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Position of the Problem. . .

We want to solve a closed-loop stochastic optimization problem,
that is, a problem such that the decision variable U is a random
variable which satisfies conditions imposed by the information
structure of the problem defined by the random variable Y .

We assume that the problem is dual effect free, even if we have
to restrict the original admissible set Uad =

{
U ∈ U , U � Y

}
of the problem to the “no dual effect” subset Unde. Then, the
information Y induced by the control U does not depend on U .

We manipulate the measurability conditions from the algebraic
point of view, that is, σ(U ) ⊂ σ(Y ).14 In order to numerically
solve the optimization problem, we have to approximate these
constraints by using a finite representation.

14We turned back and use again the concept of σ-field rather than the one
of π-field. Remember that these two notions coincide in the finite case.
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and Problem under Consideration

The standard form of the problem we are interested in is

V(W ,B) = min
U∈U

E
(
j(U ,W )

)
,

subject to

U is B-measurable ,

where B = σ(Y ) is a fixed σ-field.

In order to obtain a numerically tractable approximation of this
problem, we have to approximate

the noise W by a “finite” noise Wn (Monte Carlo,. . . ),

the σ-field B by a “finite” σ-field Bn (partition,. . . ).

Question: V(Wn,Bn) −→ V(W ,B) ?
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A Specific Instance of the Problem

A specific instance of the problem is the one which incorporates
dynamical systems, that is, the stochastic optimal control problem:

min
(U0,...,UT−1

,X0,...,XT
)
E
( T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT )

)
subject to

X0 = f−1(W0) ,

Xt+1 = ft(Xt ,Ut ,Wt+1) , t = 0, . . . ,T − 1 ,

Ut � Yt , t = 0, . . . ,T − 1 .

Assuming that σ(Yt) are fixed σ-fields, a widely used approach to
discretize this optimization problem is the so-called scenario tree
method. We present it now, before considering the general case.
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A Standard Stochastic Optimal Control Problem

Consider the following stochastic optimal control problem with a
static (non-anticipative) information structure.

min
(U0,...,UT−1

,X0,...,XT
)
E
( T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT )

)
subject to

X0 = f−1(W0) ,

Xt+1 = ft(Xt ,Ut ,Wt+1) , t = 0, . . . ,T − 1 ,

Ut � ht(W0, . . . ,Wt) , t = 0, . . . ,T − 1 .

Almost sure constraints (e.g. bound constraints on Xt and Ut)
may also be present in the formulation.
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Scenario Tree Methodology

Obtain a finite dimensional approximation of the problem.

1 Discretize the noise process
{Wt} using a scenario tree.

2 Copy out the measurability
constraints on this structure:

Ut � ht(W0, . . . ,Wt).

3 Write the dynamics and cost
functions at the tree nodes:

Xt+1 = ft(Xt ,Ut ,Wt+1).

4 Solve the problem using
adequate mathematical
programming techniques.

t
0 2 31

U t

(Xt,W t)
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1. Discretize the Random Inputs
The tree architecture is characterized by the fact that each node of
the tree corresponds to a unique past noise history but is generally
followed by several possible future histories.

The tree is obtained by repeatedly using a finite approximation of
the conditional probability laws P

(
Wt |W0, . . . ,Wt−1

)
:

P
(
W0

)
≈ {w1

0 , . . . ,w
n0
0 }  P

(
W1 |W0 = w i

0

)
≈ {w i,1

1 , . . . ,w i,n1

0 } . . .

Note that this discretization scheme is much more sophisticated
than the standard Monte Carlo sampling of (W0, . . . ,WT ).

The starting point may be a given
collection of scenarios from which
one constructs a tree by grouping
the scenarios according to their
(approximate) common past.
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2. Copy out the Measurability Constraints

Assume that the information consists of the exact observation of
all past noises: Yt = (W0, . . . ,Wt). Then, a different decision
has to be attached at each node of the scenario tree.

But the method can face more general situations by grouping
nodes of the scenario tree in order to represent the information
structure induced by the ht(W0, . . . ,Wt)’s. For example, the
information structure ht(W0, . . . ,Wt) =

(
~0(W0), . . . , ~t(Wt)

)
leads to a grouping of scenario tree nodes at each time step t,
and ultimately produces a tree structure called the decision tree.

In all cases, the information structure is entirely coded within the
scenario tree by means of those groups of nodes (one decision for
each node of the decision tree in the previous example).
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3. Write the Dynamics and Cost Functions

Consider a node ν ∈ N of the scenario tree at time t, and denote:

f(ν) the predecessor of node ν (= µ),

π(ν) the probability of node ν,

θ(ν) the time index of node ν (= t),

γ(ν) the control index of node ν.

µ ν

t t + 1t− 1

η

ζ

ξ

Note that the probability function π satisfies the following conditions:

π(ν) =
∑

ξ∈f−1(ν)

π(ξ) ,
∑

ν∈θ−1(t)

π(ν) = 1 .

Then, the dynamic equation from node µ to node ν writes

xν = fθ(f(ν))

(
xf(ν), uγ(f(ν)),wν

)
.

The cost induced by the transition is: Lθ(f(ν))

(
xf(ν), uγ(f(ν)),wν

)
.
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4. Solve the Approximated Problem

The initial stochastic optimization problem boils down to

min

( ∑
ν∈N\θ−1(0)

π(ν)Lθ(f(ν))

(
xf(ν), uγ(f(ν)),wν

)
+
∑

ν∈θ−1(T )

π(ν)K (xν)

)
,

subject only to the dynamics constraints

xν = f−1(wν) ∀ν ∈ θ−1(0) ,

xν = fθ(f(ν))

(
xf(ν), uγ(f(ν)),wν

)
∀ν ∈ N \ θ−1(0) .

The initial infinite dimensional stochastic optimization problem is
approximated by a finite dimensional deterministic problem, that
can be solved using relevant mathematical programming tools.

Note that this approximation corresponds to an optimal control problem

with an arborescent (rather than linear) time structure.
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Facts and Questions about the Scenario Tree Method

Dual Effect: it is mandatory that no dual effect holds true.

White noise: the noise process (W0, . . . ,WT ) may be correlated.

Perfect memory : this property is not required although useful.

Complexity: the amount of scenarios needed to achieve a given
accuracy grows exponentially w.r.t. the number of time steps T
of the problem (see [Shapiro, 2006]).
———————————————————————————
Tree structure: how to build a tree which is at the same time
representative of the problem and numerically tractable?

Extrapolation: how to obtain feedback laws once the optimal
decisions on the nodes of the scenario tree have been computed?

A huge literature is available on the scenario tree method. . .
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Compact View of the Scenario Tree Approach

The previous stochastic optimal control problem depends on both
a noise process W and a sequence of σ-fields B. It can thus be
represented under the compact form:

V(W ,B) = min
U∈U

{
E
(
j(U ,W )

)
s.t. U B-measurable

}
,

where B = σ
(
h(W )

)
: SIS information structure.

The aim of the scenario tree method is to

approximate the noise W by a “finite” noise Wn,

and deduce the approximated information Bn = h(Wn).

In this framework, only one approximation is performed to obtain
the approximated solution V

(
Wn, h(Wn)

)
.

Such an approximation scheme converges to V(W ,B) (see [14]).
But remember that the noise is discretized in a very specific way. . .
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A simple SOC problem

min
U�W0

E
(
εU2 + (W0 + U + W1)2

)
The noises (W0,W1) are independent random variables, each
with a uniform probability distribution over [−1, 1].

The decision variable U is measurable w.r.t. W0 : U �W0.

The initial state is X0 = W0.

The final state is X1 = X0 + U + W1.

The goal is to minimize the expectation of
(
εU2 + X 2

1

)
, where ε is

a “small” positive number (cheap control).

Note that this example exactly matches the Markovian setting.
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Exact Solution of the Problem

E
(
εU2 + (W0 + U + W1)2

)
=

E
(
W 2

0︸︷︷︸
1/3

+ W 2
1︸︷︷︸

1/3

+(1 + ε)U2 + 2UW0 + 2 UW1︸ ︷︷ ︸
0

+2 W0W1︸ ︷︷ ︸
0

)

The problem is thus equivalent to

min
U�W0

2

3
+ E

(
(1 + ε)U2 + 2UW0

)
,

By the first order optimality condition, the optimal solution is

U ] = − W0

1 + ε
.

The associated optimal cost is readily calculated to be

J] =
1

3
× 1 + 2ε

1 + ε
=

1

3
+ O(ε) .
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Noises Discretization “a la Monte Carlo”

We crudely sample the optimization problem.

W 0

W 1

wi
0

wi
1

To that purpose, we first
consider a realization of a
N-sample of the 2 noises
(W0,W1), that is, points
in the square Ω = [−1, 1]2 :{

(w i
0,w

i
1)
}
i=1,...,N

The sample is first used to
approximate the noise by the
Monte Carlo method.
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Discretized Information Structure

We consider the N realizations {ui}i=1,...,N of the decision
variable U , corresponding to the discretization of the noise,

and we have to keep in mind that U should be measurable
w.r.t. the first component W0 of the noise:

U �W0 .

To translate this last condition in our discrete framework,
we impose the constraint

∀(i , j) ∈ {1, . . . ,N}2 , w i
0 = w j

0 =⇒ ui = uj ,

which prevents U from taking different values whenever
the discretized representation of the noise W0 assumes
the same value for two sample trajectories.
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The Measurability Constraint is Not Effective!

The expression of the cost after discretization is

1

N

( N∑
i=1

ε
(
ui
)2

+
(
w i

0 + ui + w i
1

)2
)
,

and it is minimized w.r.t. (u1, . . . , uN) under the constraints

ui = uj whenever w i
0 = w j

0 .

Since the N sample trajectories (w i
0,w

i
1) of (W0,W1) are produced

by a Monte Carlo sampling over [−1, 1]2, then, with probability 1,

w i
0 6= w j

0 ∀(i , j) such that i 6= j .

Therefore, the above constraint is in fact never effective, so that
the discretized expression of the cost is minimized independently
for each individual sample i .
P. Carpentier Master MMMEF — Cours MNOS 2014-2015 234 / 268



Stochastic Programming: the Scenario Tree Method
Stochastic Optimal Control and Discretization Puzzles

A General Convergence Result

Working out an Example
Naive Monte Carlo-Based Discretization
Scenario Tree-Based Discretization
A Constructive Proposal

Something is Wrong. . .

The optimization problem associated to the i-th sample is

min
ui∈R

ε
(
ui
)2

+
(
w i

0 + ui + w i
1

)2
,

which yields the optimal value and the optimal cost

ui[ = −w i
0 + w i

1

1 + ε
, j i[ = ε

(w i
0 + w i

1)2

1 + ε
.

The averaged cost over the N samples is equal to

1

N

N∑
i=1

ε(w i
0 + w i

1)2

1 + ε
−→

N→+∞

2 ε

3 (1 + ε)
= O(ε) .

This cost is far below the true optimal cost J] = 1/3 + O(ε) !

However, any admissible solution (any U such that U �W0)
cannot achieve a cost better than the optimal cost. . .
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Real Value of the Discretized Problem Solution

The resolution of the discretized problem derived from the
previous Monte Carlo procedure yields optimal values

ui[ = −w i
0 + w i

1

1 + ε
,

but not a random variable.

The cost value of order ε is just a fake cost estimation,
because we have not produced an admissible control.

To evaluate the true cost of this “solution”, we must first
derive an admissible control for the initial problem, that is, a
random variable U [ over [−1, 1]2 with constant value along
every vertical line of this square (since the horizontal axis
represents the first component W0 of the noise, and since
U [ has to be measurable with respect to W0 only).
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Construction of an Admissible Control (1)

We assume that the sample points have been renumbered so that
the first component w i

0 is increasing with i .

W 0

W 1

wi
0

wi
1

Divide the square into N
vertical strips by drawing
vertical lines in the middle
of segments [w i

0,w
i+1
0 ].

The i-th strip is given by
[ai−1, ai ]× [−1, 1], with:

ai = (w i
0 + w i+1

0 )/2 ,

for i = 2, . . . ,N − 1,
(a0 = −1 and aN = 1).
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Construction of an Admissible Control (2)

We define the solution U [ as the function of (w0,w1) which is
piecewise constant over the square divided into those N strips,
by using the optimal value ui[ in strip i :

U [(w0,w1) =
N∑
i=1

ui[ 1[ai−1,ai ]×[−1,1](w0,w1) ,

where (w0,w1) ranges in the square [−1, 1]2 and where 1A(·) is the
indicator function of the set A:

1A(x) =

{
1 if x ∈ A ,
0 otherwise .

Of course, the control U [ depends on the N samples (w i
0,w

i
0) by

means of the values of the mid-points ai ’s and the controls ui[’s.
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Evaluation of the Expected Cost (1)

The corresponding cost value E
(
ε(U [)

2 + (W0 + U [ + W1)2
)

can be evaluated analytically (integration w.r.t. (w0,w1) over
the square [−1, 1]2), and is equal to

2

3
+

N∑
i=1

(
(1 + ε)

ai − ai−1

2

(
ui[
)2

+
(ai )2 − (ai−1)2

2
ui[

)
,

where the values ai and ui[ depend on the samples (w i
0,w

i
1).

In order to assess the value of this estimate, we now compute its
expectation when considering that the (w i

0,w
i
1)’s are realizations of

independent random variables (W i
0,W

i
1). This calculation is not

straightforward because the w i
0’s have been reordered, so that we

compute it numerically for different values of N.
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Evaluation of the Expected Cost (2)

The cost provided by the admissible control U [ is estimated 2/3.

5 10 15 20

0.6

0.8

1.0

1.2 cost

N

Figure: Estimated cost as a function of the number N of samples

This value neither corresponds to the true optimal cost (1/3),
nor to the cost of the discrete problem (0). Moreover, the value
2/3 is equal to that given by the best open-loop control: U? = 0 !
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Scenario Tree Approach

W0 W1

.

.

.

.

.

.

.

.

.

We consider N0 × N1 scenarios{
(w j

0,w
jk
1 )
}k=1,...,N1

j=1,...,N0
.

Notice that the discretization w j
0 of

the first noise W0 only depends on
j = 1, . . . ,N0,

whereas the discretization w jk
1 of

the second noise W1 “hangs” from
a given j ∈ {1, . . . ,N0} and then
depends on k = 1, . . . ,N1.
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Scenario Tree Optimal Solution

On the scenario tree, the original cost E
(
εU2 + (W0 + U + W1)2

)
is

approximated by

1

N0

N0∑
j=1

(
ε(uj)2 +

1

N1

N1∑
k=1

(uj + w j
0 + w jk

1 )2
)

The solution of this approximated problem is

uj\ = −w j
0 + w j

1

1 + ε
, where w j

1 =
1

N1

N1∑
k=1

w jk
1 ,

to be compared with the naive Monte Carlo solution uj[ = −w j
0 + w j

1

1 + ε
.

Note that w j
1 can be interpreted as an estimate of the conditional

expectation E
(
W1

∣∣ W0 = w j
0

)
.
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Scenario Tree Optimal Cost

Let (σj1)2 = 1
N1

∑N1
k=1(w jk

1 )2. The solution uj\ yields the cost

1

N0(1 + ε)

N0∑
j=1

(
ε(w j

0)2 + 2εw j
0w

j
1 − (w j

1)2 + (1 + ε)(σj1)2
)
.

If we assume that the estimates w j
1 and (σj1)2 converge towards

their right values (respectively, 0 and 1/3) as N1 goes to infinity,
then the scenario tree approach optimal cost gets close to

1

N0(1 + ε)

N0∑
j=1

(
ε(w j

0)2 +
1 + ε

3

)
−→

N0→+∞

1

3
+ O(ε) .

This cost is of the same order than the true optimal cost. However
it does not correspond to an admissible solution. . .
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Admissible Control and Associated Cost
As in the naive Monte Carlo method, we derive from the uj\’s an
admissible solution U \ for the initial problem (piecewise constant

fonction over N0 strips of the square [−1, 1]2). The cost provided
by U \ is estimated 1/3, corresponding to the true optimal cost.

N0

cost

optimal cost

cost

0 10 20 30 40 50

0.35

0.40

0.45

0.50

0.55

Figure: Estimated cost on a tree with N2
0 scenarios
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Where Do We Stand?

True Solution Naive Monte Carlo Scenario Tree
Optimal Cost 1/3 + O(ε) O(ε) 1/3 + O(ε)

Feasible Control −W0/(1 + ε) −(w i
0 + w i

1)/(1 + ε) −(w i
0 + w j

1)/(1 + ε)

Induced Cost 1/3 + O(ε) 2/3 + O(ε) 1/3 + O(ε)

1 The naive Monte Carlo method
discretizes the noise process as a whole,
deduces the discretization of the measurability constraint,
yields a cost not better than the open-loop solution.

2 The scenario tree approach
discretizes the noise in a clever way (forward process),
deduces the discretization of the measurability constraint,
yields the optimal cost.

Hint: the conditional probability laws are well estimated.
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Monte Carlo Interpretation of the Scenario Tree

W0  {a,b, c ,d}, W1  
{
{1}, {2, 3, 4}, {5, 6}, {7, 8, 9, 10}

}
.

d

c 

b

a 1

2

3

4

5

6

7

8

9

10

1

a b c d

3
4

6

5

7

8

9

10

2

In a scenario tree, groups of samples are naturally aligned vertically!
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Voronoi Quantization

However, others quantizations of Ω are possible.

1

a b c d

3
4

6

5

7

8

9

10

2

Given a set of points in the
square [−1, 1]2, the Voronoi
tessellation minimizes the mean
quadratic error among finite
random variables taking given
values. We in fact consider a
discretized version of the random
variable (W0,W1), rather than a
Monte Carlo sampling.
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Independent Discretization of Noise and Information (1)

Choose a discretization of the noise (8 cells).

3

2
1

4

5

6

7

8

Noise
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Independent Discretization of Noise and Information (2)

Choose a discretization of the noise (8 cells).

Choose a discretization of the information (5 cells).

3

2
1

4

5

6

7

8

b c d ea

Noise Information
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Independent Discretization of Noise and Information (3)

Choose a discretization of the noise (8 cells).

Choose a discretization of the information (5 cells).

Combine both discretizations (21 non empty cells).

3

2
1

4

5

6

7

8
3a 3b

4b

5b

5c

7c 

4c
4d

8d 8e

7d

7e

5d

6d 6e6b
6c

2b

6a

1a

2a

b c d ea

Noise Information Mixing
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Independent Discretization of Noise and Information (4)

W0  {a,b, c ,d , e} , W1  {1, 2, 3, 4, 5, 6, 7, 8}.

3a 3b

4b

5b

5c

7c 

4c
4d

8d 8e

7d

7e

5d

6d 6e6b
6c

2b

6a

1a

2a

a

b

c

d

e 

2

3

4

5

6

7

8

1

This approach does not necessarily produce a tree structure!
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Discretized Optimization Problem

Using the notation j(u,w0,w1) = εu2 + (w0 + u + w1)2, the
discretized optimization problem is

min
{uk}

∑
k∈{a,...,e}

8∑
i=1

πik j(uk ,w i
0,w

i
1) ,

where πik is the probability weight of the cell ik , uk is the control
value on the cell k and w i the noise value on the cell i . Note that
some of the πik ’s are equal to zero.

The solution of this discretized problem can be computed (finite
dimensional optimization). We expect that the optimal cost of the
discretized problem converges to the true optimal cost J] as the
numbers of points in the 2 discrete sets associated to information
and noise ({a, . . . , e} and {1, . . . , 8} in our example) go to infinity.
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Problem and its Approximation

We consider the general form of a stochastic optimisation problem:

V(W ,B) = min
U∈U

E
(
j(U ,W )

)
,

subject to

U is B-measurable .

We consider a sequence of random noises
{
Wn

}
n∈N and another

sequence of σ-fields
{
Bn

}
n∈N such that the Wn’s and the Bn’s

have “finite” representations, e.g.

Wn =
∑n

i=1 w
i1Ωi

, (Ω1, . . . ,Ωn) being a partition of Ω,

Bn = σ(Ω1, . . . ,Ωn), (Ω1, . . . ,Ωn) being a partition of Ω.

We are interested in the sequence of values
{
V(Wn,Bn)

}
n∈N.
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Convergence Notions for W

These are rather standard notions.

Convergence in distribution: Wn
D−→W .

lim
n→+∞

E
(
f (Wn)

)
= E

(
f (W )

)
for all continuous bounded f .

This is the underlying concept in the Monte Carlo method:
the empirical law defined by a N-sample (W (1), . . . ,W (n)) of
W , that is, 1

n

∑n
i=1 δW (i) , weakly converges to PW .

Convergence in probability: Wn
P−→W .

∀ε > 0 , lim
n→+∞

P
(∥∥Wn −W

∥∥
W ≥ ε

)
= 0 .

This notion is much stronger than the previous one.

P. Carpentier Master MMMEF — Cours MNOS 2014-2015 258 / 268



Stochastic Programming: the Scenario Tree Method
Stochastic Optimal Control and Discretization Puzzles

A General Convergence Result

Convergence of Random Variables
Convergence of σ-Fields
The Long-Awaited Convergence Theorem

1 Stochastic Programming: the Scenario Tree Method
Scenario Tree Method Overview
Some Details about the Method

2 Stochastic Optimal Control and Discretization Puzzles
Working out an Example
Naive Monte Carlo-Based Discretization
Scenario Tree-Based Discretization
A Constructive Proposal

3 A General Convergence Result
Convergence of Random Variables
Convergence of σ-Fields
The Long-Awaited Convergence Theorem

P. Carpentier Master MMMEF — Cours MNOS 2014-2015 259 / 268



Stochastic Programming: the Scenario Tree Method
Stochastic Optimal Control and Discretization Puzzles

A General Convergence Result

Convergence of Random Variables
Convergence of σ-Fields
The Long-Awaited Convergence Theorem

Convergence Notions for B

These results are less known. . .

Strong Convergence of σ-fields: Bn → B.

lim
n→+∞

E
(
f
∣∣∣ Bn

)
L1

−→ E
(
f
∣∣∣ B) for all f ∈ L1(R) .

Main properties.

1 The topology of the strong convergence is metrizable, so that
the space A? of sub-fields of A is a complete separable metric
space.

2 The σ-fields generated by a finite partition of Ω are dense in
A? equipped with the previous metric.

3 Let {Yn}n∈N be a sequence of random variables such that

Yn
P−→ Y and σ(Yn) ⊂ σ(Y ) ∀n. Then, σ(Yn)→ σ(Y ).
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Convergence Theorem

Theorem

Let W = Lq(Ω,A,P;W) and U = Lr (Ω,A,P;U), with
1 ≤ q < +∞ and 1 ≤ r < +∞. Under the assumptions

H1 the sequence {Bn}n∈N strongly converges to B, and Bn ⊂ B,

H2 the sequence
{
Wn

}
n∈N converges to W in Lq-norm,

H3 the normal integrand j is such that

∀(u, u′) ∈ U2 , ∀(w ,w ′) ∈W2 ,∣∣j(u,w)− j(u′,w ′)
∣∣ ≤ α ‖u − u′‖rU + β ‖w − w ′‖qW ,

the convergence of the approximated optimal costs holds true

lim
n→+∞

V
(
Wn,Bn

)
= V

(
W ,B

)
.

Using epi-convergence, it is possible to obtain the same results under weaker

assumptions and to ensure the convergence of the sequence of the solutions.
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Conclusions

In the discretization of a SOC problem, there are two issues:

noise discretization,
information discretization.

The naive Monte Carlo discretization provides a too weak
convergence notion (in distribution, not in probability).

The scenario tree methodology provides an effective way to
discretize stochastic optimal control problem, but the two
discretizations of information and of noise are bundled.

Independent discretizations of noise and information offer

a greater latitude to select discretization schemes,
a way to obtain proper convergence results.
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