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Discretization Methodology for Problems with
Static Information Structure (SIS)

In this chapter, we consider problems formulated as in (1.3), which we repeat
here for convenience

min
U�G

E
(
j(U ,W )

)
(6.1a)

where G is a σ-field, or

min
U�Y

E
(
j(U ,W )

)
, (6.1b)

where Y is a random variable (called observation). Both G and Y are static,
that is, they do not depend on the control U (in §1.2.2, we used the acronym
SIS for this situation). Recall that problems with DIS (see again §1.2.2), but
no dual effect, are also amenable to this formulation (such situations are con-
sidered in §10.3).

We are mainly interested in devising systematic approaches to the dis-
cretization of such problems in order to solve them numerically with the help
of a computer. Essentially, in the discretized problem, any random variable,
be it part of the data as W , or of the unknowns as U , is represented by
a finite set of values (e.g. {wi}i=1,...,N ), and its associated probability law
is represented by a sum of atomic measures (Dirac measures δwi located at
wi) with positive weights pi summing up to 1. Consequently, in the discrete
problem, expectations reduce to finite sums, and optimization is w.r.t. a finite
set {ui} of variables.

Before we can address this main topic, the next section briefly discusses the
theory of quantization which is essentially a tool to derive approximate, but
finite, representations of random variables, and which provides a framework
in which to discuss the quality of those approximations.
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6.1 Quantization

When trying to solve stochastic optimization problems numerically, one may
have to manipulate approximate, but finite, representations of random vari-
ables. The quantization technique reduces the amount of information nec-
essary to represent a random variable while trying to preserve as much as
possible of the original random variable. It has its origin in Communication
Theory [67], in which random signals must be sent through a channel with
limited bandwidth. By reducing the amount of information necessary to de-
scribe, and thus transmit, the signal, one hopes to increase the flow of signals
sent through the channel. At the same time, the signals should be distorted
as little as possible. There is clearly a trade-off here.

In this text, we do not address this trade-off directly; we rather assume
that the amount of information retained to represent a random variable is
given,1 and we try to minimize the distortion in the representation of the
random variable under this constraint.

Indeed, we first start with set-theoretic notions that are limited to algebraic
aspects of quantization. Then, we move to the more quantitative notion of
optimal quantization, where the set over which quantization is considered
must be a normed vector space.

6.1.1 Set-Theoretic Quantization

A random variable W is a measurable mapping from a probability space
(Ω,A,P) to a measurable space (W,W). In this subsection, the probability
law plays no role, but it is used in the next subsection.

Consider a projection Q : W → W, that is, a measurable mapping such
that Q ◦Q = Q. Assume, moreover, that its image imQ has a finite cardi-
nality. That is, it contains a finite number N of distinct values. We call Q a
quantization and Q ◦W a quantized approximation of W .

We may consider Q as factorized into two mappings,

Q = d ◦ e ,

where

1. e : W → {1, . . . , N} is called the encoding;
2. d : {1, . . . , N} → imQ ⊂ W is a bijection, which is called the decoding.

In a communication context, instead of sending values w ∈ W over the com-
munication channel, only the code i = e(w) ∈ {1, . . . , N} is sent; at the other
end of the channel, the message i is decoded by using d(i) ∈ imQ; for this
reason, imQ ⊂ W is called the codebook : this is a collection of N values in W.

1 This is likely to determine the complexity of the discretized optimization problem
we seek to formulate.
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Of course, Ω/(Q ◦W ) is a partition2 of Ω with N elements. Observe that
this partition which defines the information carried by the quantized random
variable is independent of the decoding d (as long as this is a bijection), it
only depends on the encoding e. Otherwise stated, Ω/(Q ◦W ) = Ω/(e ◦W ).

Similarly,
W/Q = W/e , (6.2)

and this defines a partition of W, the N elements of which are called quanti-
zation cells. All elements in cell i are represented by the same representative
d(i) in the codebook. In summary, while the encoding e defines the cells (and
thus the information carried by the quantized variable), the decoding d de-
fines the representative in each cell (called the centroid of the cell), which
has an importance as long as the values w are physical quantities (for exam-
ple, consumption of energy, prices, etc.). The whole situation is illustrated by
Figure 6.1.

e dW

→ {1, . . . , N}

im Q

Q

⊂ W

Fig. 6.1. Quantization Q, encoding e, decoding d

6.1.2 Optimal Quantization In Normed Vector Spaces

We assume now that W is a normed vector space (the norm is denoted ‖·‖).
Given a value of N , the idea is to choose the least distorted quantized variable.
Distortion may be defined by the L2-distance between the original and the
quantized random variable, which is equal to the square root of the Mean
Quadratic Error (MQE):

MQE := E
( ∥
∥W −Q ◦W

∥
∥
2 )

. (6.3)

Optimizing the quantization amounts to reducing this distortion measure
to the minimum. This task can be split up into two parts: choosing the best
encoding e, or equivalently defining the best partition W/e; and specifying

2 The notation Ω/(Q ◦W ) was introduced in Definition 3.30.
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the best decoding d, which consists of choosing the best representative (cen-
troid) wi in each cell Ci of this partition. The next lemma provides two
necessary conditions related to those two optimal choices.

Lemma 6.1. An optimal quantization must satisfy the following two condi-
tions:

1. given the centroids {wi}i=1,...,N , the cells Ci must be such that, PW -almost

surely, if w ∈ Ci, then
∥
∥w − wi

∥
∥ ≤

∥
∥w − wj

∥
∥ , ∀j 6= i;

2. given the cells Ci, the centroid wi is equal to E
(
W

∣
∣ W

−1(Ci)
)
.

Proof. The MQE can be written as follows

E
( ∥
∥W −Q ◦W

∥
∥
2 )

= E

( N∑

i=1

E

( ∥
∥W − wi

∥
∥
2
∣
∣
∣ W

−1(Ci)
))

.

Suppose the first condition of the lemma is not satisfied. Then, since N is
finite, it means that there exist a subset of W with positive probability for
PW and two indices i and j such that every w in that subset belongs to Ci

whereas
∥
∥w − wj

∥
∥ <

∥
∥w − wi

∥
∥. Then, by changing the definition of cells so

that this whole subset is moved from Ci to Cj , the above performance index
is improved, which contradicts optimality.

Now, considering the i-th conditional expectation in the right-hand side
above, it is well known that wi = E

(
W

∣
∣ W

−1(Ci)
)
is the value which

minimizes that expression (see Definition B.5). �

The first condition in this lemma defines what is known as a Voronoi diagram
or tessellation (see Figure 6.2). This condition may be called “the nearest
neighbor” condition in that any w should be represented by its nearest neigh-
bor in the codebook.

Using (6.2), observe that

E
(
Q(W )

)
=

N∑

i=1

PW (Ci)wi = E

(

E
(
W

∣
∣ W

−1(W/e)
))

= E(W ) , (6.4)

that is, an optimal quantized variable is respectful of the first moment of the
original random variable. However, the next lemma shows that the second
order moment or the variance is underestimated when replacing the original
variable by its optimal quantized version.

Lemma 6.2. For an optimal quantization Q, with MQE defined by (6.3), one
has that:

E(W ) = E
(
Q(W )

)
, (6.5a)

Var
(
W
)
= Var

(
Q(W )

)
+MQE . (6.5b)
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Fig. 6.2. Voronoi tessellation

Proof. The former claim is a repetition of (6.4). We concentrate on the latter.

Var
(
W
)
= E

( ∥
∥W − E(W )

∥
∥
2 )

= E
( ∥
∥W −Q(W ) +Q(W )− E(W )

∥
∥
2 )

= E
( ∥
∥W −Q(W )

∥
∥
2 )

+ E
( ∥
∥Q(W )− E(W )

∥
∥
2 )

+ 2E
( N∑

i=1

E(〈W − wi , wi − E(W )〉 | W−1(Ci))
)

.

The first term is precisely the MQE; the second term is the variance of Q(W )
thanks to (6.5a); the third term is zero since, in the scalar product, the second
factor is constant over Ci whereas, the first factor has a zero conditional
expectation given the value of wi (see Lemma 6.1). �

The two necessary optimality conditions in Lemma 6.1 may be used to
build up an iterative (Lloyd’s) algorithm to find an optimal quantization of a
given random variable. This algorithm proceeds by alternating the following
two stages:

1. given a collection of N centroids wi, the Voronoi cells are (re)drawn using
the first conditon in Lemma 6.1; this amounts to defining all the half
spaces delimited by the medians (hyperplanes) of all segments (wi, wj) (it
involves manipulating affine inequalities);

2. given the cells, the centroids are (re)defined by using the second optimality
condition in the lemma (it involves computing integrals over the cells).

Unfortunately, such an algorithm sometimes tends to stop on local minima
which are not true minima (see [67]).
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6.2 A Systematic Approach to Discretization

We come to the main topic of this chapter, namely the reformulation of prob-
lems as (6.1) as finite dimensional problems in order to solve them numerically.
The language of quantization briefly developed previously is used throughout
this section, and the contribution by Pennanen [109] is “translated” in this
language in order to make easier its comparison with other solutions proposed
hereafter.

6.2.1 The Problematics of Discretization

As we have seen in §1.4, the resolution of the discrete problem does not directly
provide an acceptable answer in that what is expected as a “solution” to (6.1)
is a random variable over the original probability space, satisfying, in addition,
the measurability conditions imposed in the formulation (6.1). Therefore, some
“reconstruction” is needed after the discrete problem has been solved, and
examples of this reconstruction were given in §1.4 (see (1.15) and Figure 1.3).

Notice that, even if the formulation of the discrete problem seemingly only
requires the consideration of random variables assuming finitely many distinct
values, these random variables must be embedded into the original space by
defining “cells” around the atomic support of the discrete probability distri-
bution defined by the weights {pi}i=1,...,N . Then, a reasonable requirement for
convergence of the reconstructed solution towards the optimal original prob-
lem solution is that each pi gets arbitrarily close to the true probability mass
of the cell around atom i as the number N of cells goes to infinity.

However, as shown by the discussion around examples in §1.4, it is not
enough to handle the approximation of mathematical expectations in a sound
manner: some caution is also required to properly represent the essential con-
traints of information structure in the discrete problem. Here again, cells
around atoms, or as otherwise stated, partitions of the original spaces, play a
part. This section concentrates on this particular issue.

Pennanen [109] was probably the first author to envisage this topic in a
systematic way. Regarding the approximation techniques for expectations, he
considered not only usual Monte Carlo sampling but also Quasi-Monte Carlo
and other sophisticated quadrature techniques. In order to be able to give an
asymptotic epi-convergence theorem as the number of samples goes to infinity,
he imposed a rather strong condition which tightly coordinates the samples
used to approximate expectations with the way informational constraints3 are
translated in the discretized problem. This condition naturally leads to the
construction of scenario trees that were introduced in the end of Chapter 1 (see
Figure 1.5) and that are very popular in the SP community. However, as we
shall see by the end of this chapter, the technique of scenario trees is hindered
by the poor convergence rate of the underlying Monte Carlo approximation

3 Actually, Pennanen considers non anticipativity constraints only.
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technique (see §6.3.2), and therefore it is important to show that other more
flexible conditions can also be used that still enable a convergence proof to be
given.

In this chapter, the focus is on the links between the sampling technique
and the translation of informational constraints in the discrete problem; con-
vergence issues are discussed in Chapter 8. We also consider more general
informational constraints beyond non anticipativity constraints. Finally, we
use the language of lattice of partition fields introduced in Chapter 3, which
provides a formalism making clearer the comparison of Pennanen’s work with
alternative methods we propose in §6.2.3.

Remark 6.3. Although the issue of convergence is deferred to Chapter 8, the
following observation may be kept in mind as a safeguard against unreasonable
discretization schemes. Remember that, according to §3.5.2, Problem (6.1) can
be reformulated as

E

(

min
u

E
(
j(u,W )

∣
∣ G
))

or E

(

min
u

E
(
j(u,W )

∣
∣ Y

))

. (6.6)

Therefore, in any discretized version derived for the original problem, one
should try to identify an expression which serves as an approximation of the
conditional expectation of the cost and check that this approximation is sound
enough. An application of this observation is encountered, for example, in
Remark 6.13. ♦

6.2.2 The Approach Inspired by Pennanen’s Work

In [109], sequential stochastic optimization problems are considered with non
anticipativity constraints: in the framework (6.1b), this amounts to consid-
ering that Y = h(W ) with Y = {Yt}t=1,2,..., W = {Wt}t=1,2,... and
Yt = ht(W ) = (W1, . . . ,Wt).

In what follows, we forget about the time index t which plays no particular
part as long as Y does not depend on U (the SIS assumption) and we just
retain that Y = h(W ) where h is a function (generally non injective) from Y

to W.

Remark 6.4. In (6.1b), the cost function j depends on the two random vari-
ables U and W . The observation Y is another random variable which may,
or may not, be in relation with W . In the present framework, since we assume
that Y = h(W ), we may consider all involved random variables (including U )
as measurable mappings from W to another space, that is, we may consider
that Ω = W. Then W is the identity mapping from W to itself and Y is
identical to the mapping h. This is what is assumed hereafter unless other-
wise explicitly stated. ♦
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First Stage

The formulation of a discretized problem involves the definition of finite sets to
approximate the spaces Y and W. This is formalized by defining quantizations
as defined in §6.1. We first consider WN , a quantized version of W . More
precisely, we consider the following applications and properties:

• qW : W → WN where WN is a finite subset of cardinality N of W; we
require that qW(w) = w whenever w ∈ WN ; 4

• ιW, the canonical injection of WN into W; then,
– qW ◦ ιW is the identity IWN

in WN ;
– QW = ιW ◦ qW is then a projection inW: this is indeed a quantization as
defined in §6.1, and WN = QW ◦W = QW (according to Remark 6.4)
is the quantized random variable we were looking for;

– W/qW = W/QW is a partition of W into N cells.

Next, in order to obtain a quantized version of Y , Pennanen proceeds in
the following way. He first considers the discrete random variable YN defined
as h ◦WN . Notice that since h is not injective in general, it may happen that
the set of values YN = h ◦QW(W) has a cardinality smaller than N (despite
the subscript N in this notation). Then, consider:

• ιY, the canonical injection of YN into Y;
• hN : WN → YN such that ιY ◦hN = h ◦ ιW.

Remark 6.5. This hN can be obtained as

hN = ι−1
Y

◦h ◦ ιW , (6.7)

where ι−1
Y

is any mapping such that ιY ◦ ι−1
Y

= IYN
, the identity over YN . This

ι−1
Y

is not uniquely defined: any mapping from Y to YN can play the role of
ι−1
Y

, as long as its restriction to YN behaves as the identity. Nevertheless, hN

is well defined since precisely, in (6.7), only the restriction of ι−1
Y

to YN is
involved. ♦

Therefore, YN is well defined:

YN = h(WN ) = h ◦QW = ιY ◦hN ◦ qW . (6.8)

The expression h ◦QW is also well defined once QW has been chosen (while h
is given). The situation is summarized in Figure 6.3.

Obviously, YN � WN . However, YN is not necessarily a quantized version
of Y and, in particular, one cannot claim that YN � Y . Here is a counterex-
ample.

4 The finite set WN generally results from some sampling of the noise W or alter-
native quadrature methods. But, as recognized by Pennanen himself, in order to
define a consistent discretization scheme, it is not enough to introduce the finite
set WN , but it is also necessary to define how the whole original set W is mapped
onto that finite set: this is why qW must be defined.
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Y

Y

N

ιY

hN

qW

= h

ιW

WN

Y

W

YN

Fig. 6.3. Discretization according to Pennanen, stage 1

Example 6.6. Consider

W = [−2, 2]× [−2, 2] , qW(w1, w2) =

(
sign(w1)
sign(w2)

)

, WN = {(±1,±1)} ,

h(w1, w2) = w1 + w2 , YN = {−2, 0, 2} .
Observe that h(−1, 2) = h(1/2, 1/2) = 1 whereas YN (−1, 2) = sign(−1) +
sign(2) = 0 is different from YN (1/2, 1/2) = sign(1/2) + sign(1/2) = 2. Ac-
cording to Proposition 3.38 (item 2), YN is not measurable with respect to Y .
The two dots with coordinates (−1, 2) and (1/2, 1/2) are represented in Fig-
ure 6.4. This figure also displays three partitions of W = [−2, 2] × [−2, 2].
The first partition corresponds to W/h, and it has infinitely many elements
(only a few are represented in the figure). The second partition corresponds
to W/QW and it has four elements (the values of QW belonging to WN are
indicated). The third partition, namely W/(h ◦QW), has only three elements
corresponding to the three elements of YN indicated in the figure. △

+
1
+
1

+
1
−
1

−
1
+
1

0

0

2

−
1
−
1

−
2

Fig. 6.4. Representations of the partitions corresponding to W/h, W/QW and
W/(h ◦QW) in Example 6.6
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Second Stage

The discretized problem may be considered to “live” on a discrete probability
space:

• ΩN is WN ;
• the associated σ-algebra is the complete partition field of this set;
• the discrete probability law PN is the original probability law P trans-
ported from W to WN by qW.

The decision variable in this discretized problem is denoted UN : this is a
mapping from WN to U, and this mapping can assume at most N distinct
values; these values result from a numerical optimization. However, the ex-
pected answer is a random variable, that is, a mapping from W to U. As it is
natural, UN is extended to the whole W by considering U = UN ◦ qW, which
amounts to building up a piecewise constant function using the cells of W/qW
(but again, although there are N cells, there might be less than N distinct
values of the control).

The searched solution U should also satisfy some measurability require-
ments in order to reflect the information structure of the original problem. As
a straightforward translation of the informational constraint in (6.1b), in the
discrete problem T. Pennanen requires that

UN � hN . (6.9)

Lemma 6.7. The condition (6.9) implies that U � YN .

Proof. Indeed, UN � hN implies that UN ◦ qW � hN ◦ qW (see (3.41)), and
hN ◦ qW ≡ ιY ◦hN ◦ qW since ιY is injective (see Proposition 3.41). The latter
is just YN (see (6.8)). �

Condition (6.9) implies that there exists a mapping γN : YN → U such
that UN = γN ◦hN . However, since YN is not necessarily measurable w.r.t. Y
(as shown by Example 6.6), the proposed U is not necessarily measurable
w.r.t. Y either, and, in this case, it would not be an admissible solution for
problem (6.1b). Therefore, Pennanen finally requires the following additional
condition:

YN � Y (6.10a)

which is equivalent (see Proposition 3.46) to

∃QY : imY → Y such that YN = QY ◦Y = QY ◦h . (6.10b)

With this condition, one then has that U � YN � Y , that is, U is now an
admissible solution for (6.1b).

Put together, conditions (6.8) and (6.10b) imply that

h ◦QW = QY ◦h . (6.11)
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Lemma 6.8. Equation (6.11) implies that QY (with domain imh) is a pro-
jection; hence, YN = QY ◦Y is a quantization of Y . Therefore, QY can be
factorized as ιY ◦ qY where qY : Y → YN and ιY is again the canonical injection
of YN into Y. Then, (6.11) is equivalent to

hN = qY ◦h ◦ ιW . (6.12)

Proof. We must show that QY ◦QY ◦h = QY ◦h. Indeed, with (6.11) used
repeatedly, and the fact that QW itself is a projection, one has that

QY ◦QY ◦h = QY ◦h ◦QW = h ◦QW ◦QW = h ◦QW = QY ◦h .

Now, with reference to the right-hand side of (6.8), (6.11) can be written as

ιY ◦hN ◦ qW = ιY ◦ qY ◦h , (6.13)

which is equivalent to

hN ◦ qW = qY ◦h ,

since ιY is injective, and this is again equivalent to (6.12) when composing
both sides of the above equation with ιW (which is injective) to the right
hand and remembering that qW ◦ ιW is nothing but the identity in WN . �

The situation is summarized as follows, and it is illustrated by Figure 6.5.
Given the noise W and the observation Y = h(W ),

• a quantized noise WN = QW ◦W is first defined;
• a discrete random variable YN = h ◦WN is next introduced;
• this discrete random variable is given the status of a quantized observation
by imposing Condition (6.10);

• the last two steps finally result in Condition (6.11).

Discussion

Equation (6.11) says that the quantized observation must be the observation
of the quantized noise. This condition is intuitively appealing. However, it is
unclear how one can ensure it in a systematic construction of a discretization
scheme in this general setting. In the particular case of non anticipativity con-
straints, Pennanen [110] proposed a procedure that we briefly discuss in §6.3.
What makes things rather locked in general is the initial requirement (6.8)
that the observation function hN in the discrete model should be intimately
related to the original observation function h. This is precisely the condition
we relax later on.

Equation (6.12) should be compared with Equation (6.7): this shows that
the choice of the mapping ι−1

Y
in the latter equation is nothing but the choice
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Y

U

Y

N

ιY

hN

γ
N

qW

= h

ιW

WN

Y

W U

UN

qY

YN

Fig. 6.5. Discretization according to Pennanen, stage 2

of the quantization map qY which defines the cells in Y (as long as the set of
centroids YN is already defined).

Observe that (6.8) implies that YN � WN whereas, by (6.10a), YN � Y ,
hence YN � WN ∧Y (see Chapter 3). Then, consider the following example.

Example 6.9. To stay close to the sequential situation considered by Pennanen
and still maintain simplicity, we consider (1.8) again. All sample trajectories
(wi

0, w
i
1) of the noise W = (W0,W1) are represented as dots in the square

W = [−1, 1]× [−1, 1] with coordinates (wi
0, w

i
1).

A quantization based on such a sampling may be obtained by drawing the
Voronoi tessellation corresponding to this set of dots (Figure 6.2 illustrates
the partition Ω/WN). On the other hand, h(w0, w1) = w0 ∈ Y = [−1, 1].
The partition Ω/Y corresponds to a decomposition of the square into all
vertical segments it contains. According to the way the greatest lower bound
of partitions is obtained (see §3.3.1), it is realized that Ω/(WN ∧Y ) is likely
to consist of the whole square as the single element, and this remains true
even when N goes to infinity. Otherwise stated, WN ∧Y remains stuck to the
class of bottom elements in the lattice of functions over Ω, namely the class
of constant functions. Since the “solution” U produced is constrained to be
measurable w.r.t. YN � WN ∧ Y (see Lemma 6.7), it cannot be better than
the solution in the class of open-loop controls. △

This example shows that some necessary conditions derived from Penna-
nen’s conditions (6.8)–(6.10) are not sufficient to ensure convergence of the
discrete problem solution towards that of the original problem as N goes to
infinity (convergence that Pennanen could prove however). Therefore, Pen-
nanen’s conditions are strong enough to avoid the pitfall described in the
previous example. The main practical difficulty is that the quantized obser-
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vation YN is not mastered directly (that is, a priori and directly derived from
Y by quantization, which would make things a lot easier to design).

Let us explain why condition (6.8), in fact, reflects a stochastic tree struc-
ture as depicted by Figure 1.5. To show this, one must imagine that in our
previous model, W represents a stochastic process {Ws}s=1,2, whereas Y

represents the same stochastic process truncated at the first stage, that is,
Y = W1.

5 The finite set WN is represented by N nodes: each such node car-
ries a pair of values (wi

1, w
i
2) for i = 1, . . . , N . The finite set YN corresponds to

the discrete representation of the truncated process W1. It is also represented
by a finite set of nodes corresponding to the distinct values found in YN : the
cardinality of this set is M , which is less than or equal to N ; each node carries
a value yj for j = 1, . . . ,M . Now, condition (6.8) says two things:

1. the set of N nodes at the second stage is partitioned into M disjoint
subsets, each subset being in relation with a node at the first stage: this is
the translation of YN � WN ; otherwise stated, there exists a mapping f

from {1, . . . , N} to {1, . . . ,M} which defines the preceding node of each
leaf in the tree;

2. moreover, yf(i) = wi
1 for i = 1, . . . , N according to (6.8); as a consequence,

it is not necessary to attach a pair of values (wi
1, w

i
2) to leaf i but attaching

wi
2 only is enough since wi

1 can already be read on the preceding node f(i)
of leaf i as the value yf(i).

It should be noticed that while the former item above involves only the en-
coding parts of the quantizations QW and QY (see §6.1.1) which determine
the topology of the tree, the latter also involves the decoding parts of those
quantizations, that is the numerical values of samples attached to nodes.

Equation (6.11) claims that h ◦QW � h. In a representation such as Fig-
ures 1.2 or 1.3, in which realizations of W are represented as dots in a
square, whereas Y = h(W ) is the corresponding abscissas of those dots,
the previous measurability condition says that if two dots are aligned verti-
cally (h(w) = h(w′)), then their quantized representations are also aligned
vertically (h ◦QW(w) = h ◦QW(w′)). This only leaves room for quantizations
of W which look like that of the left-hand side of Figure 6.6, with groups
of samples aligned vertically and corresponding cells also lined up vertically.
The right-hand side of the figure depicts the corresponding stochastic tree.
Figure 6.7 shows the Voronoi tessellation that would correspond to the same
sample set WN , but this is not permitted in Pennanen’s approach.

5 The following explanation can then be easily extended by considering W =
{Ws}s=1,...,T and Y = {Ws}s=1,...,t for any intermediate t < T . The trunca-
tion operator (which retains only the prefix of the process up to t) stands for the
observation function h of the general theory.
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Fig. 6.6. Noise quantization that leads to a stochastic tree
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Fig. 6.7. Voronoi tessellation corresponding to the samples of Figure 6.6

6.2.3 A Constructive Proposal

In this subsection, the formulation (6.1b) is considered anew, but Y may or
may not be a function h of W . In the latter case, a possible choice of Ω is
W× Y; in the former case, one can again choose Ω = W.

Remark 6.10. The following observation was already mentioned in Re-
mark 1.4. There is no fundamental difference between the situation when
Y is a function of W and the situation when it is not. Indeed, in the latter
case, one can redefine the exogeneous noise as the pair (Y ,W ) (this is the
new W ) and then, h is just the linear operator which extracts the first com-
ponent of this vector (whereas the cost function depends only on the second
component of this new W ).

It is more fundamental to realize that an optimal quantization of a pair of
random variables (Y ,W ) is generally not the Cartesian product of the two
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optimal quantizations of W and Y obtained separately (using their marginal
probability laws), even if they are independent random variables.6 ♦

First Version

The main departure from Pennanen’s approach is that, now, irrespective of
the fact that Y is, or is not, a function h of W , these two random variables
are quantized independently. Therefore, we introduce:

• qW : W → WN where WN is a finite subset of cardinality N of W; we
require that qW(w) = w whenever w ∈ WN ;

• ιW, the canonical injection of WN into W; then,
– qW ◦ ιW is the identity IWN

in WN ;
– QW = ιW ◦ qW is a quantization and QW ◦W is the quantized
noise WN ;

– W/qW = W/QW is a partition of W into N cells;
• qY : Y → YM where YM is a finite subset of cardinalityM of Y; we require
that qY(y) = y whenever y ∈ YM ;

• ιY, the canonical injection of YM into Y; then,
– qY ◦ ιY is the identity IYM

in YM ;
– QY = ιY ◦ qY is a quantization and QY ◦Y is the quantized observa-
tion YM ;

– Y/qY = Y/QY is a partition of Y into M cells.

Then, in the discretized problem, the decision variable U is subject to
the constraint U � YM , that is, there exists a feedback γM : YM → U such
that U = γM (YM ) = γM ◦ qY ◦Y . Of course, this constraint automatically
produces an admissible solution for the original problem. The situation is
illustrated by Figure 6.8 (compare with Figure 6.5).

At this stage, since there is no connection between WN and YM (even
if there is one between W and Y ), the appropriate Ω to consider in the
discretized problem is YM × WN — this finite set has a maximum of MN
elements — with the probability law transported from the original Ω to Y×W

by the mapping (qY, qW).
To make things more concrete, we consider an example.

Example 6.11. We remain in the context of Example 6.9, with a two-
dimensional W and with Y being the first coordinate W1; we use the same
representation as in Figure 6.6. The left-hand part of Figure 6.9 represents the
quantization of W (with N = 8). The middle part of that figure represents
the quantization of Y on the x-axis (with M = 5). Since W and Y are not

6 Considering two scalar random variables with uniform distributions over bounded
intervals, it can be checked that for the same number of cells, a pavement of a
large surface in the plane with hexagons is more efficient in terms of the criterion
(6.3) than a pavement with squares. The former cannot obviously be obtained as
the Cartesian product of two one-dimensional quantizations.
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Fig. 6.8. Independent quantization of W and Y

independent variables here, all the MN combinations of wi with yk are not
possible, that is, the probability law transported from W × Y to WN × YM

by (qW, qY) has only 21 non-zero atoms (out of 40): these are the probability
masses of the cells depicted in the right-hand side of Figure 6.9. An alterna-
tive representation is that of Figure 6.10 which depicts all possible pairs of
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Fig. 6.9. Independent quantizations of W and Y : an example

realizations of (YM ,WN) in the discrete model: contrary to the situation of
Figure 6.6, there is no longer a tree structure involved now. The formulation
of the discretized problem is as follows:

min
{uk}

∑

k∈{a,...,e}

8∑

i=1

pik j(uk, wi) (6.14)

in which pik is the probability weight of the cell ik (i = 1, . . . , 8 and k ∈
{a, . . . , e}) in the right-hand side of Figure 6.9. Again, only 21 of those pik

are not zero, but any approximation of the probability masses of the cells that
would converge asymptotically to the true values as N and M go to infinity
would also be acceptable. △
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Fig. 6.10. Possible pairs of observations and noises

Remark 6.12. Contrary to the scheme inspired by Pennanen’s work described
in §6.2.2, it should be clear that only the encoding part of QY matters here.
That is, only the cells on the horizontal axis in the middle part of Figure 6.9
are important, not the precise values taken by yk for k ∈ {a, . . . , e}. ♦

Remark 6.13. In application of Remark 6.3 to (6.14), for k ∈ {a, . . . , e}, the
approximation of E(j(U ,W ) | Y = yk) in the discrete problem is given by
the expression

1
∑

i∈I(k)

pik

( ∑

i∈I(k)

pik j(uk, wi)
)

, (6.15)

where I(k) is the subset of {1, . . . , 8} such that pik 6= 0. Therefore, not only
each subset I(k) must be non empty, but its cardinality should asymptoti-
cally go to infinity. That is, each vertical strip in Figure 6.9 should intersect
asymptotically an infinite number of Voronoi cells: generically, this should be
the case when the yk’s and wi’s are sampled independently and when their
numbers go to infinity. But this is not the case in the situation illustrated by
Figure 1.3 where the cardinality of each I(k) remains equal to 1 asymptoti-
cally, even when the number of samples went to infinity (see also §8.5.4 for a
related discussion). ♦

Second Version

In Example 6.11, there exists a mapping h such that Y = h(W ) (namely
Y = W1), but there is none which relates the quantized observation YM to
the quantized noise. Whenever Y = h(W ), there is a way to recover such a
mapping at the price of redefining the quantized noise.

As shown in Example 6.11 (see also the right-hand side of Figure 6.9),
as long as U � YM , the minimal partition of Ω generating a partition field
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with respect to which the random variable (U ,WN), hence also j(U ,WN),
becomes measurable is that associated with WN ∨ YM = QW ◦W ∨ QY ◦Y .
Under the assumption that Y = h(W ), this may be considered a partition
of W (that is, WN � W and YM � Y � W ; according to Proposition 3.7
and Figure 3.2, the partition on W is obtained by superposing the previous
partition defined by QW and that brought back from Y to W by the generally
multi-valued mapping h−1 — see the space W in the lower left-hand side
corner of Figure 6.11).

So, we introduce a new quantized noise Q′
W
(W ), such that Q′

W
(W ) ≡

QW ◦W ∨QY ◦Y (the symbol≡ is to be taken in the sense of Proposition 3.41).
Since the encoding part is already defined, in order to complete the definition
of Q′

W
, it remains to define the decoding part, which amounts to choosing

centroids in the cells depicted in the right-hand side of Figure 6.9. The new
quantized noise Q′

W
(W ) is denoted WNM , but N×M is just an upper bound

of the cardinality of the new discrete noise set. Notice that

• WN � WNM ≡ WN ∨ YM (the new quantized noise is “finer” that the
previous one);

• YM = QY ◦Y � QW ◦W ∨ QY ◦Y ≡ Q′
W

◦W , that is, YM � WNM ,
hence, by Proposition 3.46, there exists hNM : YM → WNM such that
YM = hNM (WNM ).

ιYqY

Y

W

YM

h

WNM

hNM

ι′
Wq′

W

Fig. 6.11. A refined noise quantization

Therefore, we are able to express the quantized observation YM as a func-
tion hNM of this finer quantized noise WNM . In Figure 6.11, Q′

W
is the com-

position ι′
W

◦ q′
W
, where q′

W
: W → WNM is such that q′

W
≡ Q′

W
and ι′

W
is the

canonical injection of WNM into W. By definition of hNM , we have that

QY ◦h = ιY ◦hNM ◦ q′
W

. (6.16)

This is similar to (6.13) and, as in Lemma 6.8, it can be proved that (6.16) is
equivalent to
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hNM = qY ◦h ◦ ι′W . (6.17)

Discussion

The connection between the original observation function h and that of the
discrete model hNM is weaker than it was in Pennanen’s approach: essentially,
we have nothing similar to (6.8) here.

Returning to Example 6.11, in order to completely define Q′
W
, we must

draw a dot in each cell of the right-hand side part of Figure 6.9. Those
dots represent 2-dimensional vectors wik (namely, the dots with coordinates
(wik

1 , wik
2 )) with i ∈ {1, . . . , 8} and k ∈ {a, . . . , e}, but not all pairs out of this

cartesian product are present (only 21 out of 40). This collection of vectors
{wik} is the set WNM . According to (6.17), hNM : WNM → YM is such that
hNM (wik) = yk with k ∈ {a, . . . , e}. But obviously, the precise values of those
yk play no particular role: what matters is the partition of Y generated by
YM (the encoding part), the codebook {yk}k∈{a,...,e} is not relevant (the only
constraint being that each dot belongs to its corresponding cell).

Therefore, since the codebooks of quantized noises and observations are
somewhat flexible, we may use this flexibility to try to get closer to Penna-
nen’s scheme. Graphically, we may try to move the dots yk within their cells
in Y, and simultaneously choose dots w1, . . . , w21 within the cells 1a, . . . , 8e
in the right-hand side of Figure 6.9 so that each dot representing a quan-
tized observation be vertically aligned with a subset of the dots representing
quantized noises as shown in Figure 6.6. Observe that this is not necessarily
possible: if we restrict our attention to the vertical strip labelled a, there is
no vertical line in this strip that crosses simultaneously the cells 1a and 6a.

Mathematically, the issue is that of choosing QY and QW (in which only
the encoding parts are important), so that it becomes possible, a posteriori,
to choose the decoding parts of QY and of Q′

W
(with the constraint that

Q′
W

≡ QW ∨QY ◦h) in such a way that (compare to (6.8))

h ◦Q′
W = ιY ◦hNM ◦ q′W (6.18a)

= QY ◦h , (6.18b)

the latter equation using (6.16).
At this moment, we do have that

QY ◦h ◦Q′
W

= QY ◦h , (6.19)

which is a weaker property than (6.18): indeed, by composing (6.16) with
Q′

W
= ι′

W
◦ q′

W
to the right, (6.19) is derived. But we do not know of a con-

structive method to ensure (6.18) itself.
In the next section, we briefly sketch the procedure proposed by Penna-

nen [110] in the particular case when informational constraints reduce to non
anticipativity constraints. This procedure can be related to a special Monte
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Carlo technique for approximating the expectation of a function of several in-
dependent random variables. However, we are going to show that this special
scheme has a rather bad rate of convergence when compared with the usual
Monte Carlo scheme. This is why it is important to be able to get rid of the
scenario tree structure as a way to translate informational constraints in the
discrete problem.

6.3 A Handicap of the Scenario Tree Approach

In this section, we explain Pennanen’s technique [110] to sample noise pro-
cesses (in the simplest case of two-stage white noise processes — see Assump-
tion 5.9) in order to obtain scenario trees,7 and we make the connection of this
technique to a particular way of numerically estimating the expectation of a
function of two independent random variables. We then show that this partic-
ular (unbiased) estimation technique is not efficient, in terms of the variance
of its error, w.r.t. the classical Monte Carlo estimation technique.

6.3.1 How to Sample Noises to Get Scenario Trees

As illustrated by Figure 6.6, scenario trees for two-stage stochastic processes
are related to the fact that dots in a two-dimensional space, which represent
sample trajectories, are grouped in vertical clusters. That is, there are several
trajectories which share common first-stage values. As discussed earlier, the
probability that this occurs naturally for continuous-valued stochastic pro-
cesses is zero when trajectories are generated by pseudo-random Monte Carlo
sampling using the probability law of the process. Therefore, the scenario tree
structure can be obtained

• either by manipulating a bunch of Monte Carlo samples (or scenarios
recorded in the real life) in order to force the tree structure,8 — but, then,
the original sample set must be altered in a way which is not necessarily
respectful of the underlying probability law;

• or by making use of special sampling procedures (assuming the underly-
ing probability distribution is known). The latter option is proposed by
Pennanen in [110]. We now give a sketch of this idea.

If the stochastic processW is a “white noise”, that is, the random variables
Wt, Wt+1, . . . , are all independent, then the procedure amounts to

• drawing N0 sample values wi
0, i = 1, . . . , N0, of W0 according to the prob-

ability distribution of this random variable;

7 Other references dealing with scenario tree generation will be mentioned at §7.4.1.
8 Optimal quantization (see §6.1.2) may be used to that purpose and many authors
proposed various techniques to build up such trees — see e.g. [113, 60, 70, 12].
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• for each such wi
0, obtaining N1 sample values wij

1 , j = 1, . . . , N1, by Monte
Carlo sampling according to the distribution of W1, and associating them

with that value wi
0 to form two-stage sample trajectories (wi

0, w
ij
1 ) (thus,

there are N0 ×N1 such trajectories);
• repeating this process over the whole time horizon.

Observe that the clusters of N1 values wij
1 associated with the wi

0’s may

be all identical (in which case, the notation wij
1 can be reduced to wj

1) or
different. We examine later on what is the impact of either choice.

If the stochastic process W is not a white noise, Pennanen assumes that
it can be modelled by a recurrent dynamic equation driven by a white noise.
Then, the above procedure is used for the driving white noise, and the sample
noise trajectories are then obtained by propagating these trajectories through
the dynamic equation.

In the rest of this section, to keep things simple, we limit ourselves to the
discussion of white noise processes.

6.3.2 Variance Analysis

As discussed throughout this chapter, the discretization of stochastic opti-
mization problems with SIS involves some sort of noise sampling as well as
the sound translation of informational constraints in the discrete problem for-
mulation. So far in this chapter, we have given attention to the latter aspect.
But it should be clear that the quality of approximation of the mathemati-
cal expectations (and conditional mathematical expectations, as underlined
in Remark 6.3) involved in the problem is also important. If the cost function
is badly approximated, one cannot expect that a good approximation of the
optimal solution can be derived from the discrete problem solution, what-
ever care is exercised about the other aspects (in particular, informational
constraints) of the problem.

In this subsection, we concentrate on this aspect of the approximation:
more precisely, we consider any real-valued function f of two scalar variables,
such that the mathematical expectation E

(
f(X ,Y )

)
, where X and Y are

independent random variables, makes sense. In relation with the previous dis-
cussion, f should be thought of as the cost function. Respectively, X and Y ,
should be interpreted as W0 and W1, the two first stages of a white noise
stochastic process. No decision variable appears here since we forget about
optimization to pay attention to the quality of approximation of the expecta-
tion. The discussion is limited to two-time stages only, but the generalization
to several time stages should be straightforward.

In a standard Monte Carlo procedure, N sample values (xi, yi) of the pair
of random variables (X ,Y ) are generated according to their joint probability
distribution, or they have been recorded from real data. An unbiased estimate
of E

(
f(X ,Y )

)
(which is denoted simply Ef for short) is provided by the

arithmetic mean
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1

N

N∑

i=1

f(xi, yi) . (6.20)

It is well known that the variance of this estimate is an O(1/N) when N is
the number of samples.9

In Pennanen’s procedure described in §6.3.1, Nx samples are generated
for X . With each such sample value xi, a group of samples yj with j ∈ J(i),
is associated: these samples are also generated by Monte Carlo sampling ac-
cording to the probability distribution of Y . To make things simpler (but this
is not essential), we assume that all such index sets J(i) have the same cardi-
nality Ny. Moreover, as suggested earlier, there are two options to consider:

option (a): Nx sample groups of cardinalityNy are generated independently;
option (b): the same group {yj}j∈J is associated with all samples xi.

Pictorially, those options are illustrated by Figure 6.12 (with Nx = Ny = 3).
In both cases, overall, Nx × Ny samples are used to produce the following

x1 x2 x3 x1 x2 x3

y11

y12

y31

y32

y33 

y13

y23

y22

y21

y1 

y3

y2

Fig. 6.12. Two ways of sampling to get scenario trees (option (a) left-hand side
and option (b) right-hand side)

estimate of Ef :

1

Nx ×Ny

Nx∑

i=1

∑

j∈J(i)

f(xi, yj) , (6.21)

where J(i) is indeed independent of i in option (b) (that is, J(i) = {1, . . . , Ny}
for all i), whereas, in option (a), the J(i)’s should be viewed as disjoint sub-
sets of indices to translate the fact that the Nx groups {yj}j∈J(i) have been
sampled independently.

9 For the notation O, see footnote 3 in Chapter 2.
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Clearly, the estimate (6.21) of Ef is also unbiased, and if we want to
compare it with (6.20) from the point of view of its variance, we must assume
that N = Nx ×Ny. We first study option (b). Recall that, in this option, all
subsets J(i) involved in (6.21) coincide with {1, . . . , Ny}.

Proposition 6.14. Given the value of N = Nx × Ny, with option (b), the
variance of estimate (6.21) is minimal when Ny = Nx and this variance is of

order O(1/Nx); therefore the variance is of order O(1/
√
N).10

Proof. Let J(i) = {1, . . . , Ny} for all i. The variance of the estimate (6.21) is

σ2 = E

((
1

NxNy

Nx∑

i=1

Ny∑

j=1

(
f(Xi,Y j)− Ef

)
)

×
(

1

NxNy

Nx∑

k=1

Ny∑

l=1

(
f(Xk,Y l)− Ef

)
))

. (6.22)

In this expression, the outer expectation is with respect to the probability
distributions of independent random variables {Xi}i=1,...,Nx

, {Xk}k=1,...,Nx
,

{Y j}j=1,...,Ny
and {Y l}l=1,...,Ny

(replicating X and Y ), the realizations of
which are the samples xi, xk, yj and yl used in the estimate.

If the expression (6.21) is expanded, this yields N2
xN

2
y products of random

variables (with zero mean) of the type

1

N2
xN

2
y

E

((
f(Xi,Y j)− Ef

)(
f(Xk,Y l)− Ef

))

. (6.23)

We split up this set of products into four subsets:

1. the subset for which i = k and j = l, of cardinality NxNy; for this subset,
all products of the type (6.23) are squares and their sum contributes to
σ2 (in (6.22)) for a term of order O(1/NxNy);

2. the subset for which i 6= k and j 6= l: the cardinality of this subset is
Nx(Nx − 1)Ny(Ny − 1); since this subset contains only products of ran-
dom variables of the type (6.23) which have zero mean and are mutually
independent, it contributes for 0 to (6.22);

3. the subset for which i = k but j 6= l, of cardinality NxNy(Ny − 1) that
we study later on;

4. symmetrically, the subset for which i 6= k but j = l of cardinality Nx(Nx−
1)Ny.

It can be checked that the sum of cardinalities of the four subsets is equal to
N2

xN
2
y , as it must be.

10 The authors are indebted to Prof. Benjamin Jourdain for preliminary results in
this direction.
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It remains to study the contribution of products in the third and fourth
subsets. Those products involve either the same Xi but different Y j and Y

l,
or symmetrically, the same Y

j , but different Xi and X
k. We only study the

former subset since conclusions also apply to the latter by symmetry. We first
prove that all terms of the type (6.23) such that X

i is the same but Y
j is

independent of Y l have nonnegative expectations. Indeed, with the short-hand
notation

E
X f := E

(
f(X ,Y )

∣
∣ X

)
,

one has that

E

((
f(Xi,Y j)− Ef

)(
f(Xi,Y l)− Ef

))

=

E

(

E
X

i
((

f(Xi,Y j)− E
X

i
f

︸ ︷︷ ︸

B
j

+E
X

i
f − Ef

︸ ︷︷ ︸

C

)

×
(
f(Xi,Y l)− E

X
i
f

︸ ︷︷ ︸

B
l

+E
X

i
f − Ef

︸ ︷︷ ︸

C

))
)

.

The independence of Y j and Y
l, and therefore ofBj andB

l, and the fact that

the latter variables have zero conditional means, imply that EX
i(
B

j
B

l
)
= 0.

Moreover, since C is Xi-measurable,

E
X

i
(Bj

C ) = E
X

i
(Bj)×C = 0 .

The same applies to E
X

i
(CB

l). The only nonzero term is thus the nonnega-

tive term E(C2), which is the variance of EX
i
f (generically of order O(1)).

Finally, the terms in the third and fourth subsets above contribute all

together for a nonnegative term of order O
((

(Nx − 1) + (Ny − 1)
)
/NxNy

)

∼
O(1/Nx + 1/Ny). This contribution is added to that of the first subset which
was O(1/NxNy). For the comparison of (6.20) and (6.21), we assume that
N = NxNy: for N given, the variance of the estimate (6.21) is minimal when

Nx = Ny =
√
N , and this variance is of order O(1/

√
N), to be compared with

O(1/N) of the standard Monte Carlo estimate (6.20). �

It is easy to figure out how this result extends to the case of T stages
instead of 2: the variance of the “tree” estimate (6.21) is of order O(1/ T

√
N)

instead of O(1/N) for (6.20). Needless to say, this quickly becomes a dramatic
loss of quality of the tree estimate as T keeps growing.

Consider now option (a). The calculations in the proof of Proposition 6.14
must be adapted in the following way. First, (6.21) is now valid with subsets
J(i) which must be considered as disjoint subsets (that is, the corresponding
subsets of random variables {Y j}j∈J(i) are independent). Consequently, (6.22)
must be replaced by
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σ2 = E

((
1

NxNy

Nx∑

i=1

∑

j∈J(i)

(
f(Xi,Y j)− Ef

)
)

×
(

1

NxNy

Nx∑

k=1

∑

l∈J(k)

(
f(Xk,Y l)− Ef

)
))

. (6.24)

Among the four subsets considered in the previous proof, the first and the
third ones have the same cardinalities as earlier and contribute to σ2 for the
same amounts as in that proof, namely, O(1/NxNy) and O

(
(Ny − 1)/NxNy

)

respectively. Since i 6= k implies that j 6= l (because J(i) ∩ J(k) should be
considered as empty), then the fourth subset (which earlier containedNx(Nx−
1)Ny elements) is now empty whereas the cardinality of the second subset
increases to Nx(Nx − 1)N2

y (that is, the elements of the fourth subset which
previously contributed for nonnegative terms are transferred to the second
subset whose terms contribute for 0). Finally, with option (a), the variance of
(6.21) is of order O(1/NxNy) + O

(
(Ny − 1)/NxNy

)
.

Under the constraint that N = NxNy (to make the comparison with (6.20)
possible), we reach the conclusion that the best (minimal) variance is obtained
when Ny = 1 and Nx = N . Notice that this is no longer a tree, but indeed
N independent scenarios, that is (6.20) and (6.21) actually coincide. This
just says that, from only the point of view of minimizing the variance of the
estimate of the cost function over the whole time horizon, the structure of N
independent scenarios is far better than a tree structure. But of course, one
should again recall Remark (6.3): if Ny = 1, the conditional expectation of the
cost (knowing W0) which serves as the objective function in the minimization
problem when choosing U0 is approximated with help of a single sample of
W1, which is very bad. To avoid this, we should have put a lower bound on
Ny in order to bound the variance of this conditional expectation, and in this
simple case, it is clear that, with the constraint N = NxNy, the best trade-
off between the variance of the estimate of the expected cost over the two-
stage horizon and the variance of the estimate of the conditional expectation
restrained to the second stage only is again to take Nx = Ny =

√
N .

The conclusion of this rough variance analysis is that the tree structure,
which is one way to represent informational (or simply, non anticipativity)
constraints, is not very efficient from the point of view of the variance of
estimates it provides. Therefore, we should avoid the tree structure and find
another way to translate the informational constraints in the discrete problem.
The methodology presented in §6.2.3 suggested that this is indeed possible. A
more concrete technique in the context of stochastic optimal control problems
is presented in Chapter 7.
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6.4 Conclusion

In this chapter, we have proposed a methodology to derive approximate finite-
dimensional versions of the generic stochastic optimization problem (6.1)
which involves static informational constraints (the so-called SIS — see §1.4).
This discretization stage should not only limit the computations to finite-
dimensional objects (probability measures, decision variables, etc.) but it
should also translate the original informational constraints in a way which
makes it possible to build up a feasible solution for the original problem af-
ter the discrete finite-dimensional problem has been solved. In addition, one
expects that the performance of this feasible solution approaches the true
optimal performance when the dimension of the approximate optimization
problem goes to infinity. This convergence issue has not been explicitly con-
sidered in this chapter and is deferred to Chapter 8.

A popular technique to formulate discrete optimization problems taking
care at least of non anticipativity constraints (the minimal form of infor-
mational constraints in multi-stage problems) is the so-called scenario tree
technique. Pennanen [109] proposed a complete study of this technique, in-
cluding the reconstruction of a feasible solution for the original problem and
its asymptotic convergence to the optimal solution. We have given a descrip-
tion of his approach using the language of quantization presented in the first
part of this chapter. We then have proposed other approaches which attempt
to relax some of the constraints imposed by Pennanen’s approach, and more
generally by the scenario tree technique. Indeed, as explained in the end of
the chapter, the convergence speed of this technique is seriously handicapped
by the variance of the expectation estimates it produces, which is typically in
O( T

√
N) when using N sample trajectories for a problem with T time stages.

This result is also mentioned by Shapiro [138] who uses large deviation tech-
niques to establish it.

The argument above provides motivation to eliminate the scenario tree
structure and to find alternative ways to account for informational constraints.
The approach described in this chapter is a first proposal in this new direction,
and it must be confirmed by the convergence study presented in Chapter 8.
Chapter 7 presents another approach, however, that is not directly compa-
rable with the one introduced here because they proceed along two different
paths. In this chapter, we have formulated a discretized optimization problem
which attempts to mimic the original problem and we have derived the pro-
posed solution from the resolution of this problem. In the next chapter, we
consider the optimality conditions of the infinite-dimensional original problem
(established in Chapter 5), and we propose discretization schemes in order to
approximately solve those conditions.
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