

√
N .

Figure 1.6 depicts the mean ± the standard deviation of the cost as a
function of N0 =

√
N (still with ε = 1/100). The limit as N goes to infinity

seems to be the correct value of the optimal cost given by (1.10), namely
0.3366, but the convergence appears to be asymptotically very slow, a fact on
which we comment further in Chapter 6.

Observe that in the comparison with Figure 1.4, while the abscissa does
represent the number of pieces uses to approximate the random variable U (·)
in both plots, in Figure 1.4, this abscissa represents also the number of samples
used to achieve the Monte Carlo approximation whereas in Figure 1.6, this
number of samples is the square of the number of pieces.

By the way, an interesting question is how to choose N0 and N1, for a given
N with N = N0 × N1, so as to get the minimum standard deviation of the
cost estimate (or of the estimate of the true solution U ). This is a question
that can be generalized to the question of choosing the best tree topology in
a multi-stage problem (here the problem was 2-stage), given the number N
of leaves of the tree.

1.5 Conclusion

When moving from deterministic to stochastic optimization, one must han-
dle the evaluation of mathematical expectations, which typically involves the
use of Monte Carlo sampling. However, when considering dynamic stochastic
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Fig. 1.6. Cost provided by the use of a stochastic tree as a function of the numberN0

of pieces of the piecewise constant U (·) (N2

0 scenarios)

optimization, another important aspect of the formulation is the specification
of the information structure, which amounts to defining what one knows each
time a decision has to be made.

In this introductory chapter, we described various information structures
and the difficulties — which are sometimes tremendous even for seemingly
rather simple problems (see Witsenhausen’s counterexample at §1.3.3) — that
may result from those informational constraints.

Even if we restrict ourselves to problems with SIS (see §1.2.2), obtaining
a sound discretized version of the problem with a consistent formulation of
the informational constraint is not as trivial a task as we tried to illustrate it
in §1.4.

In the rest of this book, the most complex phenomena of DIS and the
associated dual effect are discussed (see Chapters 4 and 10). However, the
attempt to give systematic methodologies to obtain sound discrete versions
of stochastic optimization problems is restricted to problems with SIS (Chap-
ter 6).


