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Two Elementary Exercices on the Stochastic Gradient Two-Stage Recourse Problem
Trade-off Between Investment and Operation

A Basic Two-Stage Recourse Problem

We consider the management of a water reservoir. Water is drawn
from the reservoir by way of random consumers. In order to ensure
the reservoir supply, 2 decisions are taken at successive time steps.

@ A first supply decision g; is taken without any knowledge of
the effective consumption, the associated cost being equal to
% ca (ql)z, with ¢; > 0.

@ Once the consumption d has been observed (realization of a
r.v. D defined over a probability space (2, A, P)), a second
supply decision g5 is taken in order to maintain the reservoir at
its initial level, that is, g» = d — g1, the cost associated to this
second decision being equal to % C2(q2)2, with ¢ > ¢ > 0.

The problem is to minimize the expected cost of operation.
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Trade-off Between Investment and Operation

Mathematical Formulation and Solution

Problem Formulation

@ g; is a deterministic decision variable,

@ whereas g is the realization of a random variable Q,.

1 , 1 . i
(ng;)ECl(ql) +§E(C2(Q2) ) st. 1+Q@,=D.

Equivalent Problem

.1 2 2
i) §E (Cl (q1)"+ (D — q1) )

Analytical solution: q§ =
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Two Elementary Exercices on the Stochastic Gradient

Two-Stage Recourse Problem
Trade-off Between Investment and Operation

Stochastic Gradient Algorithm

1
QY = @) — ;((Cl + )@ - CzD(kH))

Algorithm (initialization) Algorithm (iteration
// //
// Random generator // Algorithm
// //
rand(*normal’); rand(’seed’,123); gk = 0.;
// for k = 1:100
// Random consumption dk = moy + (ect*rand(1));
// gk = ((c1+c2)*qk) - (c2*dk);
moy = 10.; ect = 5.; ek = 1/k;
// gk = gk - (ek*gk);
// Criterion x=1[x; kl; y=1[y; gkl;
// end
cl =3.; c2=1.; //
// // Trajectory plot
// Initialization //
// plot2d(x,y);
x=[1;y=101; xtitle(’Stochastic Gradient ’,’Iter.’,’Q1’);
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Two Elementary Exercices on the Stochastic Gradient Two-Stage rse Problem

Trade-off B n Investment and Operation

Slight Modification of the problem

As in the basic two-stage recourse problem,

@ a first supply decision qg; is taken without any knowledge of
the effective consumption, the associated cost being equal to

1 2
3 C1(C71) '

@ a second supply decision g, is taken once the consumption d
has been observed (realization of a r.v. D), the cost of this

second decision being equal to % Cz(qz)z.

The difference between supply and demand is penalized thanks to
an additional cost term % C3(q1 + g — d)2. The new problem is :

1 , , 2
(qu({)]z) EE (Cl(Ch) -+ C2(Q2) + C3(CI1 =+ 02 — D) ) .

Question: how to solve it using a stochastic gradient algorithm?
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Two Elementary Exercices on the Stochastic Gradient Two-Stage Recourse Problem

Trade-off Between Investment and Operation

Trade-off Between Investment and Operation (1)

A company owns N production units and has to meet a given
(non stochastic) demand d.

@ For each unit /, the decision maker first takes an investment
decision u; € R, the associated cost being /;(u;).

@ Then a discrete disturbance w; € {w; , w; », w;j ¢} occurs.
@ Knowing all noises, the decision maker selects for each unit /
an operating point v; € R, which leads to a cost ¢;(v;, w;) and
a production e;(v;, w;).
The goal is to minimize the overall expected cost, subject to the
following constraints:
@ investment limitation: ©(uy,...,uy) <0,
@ operating limitation: v; < ¢;(u;), i=1...,N,
e demand satisfaction: Z,N:1 ei(vi,w;) —d =0.
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Two Elementary Exercices on the Stochastic Gradient Two-Stage Recourse Problem

Trade-off Between Investment and Operation

Trade-off Between Investment and Operation (2)

Questions.

© Write down the optimization problem. Is it possible to apply
the stochastic gradient algorithm in a straightforward manner?
@ Extract the optimization subproblem obtained when both the
investment u = (uy, ..., uy) and the noise w = (wy, ..., wy)
are fixed. The value of this subproblem is denoted f*(u, w).
e Discuss the resolution of this subproblem.
o Give assumptions in order to have a “nice” function f*.
o Compute the partial derivatives of f¥ w.r.t. v.
© Reformulate the initial optimization problem using this new
function f# and apply the stochastic gradient algorithm in the
two following cases:
e the investment limitation reduces to u; € [u;, 4], i=1,..., N,
e the investment limitation has the form O(uy, ..., uy) < 0.
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Financial Problem Modeling
Option Pricing Problem and Variance Reduction Computing Efficiently the Price
Two orithms

The Financial Problem

The price of an option with payoff ¢)(S5,,0 < t < T) is given by
P = E(e—fW(st,o <t<T)),

where the dynamics of the underlying n-dimensional asset S is
described by the following stochastic differential equation

ds, = St(rdt + o(t, St)th) , S, =x,

r being the interest rate and o(t, y) being the volatility function.
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Financial Problem Modeling
Option Pricing Problem and Variance Reduction Computing Efficiently the Price
Two Algorithms

Discretization

Most of the time, the exact solution is not available. To overcome
the difficulty, one considers a discretized approximation of S (by
using an Euler’'s scheme), so that the price P is approximated by

9y,

ﬁ:E(e—fTw(fstl,.. 3 )).

In such cases, the discretized function can be expressed in terms of
the Brownian increments, or equivalently using a random normal
vector. A compact form for the discretized price is

P =E(4(G)) ,

where G is a n X d-dimensional Gaussian vector with identity
covariance matrix and zero-mean.
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Option Pricing Problem and Variance Reduction Efficiently the Price
Two Algorithms

A Parameterized Change of Variable

The problem is now to compute P = E(¢(G)) using Monte Carlo
simulations. By a change of variables, we obtain that

~ 2
P=E(4(G+o)e "5,
for any § € R™ 9. Let us denote by \7(9) the associated variance:
. 2
V(6) =E(8(G + 0% O 1) —E(9(6))" .
2 2
=E(¢(G)2e " €+15) —E(9(6))

The last expression shows that function Vis strictly convex and
differentiable without any specific assumptions on ¢. Moreover,

vV(o) =E((0- G)¢(G)2e*<9,G>+%) |

so that the gradient of V does not involves any derivative of ¢.
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Financial Problem Modeling
Option Pricing Problem and Variance Reduction Computing Efficiently the Price
Two orithms

Variance Minimization

The goal is to compute the parameter 6 such that the variance
V(0) related to P is as small as possible, in order to optimize
the convergence speed of the Monte Carlo simulations:

- 2 —(0,6)+ 192
eng]erLE(dG) e 2 ) .

This optimization problem is well suited for being solved by the
stochastic gradient algorithm:

g+ — gUk) (k) (g(K) _ Gk+D)) (G lk+D)) 2~ (60 Uity 12

and its unique solution is denoted 6.

P. Carpentier Master MMMEF — Cours MNOS 2014-2015 133 / 267



Financial Pr
Option Pricing Problem and Variance Reduction Computing Ef

Two Algorithms

@ Option Pricing Problem and Variance Reduction

@ Two Algorithms

P. Carpentier Master MMMEF — Cours MNOS 2014-20

134 / 267



Financial Problem Modeling
Option Pricing Problem and Variance Reduction Computing Efficiently the Price
Two Algorithms

Non adaptive Algorithm

© Using a N-sample of G, obtain an approximation 8(N) of ¢*
by N iterations of the stochastic gradient algorithm.

@ Once M) has been obtained, use the standard Monte Carlo
method to compute an approximation of the price P by using
another N-sample of G:

N N

- Z G+ 4 g(M)e —(o(N) ,G(’V+k)>_7‘|9(2)”2

N
k

This algorithm requires 2N evaluations of the function ¢, whereas
a crude Monte Carlo method evaluates ¢ only N times. The non
adaptive algorithm is efficient as soon as V/(6%) < V(0)/2.
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Financial Problem Modeling
Option Pricing Problem and Variance Reduction Computing Efficiently the Price
Two Algorithms

Adaptive Algorithm

Combine the 2 previous algorithms, and compute 5|multaneously
approximations of 6% and P by using the same N-sample of G:!
U+ — k) — (0 (k) G<k+1>)¢(G<k+1))2e—<e(k> gttty 100012

)

pl) _ g 1 (P(k)_ H(GUHD 1 910 o=

(00 Glk+1)y_ HG(I;)HZ )
k+1 '

A Central Limit Theorem is available for this algorithm:

m(foW) - P) 2 N (0,V(89) .

©the last relation being the recursive form of:

L3 gy
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Satellite Model and Optimization Problem
Probability and Conditional Expectation Handling
Optimal Control Under Probability Constraint Stocha_st\c il Rz (gl

Numerical Results

Mission to Mars

Launch= 11/26/2011 Mars at Launch
Arrival= 08/06/2012

Earth at Launch
26 Mow
TCM-2
Launch + 121 days,
26 Mar

TCM-3
Entry - 41 days
26 Jun Earth at Arrival

TCM-4

29 Jul Mars at Arrival

TCM-6 Tick Marks Every 20 Days
Entry - 5 hours
5 Aug

P. Carpentier Master MMMEF — Cours MNOS 2014-20




Satellite Model and Optimization Problem
Probability and Conditio ectation Handling
Stochastic Arrow-Hurwicz

Optimal Control Under Probability Constraint Numerical Results

Satellite Model

dr dv r F

a= @ PE e (82)
dm T

=0 b
dt gOIsp (8 )

(8a): 6-dimensional state vector (position r and velocity v).
(8b): 1-dimensional state vector (mass m including fuel).

k involves the direction cosines of the thrust and the on-off switch
d of the engine (3 controls), and p, F, T, go, I, are constants.

The deterministic control problem is to drive the satellite from the
initial condition at t; to a known final position ry and velocity v at
t¢ (given) while minimizing fuel consumption m(t;) — m(t).
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Satellite Model and Optimization Problem
Probability and Conditional Expectation Handling
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7 Numerical Results

Deterministic Optimization Problem

Using equinoctial coordinates for the position and velocity
~> state vector x € R7,

and cartesian coordinates for the thrust of the engine
~» control vector u € R3,

the deterministic optimization problem writes as follows:

T(i.l)w K (x(t))
subject to:
x(t)=xi, x(t)="rf(x(t),u(t)),
Ju()l <1 Vte [t t],

C(X(i‘f)) =0.
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Satellite Model and Optimization Problem
Probability and Conditional Expectation Handling
Stochastic Arrow-Hurwicz Algorithm

Optimal Control Under Probability Constraint Numerical Results

Engine Failure

@ Sometimes, the engine may fail to work when needed: the
satellite drifts away from the deterministic optimal trajectory.
After the engine control is recovered, it is not always possible
to drive the satellite to the final target at t;.

@ By anticipating such possible failures and by modifying the
trajectory followed before any such failure occurs, one may
increase the possibility of eventually reaching the target.

@ But such a deviation from the deterministic optimal trajectory
results in a deterioration of the economic performance.

@ The problem is thus to balance the increased probability of
eventually reaching the target despite possible failures against
the expected economic performance, that is, to quantify the
price of safety one is ready to pay for.
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Probability and Conditional Expectation Handling
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7 Numerical Results

Stochastic Formulation (1)

A failure is modeled using two random variables:
@ t, : random initial time of the failure,
@ tg : random duration of the failure.

For any realization (tg, tfl) of a failure:
@ u(-) denotes the control used prior to the failure
~> u is defined over [t;, tf] but implemented over [t;, tg]
and corresponds to an open-loop control,
@ the control during the failure is 0 over [t5, t5 + tfl]
© v(-) denotes the control used after the failure
~+ V& is defined over [tg + tg, t¢] (if nonempty)
and corresponds to a closed-loop strategy V.

The satellite dynamics in the stochastic formulation writes:

XE(t) =x, x(t) = FE(xE(e), u(t), v&(t)) .
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Stochastic Formulation (2)

The problem is to minimize the expected cost (fuel consumption)
@ w.r.t. the open-loop control u and the closed-loop strategy V,
@ the probability to hit the target at t; being at least equal to p.

T(i.r; r\1/"|(i.r)1 E (K <X§(tf)>>

T(i-? r\T/](i.r)'IE(K(XS(tf)) ‘ C(x*(t)) = 0)
subject to:

XE(h) =x, x5(t) = FE(xE(t), u(t), vi(t)) ,

lu(ll <1 Veeltt], [VE(OI<T Veel+15 4],
P(C(x(t)) =0) > p.

S EEEEESEEE——ImImmh——.
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Indicator Function

Consider the real-valued indicator function:

I(y) = {1 Ty = 0

0 otherwise.

Then

P(C(x(5) =0) = E(T([|C (<)) -

E(K(x(t) x 1(|| (<) )
E(1([lc(<e))

E (K (x¢(t)) ‘ C(x¥(t)) =0) =
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7 Numerical Results

Problem Reformulation

The problem is (shortly) reformulated as

E(K(e() < 1(| <)1)
“OVO E(I(C (<))
st. E(L(|COE@)) = p-

— >

Such a formulation is however not well-suited for a numerical
implementation (e.g. Arrow-Hurwicz algorithm), because

a ratio of expectations is not an expectation!
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7 Numerical Results

An Useful Lemma

Using compact notation, the previous problem writes:

muin é((l:l)) st. O(u) >p, (9)

in which J and © assume positive values.

@ If u’ is a solution of (9) and if ©(u*) = p, then u® is also a solution of
min J(u) st. ©O(u) >p. (10)
@ Conversely, if u is a solution of (10), and if an optimal Kuhn-Tucker

multiplier 8% satisfies the condition

J(u®)
O(ut)’

gt >

then u? is also a solution of (9).

v
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Back to a Cost in Expectation

Using the previous lemma, we aim at solving a problem in which
the cost and the constraint functions correspond to expectations:

minmin B (K (<*(t)) x 1(| C(<(0)])))

st. E(L(|C(E@)) = p.

or equivalently (Interchange Theorem [R&W, 1998]):

i B (i K (1) x 10| (<Ce)1)

st. E(L(|COE@)) = p-
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Optimal Control Under Probability Constraint Numerical Results

Lagrangian Formulation

min E(mmK( (t )XH(HC( tf)H))

u(’)
st. p—E(I([C(<m)])) <0 p

ve()

Assume there exists a saddle point for the associated Lagrangian.
In order to solve

max mm{up+E(mp( (x(t) — )XHWC@QR»W)}-

n>0 u(’)

W(u, p, €)

that is,

we use an adapted Arrow-Hurwicz algorithm ([Culioli, 1994]).
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Optimal Control Under Probability Constraint Numerical Results

Algorithm Overview

Arrow-Hurwicz algorithm

At iteration k,

@ draw a failure £k = (tgk7 gk) according to its probability law,

@ compute the gradient of W w.r.t. u and update u(-):

! - I_IrB (uk - Ek VUW(ukmu‘k? Ek)> 3
© compute the gradient of W w.r.t. ;1 and update u:

/,Lk+1 = maxX (0 u+p (P+ vy W( ke Lkﬂgk))> .
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Probability and Conditional Expectation Handling
Stochastic Arrow-Hurwicz Algorithm

Optimal Control Under Probability Constraint Numerical Results

First Difficulty: T Is Not a Smooth Function

At every iteration k, we must evaluate function W as well as
its derivatives w.r.t. u(.) and p. But W is not differentiable!

2
1 I'F}/ZO, (1_L2) ify € —r,rf,
I(y) = o L(y) = r v &l=r]
0 otherwise, 0 otherwise.

There are specific rules to drive r to 0 as the iteration number

k goes to infinity in order to obtain the best asymptotic Mean
Quadratic Error of the gradient estimates ([Andrieu et al., 2007]).
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Stochastic Arrow-Hurwicz Algorithm

Optimal Control Under Probability Constraint Numerical Results

Second Difficulty: Solving the Inner Problem

The approximated closed-loop problem to solve at each iteration is:
er(Uk7§k7,Uk) = TTQEI'; {(K(Xg(tf)) — ,uk) x I« (HC(XS(tf)) H)} .
VE(-

In this setting, we have to check if the target is reached up to r¥.
Different cases have to be considered:

© the target can be reached accurately,

@ the target can be reached up to r¥ only,

© the target cannot be reached up to r*.
Note that if reaching the target is possible but too expensive (that
is, if K(Xf(tf)) > ,uk), the best thing to do is to stop the engine!

In practice, the solution of the approximated problem is derived
from the resolution of two standard optimal control problems. . .
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Optimal Control Under Probability Constraint Numerical Results

Parameters Tuning

Gradient step length:

~ usual for a stochastic gradient algorithm.

Smoothing parameter:
k «

rr=—-,
B+ k3

~» MQE reduced by a factor 1000 in about 100.000 iterations.
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Optimal Control Under Probability Constraint Numerical Results

Example: Interplanetary Mission

e t; = 0.70 and t; = 8.70 (normalized units),
@ t,: exponential distribution: IP’(tp > tf) ~ 0.58 = 7,
@ tq: exponential distribution: ]P’(0.035 <ty < 0.125) ~ 0.80.

o] The deterministic optimal control
has a “bang—off-bang” shape.
Along the optimal trajectory, the

] probability to recover a failure is:
B | plt=0.94.

Comp. normale w
Comp. tangentielle s
Comp. radiale g
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