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A Basic Two-Stage Recourse Problem

We consider the management of a water reservoir. Water is drawn
from the reservoir by way of random consumers. In order to ensure
the reservoir supply, 2 decisions are taken at successive time steps.

A first supply decision q1 is taken without any knowledge of
the effective consumption, the associated cost being equal to
1
2 c1

(
q1

)2
, with c1 > 0.

Once the consumption d has been observed (realization of a
r.v. D defined over a probability space (Ω,A,P)), a second
supply decision q2 is taken in order to maintain the reservoir at
its initial level, that is, q2 = d − q1, the cost associated to this
second decision being equal to 1

2 c2

(
q2

)2
, with c2 > c1 > 0.

The problem is to minimize the expected cost of operation.
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Mathematical Formulation and Solution

Problem Formulation

q1 is a deterministic decision variable,

whereas q2 is the realization of a random variable Q2.

min
(q1,Q2)

1

2
c1

(
q1

)2
+

1

2
E
(
c2

(
Q2

)2
)

s.t. q1 + Q2 = D .

Equivalent Problem

min
q1∈R

1

2
E
(
c1

(
q1

)2
+ c2

(
D − q1

)2
)

Analytical solution: q]1 =
c2

c1 + c2
E
(
D
)
.
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Stochastic Gradient Algorithm

Q(k+1)
1 = Q(k)

1 − 1

k

(
(c1 + c2)Q(k)

1 − c2D(k+1)
)
.

Algorithm (initialization)
//

// Random generator

//

rand(’normal’); rand(’seed’,123);

//

// Random consumption

//

moy = 10.; ect = 5.;

//

// Criterion

//

c1 = 3.; c2 = 1.;

//

// Initialization

//

x = [ ]; y = [ ];

Algorithm (iterations)
//

// Algorithm

//

qk = 0.;

for k = 1:100

dk = moy + (ect*rand(1));

gk = ((c1+c2)*qk) - (c2*dk);

ek = 1/k;

qk = qk - (ek*gk);

x = [x ; k]; y = [y ; qk];

end

//

// Trajectory plot

//

plot2d(x,y);

xtitle(’Stochastic Gradient ’,’Iter.’,’Q1’);
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A Realization of the Algorithm
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More Realizations. . .
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Slight Modification of the problem

As in the basic two-stage recourse problem,

a first supply decision q1 is taken without any knowledge of
the effective consumption, the associated cost being equal to
1
2 c1

(
q1

)2
,

a second supply decision q2 is taken once the consumption d
has been observed (realization of a r.v. D ), the cost of this

second decision being equal to 1
2 c2

(
q2

)2
.

The difference between supply and demand is penalized thanks to
an additional cost term 1

2 c3

(
q1 + q2 − d

)2
. The new problem is :

min
(q1,Q2)

1

2
E
(
c1

(
q1

)2
+ c2

(
Q2

)2
+ c3

(
q1 + Q2 −D

)2
)
.

Question: how to solve it using a stochastic gradient algorithm?
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Trade-off Between Investment and Operation (1)

A company owns N production units and has to meet a given
(non stochastic) demand d .

For each unit i , the decision maker first takes an investment
decision ui ∈ R, the associated cost being Ii (ui ).

Then a discrete disturbance wi ∈ {wi ,a,wi ,b,wi ,c} occurs.

Knowing all noises, the decision maker selects for each unit i
an operating point vi ∈ R, which leads to a cost ci (vi ,wi ) and
a production ei (vi ,wi ).

The goal is to minimize the overall expected cost, subject to the
following constraints:

investment limitation: Θ(u1, . . . , uN) ≤ 0,

operating limitation: vi ≤ ϕi (ui ) , i = 1 . . . ,N,

demand satisfaction:
∑N

i=1 ei (vi ,wi )− d = 0.
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Trade-off Between Investment and Operation (2)

Questions.

1 Write down the optimization problem. Is it possible to apply
the stochastic gradient algorithm in a straightforward manner?

2 Extract the optimization subproblem obtained when both the
investment u = (u1, . . . , uN) and the noise w = (w1, . . . ,wN)
are fixed. The value of this subproblem is denoted f ](u,w).

Discuss the resolution of this subproblem.
Give assumptions in order to have a “nice” function f ].
Compute the partial derivatives of f ] w.r.t. u.

3 Reformulate the initial optimization problem using this new
function f ] and apply the stochastic gradient algorithm in the
two following cases:

the investment limitation reduces to ui ∈ [ui , ui ], i = 1, . . . ,N,
the investment limitation has the form Θ(u1, . . . , uN) ≤ 0.
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The Financial Problem

The price of an option with payoff ψ(St , 0 ≤ t ≤ T ) is given by

P = E
(
e−rTψ(St , 0 ≤ t ≤ T )

)
,

where the dynamics of the underlying n-dimensional asset S is
described by the following stochastic differential equation

dSt = St

(
rdt + σ(t,St)dWt

)
, S0 = x ,

r being the interest rate and σ(t, y) being the volatility function.
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Discretization

Most of the time, the exact solution is not available. To overcome
the difficulty, one considers a discretized approximation of S (by
using an Euler’s scheme), so that the price P is approximated by

P̂ = E
(
e−rTψ(Ŝ t1

, . . . , Ŝ td
)
)
.

In such cases, the discretized function can be expressed in terms of
the Brownian increments, or equivalently using a random normal
vector. A compact form for the discretized price is

P̂ = E
(
φ(G )

)
,

where G is a n × d-dimensional Gaussian vector with identity
covariance matrix and zero-mean.
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A Parameterized Change of Variable

The problem is now to compute P̂ = E
(
φ(G )

)
using Monte Carlo

simulations. By a change of variables, we obtain that

P̂ = E
(
φ(G + θ)e−〈θ ,G 〉−

‖θ‖2

2

)
,

for any θ ∈ Rn×d . Let us denote by V̂ (θ) the associated variance:

V̂ (θ) = E
(
φ(G + θ)2e−2〈θ ,G 〉−‖θ‖2

)
− E

(
φ(G )

)2
,

= E
(
φ(G )2e−〈θ ,G 〉+

‖θ‖2

2

)
− E

(
φ(G )

)2
.

The last expression shows that function V̂ is strictly convex and
differentiable without any specific assumptions on φ. Moreover,

∇V̂ (θ) = E
(

(θ − G )φ(G )2e−〈θ ,G 〉+
‖θ‖2

2

)
,

so that the gradient of V̂ does not involves any derivative of φ.
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Variance Minimization

The goal is to compute the parameter θ such that the variance
V̂ (θ) related to P̂ is as small as possible, in order to optimize
the convergence speed of the Monte Carlo simulations:

min
θ∈Rd

E
(
φ(G )2e−〈θ ,G 〉+

‖θ‖2

2

)
.

This optimization problem is well suited for being solved by the
stochastic gradient algorithm:

θ(k+1) = θ(k)−ε(k)
(
θ(k)−G (k+1)

)
φ
(
G (k+1)

)2
e−〈θ

(k) ,G(k+1)〉+ ‖θ
(k)‖2

2 ,

and its unique solution is denoted θ].
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Non adaptive Algorithm

1 Using a N-sample of G , obtain an approximation θ(N) of θ]

by N iterations of the stochastic gradient algorithm.

2 Once θ(N) has been obtained, use the standard Monte Carlo

method to compute an approximation of the price P̂ by using
another N-sample of G :

P̂
(N)

=
1

N

N∑
k=1

φ(G (N+k) + θ(N))e−〈θ
(N) ,G(N+k)〉− ‖θ

(N)‖2

2 .

This algorithm requires 2N evaluations of the function φ, whereas
a crude Monte Carlo method evaluates φ only N times. The non
adaptive algorithm is efficient as soon as V̂ (θ]) ≤ V̂ (0)/2.
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Adaptive Algorithm

Combine the 2 previous algorithms, and compute simultaneously
approximations of θ] and P̂ by using the same N-sample of G :10

θ(k+1) = θ(k)− ε(k)
(
θ(k)− G (k+1)

)
φ
(
G (k+1)

)2
e−〈θ

(k) ,G(k+1)〉+ ‖θ(k)‖2

2 ,

P̂
(k+1)

= P̂
(k)
− 1

k + 1

(
P(k)− φ(G (k+1) + θ(k)) e−〈θ

(k) ,G(k+1)〉− ‖θ(k)‖2

2

)
.

A Central Limit Theorem is available for this algorithm:

√
N
(
P̂

(N)
− P̂

)
D−→ N

(
0, V̂ (θ])

)
.

10the last relation being the recursive form of:

P̂
(N)

=
1

N

N∑
k=1

φ(G (k+1) + θ(k)) e−〈θ
(k) ,G(k+1)〉− ‖θ(k)‖2

2 .
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Satellite Model

dr

dt
= v ,

dv

dt
= −µ r

‖r‖3
+

F

m
κ , (8a)

dm

dt
= − T

g0Isp
δ . (8b)

(8a): 6-dimensional state vector (position r and velocity v).
(8b): 1-dimensional state vector (mass m including fuel).

κ involves the direction cosines of the thrust and the on-off switch
δ of the engine (3 controls), and µ,F ,T , g0, Isp are constants.

The deterministic control problem is to drive the satellite from the
initial condition at ti to a known final position rf and velocity vf at
tf (given) while minimizing fuel consumption m(ti)−m(tf).
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Deterministic Optimization Problem

Using equinoctial coordinates for the position and velocity
; state vector x ∈ R7,

and cartesian coordinates for the thrust of the engine
; control vector u ∈ R3,

the deterministic optimization problem writes as follows:

min
u(·)

K
(
x(tf)

)
subject to:

x(ti) = xi ,
•
x (t) = f

(
x(t), u(t)

)
,

‖u(t)‖ ≤ 1 ∀t ∈ [ti, tf ] ,

C
(
x(tf)

)
= 0 .
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Engine Failure

Sometimes, the engine may fail to work when needed: the
satellite drifts away from the deterministic optimal trajectory.
After the engine control is recovered, it is not always possible
to drive the satellite to the final target at tf .

By anticipating such possible failures and by modifying the
trajectory followed before any such failure occurs, one may
increase the possibility of eventually reaching the target.

But such a deviation from the deterministic optimal trajectory
results in a deterioration of the economic performance.

The problem is thus to balance the increased probability of
eventually reaching the target despite possible failures against
the expected economic performance, that is, to quantify the
price of safety one is ready to pay for.
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Stochastic Formulation (1)

A failure is modeled using two random variables:

tp : random initial time of the failure,
td : random duration of the failure.

For any realization (tξp, t
ξ
d) of a failure:

1 u(·) denotes the control used prior to the failure

; u is defined over [ti, tf ] but implemented over [ti, t
ξ
p]

and corresponds to an open-loop control,
2 the control during the failure is 0 over [tξp, t

ξ
p + tξd],

3 v ξ(·) denotes the control used after the failure

; v ξ is defined over [tξp + tξd, tf ] (if nonempty)
and corresponds to a closed-loop strategy V.

The satellite dynamics in the stochastic formulation writes:

xξ(ti) = xi ,
•
x ξ(t) = f ξ

(
xξ(t), u(t), v ξ(t)

)
.
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Stochastic Formulation (2)

The problem is to minimize the expected cost (fuel consumption)

w.r.t. the open-loop control u and the closed-loop strategy V,
the probability to hit the target at tf being at least equal to p.

min
u(·)

min
V(·)

E
(
K
(
xξ(tf)

))
min
u(·)

min
V(·)

E
(
K
(
xξ(tf)

) ∣∣∣ C(xξ(tf)) = 0
)

subject to:

xξ(ti) = xi ,
•
x ξ(t) = f ξ

(
xξ(t), u(t), v ξ(t)

)
,

‖u(t)‖ ≤ 1 ∀t ∈ [ti, tf ] , ‖v ξ(t)‖ ≤ 1 ∀t ∈ [tξp + tξd, tf ] ,

P
(
C
(
xξ(tf)

)
= 0
)
≥ p .

P. Carpentier Master MMMEF — Cours MNOS 2014-2015 144 / 267



Two Elementary Exercices on the Stochastic Gradient
Option Pricing Problem and Variance Reduction

Optimal Control Under Probability Constraint

Satellite Model and Optimization Problem
Probability and Conditional Expectation Handling
Stochastic Arrow-Hurwicz Algorithm
Numerical Results

1 Two Elementary Exercices on the Stochastic Gradient
Two-Stage Recourse Problem
Trade-off Between Investment and Operation

2 Option Pricing Problem and Variance Reduction
Financial Problem Modeling
Computing Efficiently the Price
Two Algorithms

3 Optimal Control Under Probability Constraint
Satellite Model and Optimization Problem
Probability and Conditional Expectation Handling
Stochastic Arrow-Hurwicz Algorithm
Numerical Results

P. Carpentier Master MMMEF — Cours MNOS 2014-2015 145 / 267



Two Elementary Exercices on the Stochastic Gradient
Option Pricing Problem and Variance Reduction

Optimal Control Under Probability Constraint

Satellite Model and Optimization Problem
Probability and Conditional Expectation Handling
Stochastic Arrow-Hurwicz Algorithm
Numerical Results

Indicator Function

Consider the real-valued indicator function:

I(y) =

{
1 if y = 0,

0 otherwise.

Then
P
(
C
(
xξ(tf)

)
= 0
)

= E
(
I
(∥∥C(xξ(tf))∥∥)) ,

and

E
(
K
(
xξ(tf)

) ∣∣∣ C(xξ(tf)) = 0
)

=
E
(
K
(
xξ(tf)

)
× I
(∥∥C(xξ(tf))∥∥))

E
(
I
(∥∥C(xξ(tf))∥∥)) .
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Problem Reformulation

The problem is (shortly) reformulated as

min
u(·)

min
V(·)

E
(
K
(
xξ(tf)

)
× I
(∥∥C(xξ(tf))∥∥))

E
(
I
(∥∥C(xξ(tf))∥∥))

s.t. E
(
I
(∥∥C(xξ(tf))∥∥)) ≥ p .

Such a formulation is however not well-suited for a numerical
implementation (e.g. Arrow-Hurwicz algorithm), because

a ratio of expectations is not an expectation!
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An Useful Lemma

Using compact notation, the previous problem writes:

min
u

J(u)

Θ(u)
s.t. Θ(u) ≥ p , (9)

in which J and Θ assume positive values.

1 If u] is a solution of (9) and if Θ(u]) = p, then u] is also a solution of

min
u

J(u) s.t. Θ(u) ≥ p . (10)

2 Conversely, if u] is a solution of (10), and if an optimal Kuhn-Tucker
multiplier β] satisfies the condition

β] ≥ J(u])

Θ(u])
,

then u] is also a solution of (9).
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Back to a Cost in Expectation

Using the previous lemma, we aim at solving a problem in which
the cost and the constraint functions correspond to expectations:

min
u(·)

min
V(·)

E
(
K
(
xξ(tf)

)
× I
(∥∥C(xξ(tf))∥∥))

s.t. E
(
I
(∥∥C(xξ(tf))∥∥)) ≥ p ,

or equivalently (Interchange Theorem [R&W, 1998]):

min
u(·)

E
(

min
vξ(·)

K
(
xξ(tf)

)
× I
(∥∥C(xξ(tf))∥∥))

s.t. E
(
I
(∥∥C(xξ(tf))∥∥)) ≥ p .
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Lagrangian Formulation

min
u(·)

E
(

min
vξ(·)

K
(
xξ(tf)

)
× I
(∥∥C(xξ(tf))∥∥))

s.t. p − E
(
I
(∥∥C(xξ(tf))∥∥)) ≤ 0 ! µ

Assume there exists a saddle point for the associated Lagrangian.
In order to solve

max
µ≥0

min
u(·)

{
µ p + E

(
min
vξ(·)

(
K
(
xξ(tf)

)
− µ

)
× I
(∥∥C(xξ(tf))∥∥)︸ ︷︷ ︸

W (u, µ, ξ)

)}
.

that is,

max
µ≥0

min
u(·)

{
µ p + E

(
W (u, µ, ξ)

)}
,

we use an adapted Arrow-Hurwicz algorithm ([Culioli, 1994]).
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Algorithm Overview

Arrow-Hurwicz algorithm

At iteration k ,

1 draw a failure ξk = (tξ
k

p , t
ξk

d ) according to its probability law,

2 compute the gradient of W w.r.t. u and update u(·):

uk+1 = ΠB

(
uk − εk ∇uW (uk , µk , ξk)

)
,

3 compute the gradient of W w.r.t. µ and update µ:

µk+1 = max
(

0, µk + ρk
(
p + ∇µW (uk+1, µk , ξk)

))
.
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First Difficulty: I Is Not a Smooth Function

At every iteration k, we must evaluate function W as well as
its derivatives w.r.t. u(.) and µ. But W is not differentiable!

I(y) =

{
1 if y = 0,

0 otherwise,
 Ir (y) =


(

1− y2

r2

)2
if y ∈ [−r , r ],

0 otherwise.

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

There are specific rules to drive r to 0 as the iteration number
k goes to infinity in order to obtain the best asymptotic Mean
Quadratic Error of the gradient estimates ([Andrieu et al., 2007]).
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Second Difficulty: Solving the Inner Problem

The approximated closed-loop problem to solve at each iteration is:

Wrk (uk , ξk , µk) = min
vξ(·)

{(
K
(
xξ(tf)

)
− µk

)
× Irk

(∥∥C(xξ(tf))∥∥)} .
In this setting, we have to check if the target is reached up to rk .
Different cases have to be considered:

1 the target can be reached accurately,

2 the target can be reached up to rk only,

3 the target cannot be reached up to rk .

Note that if reaching the target is possible but too expensive (that
is, if K

(
xξ(tf)

)
≥ µk), the best thing to do is to stop the engine!

In practice, the solution of the approximated problem is derived
from the resolution of two standard optimal control problems. . .
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Parameters Tuning

Gradient step length:

εk =
a

b + k
, ρk =

c

d + k
,

 usual for a stochastic gradient algorithm.

Smoothing parameter:

rk =
α

β + k
1
3

,

 MQE reduced by a factor 1000 in about 100.000 iterations.
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Example: Interplanetary Mission

ti = 0.70 and tf = 8.70 (normalized units),

tp: exponential distribution: P
(
tp ≥ tf

)
≈ 0.58 = πf ,

td: exponential distribution: P
(
0.035 ≤ td ≤ 0.125

)
≈ 0.80.

Comp. normale w
Comp. tangentielle s
Comp. radiale q

0 1 2 3 4 5 6 7 8 9
−0.4

−0.2

0.0
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0.4

0.6

0.8

1.0

The deterministic optimal control
has a “bang–off–bang” shape.

Along the optimal trajectory, the
probability to recover a failure is:
pdet ≈ 0.94.
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Figure: Probability level p = 0.750
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Figure: Probability level p = 0.960
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Masse finale / iterations0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
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Multiplicateur probabilite / iterations0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
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Figure: Probability level p = 0.990
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The Price of Safety. . .

Consommation sans panne / Probabilite
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Figure: Fuel consumption versus probability level p
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