


2

Open-Loop Control: the Stochastic Gradient

Method

2.1 Introduction

The stochastic gradient method has a rather long history. The method founda-
tions were given by Robbins and Monro [128] on the one hand, and by Kiefer
and Wolfowitz [92] on the other. Later on, Polyak [119, 122] gave results about
the convergence rate. Based on this work, Dodu et al. [56] studied the opti-
mality of the stochastic gradient algorithm, that is, the asymptotic efficiency
of the associated estimator. An important contribution by Polyak [120, 121]
has been to combine stochastic gradient method and averaging techniques in
order to reach the optimal efficiency.

Such methods have also been developed in the framework of Stochastic
Approximation (SA) (see [97] for a review paper). The reference book by
Kushner and Clark [95] presents the Ordinary Differential Equation method
(ODE) in the nonconvex case, which makes it possible to perform a local
convergence analysis for general stochastic algorithms. Other reference books
are those of Duflo [58, 59] and again Kushner and Yin [96], including important
topics as asymptotic normality or ways to deal with constraints. The reader
is also referred to lecture notes by Delyon [53] giving a clear and detailed
presentation of the subject.

The aim of this chapter is to detail the main methods available in order to
analyze the behavior of stochastic gradient algorithms. After a brief discussion
about open-loop optimization problems in §2.2, we present

• the general idea of stochastic gradient methods, the associated probabilis-
tic framework, as well as “classical” theorems about almost-sure conver-
gence (Robbins-Monro) and rate of convergence (Central Limit Theorem)
in §2.3,

• a convergence result of the stochastic gradient algorithm in the framework
of the Auxiliary Problem Principle in §2.4,
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• the optimality analysis of the rate of convergence, that is, the optimal
efficiency provided by the use of a matrix gain, and also by the averaging
technique in §2.5,

• practical considerations about the numerical implementation of stochastic
gradient algorithms in §2.6.
In this chapter, we often make use of several notions and terms specific to

the optimization framework (proper function, lower semicontinuity, Lipschitz
continuity, differentiability, gradient, strong convexity, strong monotonicity,
coercivity, optimality conditions. . . ). The reader is referred to Appendix A
for the associated definitions and related properties.

2.2 Open-Loop Optimization Problems

We first discuss the notion of open-loop optimization, that is, the situation in
which the decision maker is only aware of the a priori probability distribution
of the random variables involved in the problem as mentioned in §1.2.2.

2.2.1 Problem Statement

Let (Ω,A,P) be a probability space and let W be a random variable defined
on Ω and taking its values in a measurable space (W,W). The probability
distribution P ◦W−1 of W is denoted by µ. Let U be a Hilbert space (with
scalar product 〈· , ·〉 and norm ‖·‖), and let Uad be a non empty closed convex
subset of U. We consider a real-valued measurable function j defined on U×
W. We denote by J(u) the expectation of the random variable j(u,W ) (we
assume that the expectation exists for all u ∈ Uad):

J(u) = E
(
j(u,W )

)
=

∫

Ω

j
(
u,W (ω)

)
dP(ω) =

∫

W

j(u,w) dµ(w) .

We assume that j is differentiable w.r.t. u, and that conditions for differen-
tiating under the integral sign hold true. This classical issue is addressed by
Integration Theory and can be found in [136, §3, Théorème 6.3.5] (see also
[133] for a similar result about subdifferentiation). Then J is differentiable,
its gradient is denoted by ∇J(u) and we have that

∇J(u) = E
(
∇uj(u,W )

)
, (2.1)

where ∇uj is the gradient of j w.r.t. u. We are interested in the following
optimization problem:

min
u∈Uad

J(u) . (2.2)

We consider here open-loop optimization problems, that is, problems in which
the decision variable u is chosen without further information about W than
its probability distribution.
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Under standard convexity and differentiability assumptions, provided that
we are able to compute the gradient of J for each u ∈ Uad, we may use a
gradient-like algorithm (such as steepest descent, conjugate gradient, quasi-
Newton, etc.) in order to compute the solution of Problem (2.2). The simplest
is the projected gradient algorithm which reads

u(k+1) = projUad

(
u(k) − ǫ∇J(u(k))

)
,

where ǫ is the gradient step size. Actually, this algorithm directly tackles
the deterministic optimization problem (2.2) whereas the stochastic aspect is
fully handled by the computation of the expectation involved in the expres-
sion (2.1) of ∇J(u(k)). However, this operation may be exceedingly costly if
not impossible when the dimension of the space W is large.

Consider Problem (2.2), and replace J(u) by its expression:

min
u∈Uad

E
(
j(u,W )

)
. (2.3)

A standard way to get around the difficulty of computing an expectation is to
use the Monte Carlo approach (see §B.7). Using this idea in our optimization
framework leads to replace Problem (2.3) by the following approximation

min
u∈Uad

1

k

k∑

l=1

j(u,wl) , (2.4)

where (w1, . . . , wk) is a realization of a k-sample ofW .1 Note that the gradient
of the cost function of Problem (2.4), namely

1

k

k∑

l=1

∇uj(u,w
l) ,

corresponds to a Monte Carlo approximation of the “true” gradient ∇J(u).
This approach is known as the Sample Average Approximation (SAA), which
is briefly presented in §2.5.3 (see [140, Chapter 5] for a detailed presentation).
A drawback of the formulation (2.4) is that the sample size k is fixed prior to
the resolution: one needs to solve a new optimization problem when enriching
the initial sample with new realizations.

The stochastic gradient method aims to overcome the two difficulties men-
tioned above (that is, computing the true expectation or choosing the size
of the sample prior to the resolution). In the manner of Sample Average
Approximation, it uses an “easily computable” approximation of the gradi-
ent ∇J based on a sampling of W . Moreover, the samples are incorporated

1 Recall that a k-sample of W is a sequence (W 1, . . . ,W k) of independent random
variables with the same probability distribution as W . See §B.7.2 for further
details.
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successively into the algorithm in order to produce a sequence of estimators
converging towards the solution of Problem (2.3). In a sense, iterations of the
gradient algorithm are also used to refine the Monte Carlo sampling process.
Because of this sequential point of view in the introduction of new samples, the
superscript l is now denoted (l) as an iteration index. The stochastic gradient
method is presented in §2.3.

2.2.2 Sample Approximation in Stochastic Optimization

Suppose that we have built an approximation of Problem (2.3) using a k-tuple
(w(1), . . . , w(k)) of elements of W related to the random variable W (see (2.4)
for an example). The solution u(k) of the approximated problem can be viewed
as a (measurable) function of that sequence:

u(k) = ϕ(k)(w(1), . . . , w(k)) .

The performance E
(
j(ϕ(k)(w(1), . . . , w(k)),W )

)
of the approximated solution

u(k) can also be viewed as a (measurable) function ψ(k) of the sequence
(w(1), . . . , w(k)). To alleviate the notation, we set:

J (k) = ψ(k)(w(1), . . . , w(k)) = E
(
j(ϕ(k)(w(1), . . . , w(k)),W )

)
. (2.5)

In the computation of J (k), it should be clear that the expectation operates on
the random variable W whereas the w(k)’s are considered as parameters (and
therefore, the result of this calculation is also a function of those parameters).
Suppose that those parameters are the result of random drawings: then J (k)

is the realization of a random variable defined on another probability space
that we are going to introduce now.

To be more specific about the approximation, suppose that the k-tuple
(w(1), . . . , w(k)) is a realization of a k-sample (W (1), . . . ,W (k)) of W . As
explained in §B.7.2, we have to deal with two different probability spaces: the
random variable W is defined on the canonical probability space (Ω,A,P)

whereas the k-tuple (W (1), . . . ,W (k)) is defined on (Ω̃, Ã, P̃), the infinite-
dimensional product of the probability spaces (W,W, µ):

(Ω̃, Ã, P̃) = (WN,W⊗N, µ⊗N) .

Of course, (W ,W (1), . . . ,W (k)) can be identified with a (k + 1)-sample,
so that all random variables can be considered as living in the same prob-
ability space (Ω̃, Ã, P̃). In such a setting, u(k) and J (k) are realizations
of the two random variables U (k) = ϕ(k)(W (1), . . . ,W (k)) and J(k) =
ψ(k)(W (1), . . . ,W (k)). Using Theorem B.22, we deduce from (2.5) that the
random variable J(k) may be written as a conditional expectation:

J(k) = E

(
j
(
ϕ(k)(W (1), . . . ,W (k)),W

) ∣∣∣ W (1), . . . ,W (k)
)
.
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In this text, we simplify our notation and denote the space (Ω̃, Ã, P̃)
by (Ω,A,P). Remember that such a space has to be sufficiently big to contain
an infinite-dimensional sample of W .

In order to assess the quality of the approximated problem, we need to
study the statistical properties of the estimators U (k) and J(k). For example,
the bias of the approximated optimal cost is evaluated by computing E(J(k))
and comparing it to the true optimal cost J♯ of Problem (2.3). It is important
to realize that the point we are interested in is the dependency of the solu-
tion w.r.t. the sampling. In this chapter, we mainly focus on the asymptotic
properties of the sequence {U (k)}k∈N (convergence and convergence rate).

2.3 Stochastic Gradient Method Overview

We now present the general method of the stochastic gradient algorithm, as
well as convergence results related to the method.

2.3.1 Stochastic Gradient Algorithm

Algorithm

The stochastic gradient algorithm applies to Problem (2.3) and consists in
devising a method where the optimization variable u evolves over the itera-
tions using the gradient of j evaluated at successive realizations of the random
variable W , rather than using the gradient of J . Otherwise stated, one uses
gradient iterations to perform the optimization task and, in the same pro-
cess, to visit successive realizations of W with the purpose of evaluating the
expectation as in a Monte Carlo technique.

Algorithm 2.1 (Stochastic Gradient Algorithm).

1. Pick up some u(0) ∈ Uad and choose a positive real sequence {ǫ(k)}k∈N.
2. At iteration k, draw a realization w(k+1) of the random variable W .
3. Compute the gradient of j w.r.t. u at point (u(k), w(k+1)) and update

u(k+1) by the formula: u(k+1) = projUad

(
u(k) − ǫ(k)∇uj(u

(k), w(k+1))
)
.

4. Set k = k + 1 and go to step 2.

Algorithm 2.1 corresponds to the numerical implementation of the stochastic
gradient method with a computer. The values w(k) involved in Algorithm 2.1
are drawn in such a way that the sequence (w(1), . . . , w(k)) is a realization of
a k–sample of W (the reader is referred to §B.7.4 for further details). This
assumption is of paramount importance in order to ensure that Algorithm 2.1
converges towards the solution of Problem (2.3). Note that we did not set a
stopping test in the previous algorithm. This point is discussed in §2.6.

In order to study the convergence properties of such an algorithm, it is
necessary to cast it in the adequate probabilistic framework. We thus consider
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a infinite-dimensional sample {W (k)}k∈N of W (as defined in §B.7.2). Step 3
of Algorithm 2.1 can be interpreted as an iterative relation involving random
variables, namely

U (k+1) = projUad

(
U (k) − ǫ(k)∇uj(U

(k),W (k+1))
)
. (2.6)

Each value u(k) computed by Algorithm 2.1 corresponds to a realization of the
random variable U (k). The projection in (2.6) is to be understood ω per ω.

Example: Estimation of an Expectation

Let us illustrate Algorithm 2.1 in the framework of statistical estimation,
more precisely as an application of the Monte Carlo method. Let W be a
real-valued integrable random variable defined on (Ω,A,P), and suppose we
want to compute an estimate of its expectation

E(W ) =

∫

Ω

W (ω) dP(ω) .

A way to do that is to draw a realization of a k-sample (W (1), . . . ,W (k))
of W and to compute the associated arithmetic mean. In terms of random
variables, the estimator of the expectation associated with the k-sample is

U (k) =
1

k

k∑

l=1

W (l) . (2.7)

By the strong law of large numbers (§B.7, Theorem B.27), the sequence of
random variables {U (k)}k∈N almost surely converges to E(W ). From (2.7),
we have that

U (k+1) =
1

k + 1

k∑

l=1

W (l) +
W (k+1)

k + 1

=
1

k

k∑

l=1

W (l) − 1

k + 1

(
1

k

k∑

l=1

W (l) −W (k+1)

)

= U (k) − 1

k + 1

(
U (k) −W (k+1)

)
.

Using the notations ǫ(k) = 1/(k + 1) and j(u,w) =
(
u − w

)2
/2, the last

expression of U (k+1) writes

U (k+1) = U (k) − ǫ(k)∇uj(U
(k),W (k+1)) . (2.8)

Recalling that the expectation of W may be interpreted as the value which
minimizes the dispersion of the random variable, namely
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E(W ) = argmin
u∈R

1

2
E
(
(u−W )2

)
, (2.9)

we conclude that the recursive form (2.8) of the Monte Carlo method exactly
matches the stochastic gradient algorithm applied to the optimization prob-
lem (2.9). In the present case, Uad is the whole space R so that projUad (·) is
the identity function on R.

This basic example makes it possible to enlighten some salient features of
the stochastic gradient method.

• The step size ǫ(k) = 1/(k + 1) goes to zero as k goes to infinity, whereas
the step size may be constant for deterministic optimization algorithms.
Note however that ǫ(k) goes to zero “not too fast”, that is,

∑

k∈N

ǫ(k) = +∞ .

Of course, it would be awkward for the series {ǫ(k)}k∈N to be convergent,
because it should be clear that the algorithm would converge to a limit
which depends on the initial point u(0) and on the sequence {ǫ(k)}k∈N

itself. For example, consider the case Uad = R and j(u,w) = |u| (hence
∇uj(u,w) = −1 for u < 0). Starting from u(0) < −1 with step sizes
ǫ(k) = 1/2k+1, Algorithm 2.1 leads to

u(k+1) = u(0) +

k+1∑

l=1

1

2l
, so that lim

k→+∞
u(k) = u(0) + 1 < 0 ,

whereas the solution of the optimization problem minu∈R |u| is u♯ = 0.
• The underlying convergence notion in this example is the one of the strong
law of large numbers, that is, almost sure convergence. It is thus reasonable
to expect such a convergence for the stochastic gradient algorithm (rather
than a weaker notion as convergence in distribution or convergence in
probability).

• As the central limit theorem applies to this example (Theorem B.28),
we can expect a similar result for the rate of convergence of the se-
quence {U (k)}k∈N generated by the stochastic gradient algorithm.

Probabilistic Considerations

Iteration k of the stochastic gradient method (2.6) can be represented by the
general relation

U (k+1) = R(k)
(
U (k),W (k+1)

)
. (2.10)

We assume that the random variable U (0) is constant, equal to u(0) ∈ Uad,
and that the mappings R(k) are measurable.
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• Let F(k) be the subfield generated by the k-sample (W (1), . . . ,W (k)):

F
(0) = {∅, Ω} , F

(k) = σ
(
W (1), . . . ,W (k)

)
.

The sequence {F(k)}k∈N is a filtration, that is, F(k) ⊂ F
(k+1).

• By induction on (2.10), U (k) is driven by (W (1), . . . ,W (k)). The random
variable U (k) is thus F(k)-measurable for all k.

• Defining the function ϕ(k) as

ϕ(k)(u) = E
(
R(k)(u,W )

)
,

using the fact that the random variables W (k) are independent and
that U (k) is F(k)-measurable, one obtains from Theorem B.22 that

E
(
U (k+1)

∣∣ F(k)
)
= E

(
R(k)(U (k),W (k+1))

∣∣ F(k)
)

= ϕ(k)
(
U (k)

)
,

that is, for almost every ω ∈ Ω,

E
(
U (k+1)

∣∣ F(k)
)
(ω) =

∫

Ω

R(k)
(
U (k)(ω),W (ω′)

)
dP(ω′) .

The conditional expectation of U (k+1) given F
(k) thus consists merely of

a standard expectation.
• As observed in the previous example, the candidate convergence notion
for studying (2.10) is the almost sure convergence. Note that the almost
sure convergence of the sequence {U (k)}k∈N towards a constant u♯ has the
following intuitive meaning: almost every run of Algorithm 2.1 produces
a sequence {u(k)}k∈N converging to u♯.

2.3.2 Connection with Stochastic Approximation

A classical problem considered in the Stochastic Approximation (SA) frame-
work is to determine the zero of a function h using noisy evaluations of this
function. Let U be the finite-dimensional Hilbert space R

n. We consider a
mapping h : U → U, and we assume that the observation of h(u) is perturbed
by an additive random variable ξ. The standard Stochastic Approximation
algorithm consists in determining the zero of h by the following recursive
formula:2

U (k+1) = U (k) + ǫ(k)
(
h(U (k)) + ξ(k+1)

)
. (2.11)

This algorithm is strongly related to the stochastic gradient algorithm. In-
deed, consider the minimization problem (2.3) and assume that the admissible
set Uad is equal to U. The projection onto Uad is, accordingly, the identity
operator, and the k-th iteration of the stochastic gradient algorithm writes

2 The positive sign in front of ǫ(k) in the update formula (2.11) is explained later on.
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U (k+1) = U (k) − ǫ(k)∇uj(U
(k),W (k+1)) . (2.12)

Defining the mapping h and the random variables ξ(k+1) as

h(u) = −∇J(u) , (2.13a)

ξ(k+1) = ∇J(U (k))−∇uj(U
(k),W (k+1)) , (2.13b)

the stochastic gradient recursion (2.12) is identical to (2.11). Note that the
problem of finding a point u♯ ∈ U such that h(u♯) = 0 is equivalent to solving
∇J(u♯) = 0, a necessary condition for u♯ to be a solution of Problem (2.2).

In the next two paragraphs, we deal with the Stochastic Approxima-
tion formulation and we present two important results about the sequence
{U (k)}k∈N generated by (2.11). In such a setting, a filtration {F(k)}k∈N is
given, and {ξ(k)}k∈N is a sequence of U-valued random variables. The random
variable U (0) is used to initiate the recursion (2.11).

Robbins-Monro Theorem

Here we focus on the convergence of the sequence {U (k)}k∈N of random vari-
ables generated by (2.11). According to the observations made about the
example considered in §2.3.1, the step sizes ǫ(k) should be positive and should
go to zero “not too fast”. We first specify such a behavior.

Definition 2.2. A positive real sequence {ǫ(k)}k∈N is a σ-sequence if it sat-
isfies the two properties

∑

k∈N

ǫ(k) = +∞ ,
∑

k∈N

(
ǫ(k)
)2
< +∞ .

We make the following assumptions on the different components involved
in (2.11).

Assumptions 2.3.

1. The random variable U (0) is F(0)-measurable.
2. The mapping h : U −→ U is continuous, such that

• ∃ u♯ ∈ R
n, h(u♯) = 0 and

〈
h(u) , u− u♯

〉
< 0, ∀u 6= u♯;

• ∃ a > 0, ∀u ∈ R
n, ‖h(u)‖2 ≤ a

(
1 + ‖u‖2

)
.

3. The random variable ξ(k) is F(k)-measurable for all k, and
• E
(
ξ(k+1)

∣∣ F (k)
)
= 0,

• ∃ d > 0, E
(
‖ξ(k+1)‖2

∣∣ F (k)
)
≤ d
(
1 + ‖U (k)‖2

)
.

4. The sequence {ǫ(k)}k∈N is a σ-sequence.

Remark 2.4. Assumption 2.3-2 implies that u♯ is the unique zero of h. ♦
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Remark 2.5. The stepsize ǫ(k) could be considered as the realization of a ran-
dom variable ǫ(k) satisfying Definition 2.2 P-a.s.. It would then be necessary
to add the assumption that ǫ(k) is measurable with respect to F

(k). ♦

Theorem 2.6 below is a particular case of the standard Robbins-Monro theo-
rem presented in [128] or in [59].

Theorem 2.6. Under Assumptions 2.3, the sequence {U (k)}k∈N of random
variables generated by (2.11) almost surely converges to u♯.

For a proof, see [59, §1.4].
Let us detail the connection between the assumptions we may formulate

about the initial problem (2.3) and the assumptions of Theorem 2.6. We as-
sume that the σ-field F

(k) is generated by
(
W (0), . . . ,W (k)

)
, so that we de-

duce from (2.13) that ξ(k) is F(k)-measurable. We assume that the function j
is strictly convex, coercive, continuously differentiable w.r.t. u and measurable
w.r.t. w. Then J is strictly convex, coercive and continuously differentiable.
The first part of Assumption 2.3-2 is related to these assumptions which en-
sure the existence and uniqueness of the solution of Problem (2.3), whereas
the first part of Assumption 2.3-3 is an immediate consequence of (2.13). As
for the second parts of Assumptions 2.3-2 and 2.3-3, they may be connected
with a linearly bounded gradient (LBG) assumption on j, that is,

∃c1 > 0 , c2 > 0 , ∀u ∈ R
n , ∀w ∈ W , ‖∇uj(u,w)‖ ≤ c1 ‖u‖+ c2 ,

which implies that (hint: use (a+ b)2 ≤ 2(a2 + b2))

∃ c3 > 0 , c4 > 0 , ∀u ∈ R
n , ∀w ∈ W , ‖∇uj(u,w)‖2 ≤ c3 ‖u‖2 + c4 ,

‖∇J(u)‖2 ≤ c3 ‖u‖2 + c4 .

These assumptions about the cost function j are natural in the convex opti-
mization context. In §2.4, we give a more general convergence result concern-
ing the stochastic gradient algorithm.

Remark 2.7. Theorem 2.6 can be extended to more general situations.

• As in Algorithm 2.1, a projection operator can be added to (2.11):

U (k+1) = projUad

(
U (k) + ǫ(k)

(
h(U (k)) + ξ(k+1)

))
.

Here Uad is a non empty closed convex subset of U.
• A “small” additional term R(k+1) can be added to (2.11):

U (k+1) = U (k) + ǫ(k)
(
h(U (k)) + ξ(k+1) +R(k+1)

)
.

Such a term may be interpreted as a bias on h(u) which vanishes asymp-
totically, as considered in the Kiefer-Wolfowitz algorithm [92].

The reader is referred to [58] and [53] for further details. ♦
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Rate of convergence

We now recall a central limit type theorem for the stochastic approximation
method, that is, a result about the asymptotic normality of the random vari-
ables U (k) generated by (2.11), together with an estimation of the rate of
convergence of such an algorithm. Here we need to be more specific about the
notion of σ-sequence and we give the following definition.

Definition 2.8. A positive real sequence {ǫ(k)}k∈N is a σ(α, β, γ)-sequence if
it is such that

ǫ(k) =
α

kγ + β
,

with α > 0, β ≥ 0 and 1/2 < γ ≤ 1.

An immediate consequence of this definition is that a σ(α, β, γ)-sequence is
also a σ-sequence.

We retain Assumptions 2.3 to ensure that the sequence {U (k)}k∈N almost
surely converges to u♯, and we make the following additional assumptions.

Assumptions 2.9.

1. The mapping h is continuously differentiable and has the following ex-
pression in a neighborhood of u♯

h(u) = −H(u− u♯) + O(
∥∥u− u♯

∥∥2) ,
where H is a symmetric positive-definite matrix.3

2. The sequence
{
E
(
ξ(k+1)(ξ(k+1))⊤

∣∣ F(k)
)}

k∈N
of conditional covariance

matrices almost surely converges to a symmetric positive-definite ma-
trix Γ .

3. There exists δ > 0 such that sup
k∈N

E
(
‖ξ(k+1)‖2+δ

∣∣ F(k)
)
< +∞.

4. The sequence {ǫ(k)}k∈N is a σ(α, β, γ)-sequence.
5. The square matrix (H − λI) is positive-definite, λ being defined as

λ =

{
0 if γ < 1 ,
1

2α
if γ = 1 .

Remark 2.10. If we refer back to the initial problem (2.3) where h = −∇J ,
we notice that H is the Hessian matrix of J at u♯

H = ∇2J(u♯) .

Moreover, since E
(
∇uj(u

♯,W )
)
= 0, the matrix Γ introduced in Assump-

tion 2.9-2 is equal to the covariance matrix of ∇uj evaluated at u♯

Γ = E

(
∇uj(u

♯,W )
(
∇uj(u

♯,W )
)⊤)

. ♦

3 The symbol O corresponds to the “Big-O” notation: f(x) = O
(

g(x)
)

as x → x0

if and only if there exist a positive constant α and a neighborhood V of x0 such
that |f(x)| ≤ α |g(x)|, ∀x ∈ V .
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The rate of convergence of the random variables U (k) generated by (2.11)
is given by Theorem 2.11 below. This theorem is a particular case of the one
presented in [58].

Theorem 2.11. Under Assumptions 2.3 and 2.9, the sequence of random
variables

{
(1/

√
ǫ(k))(U (k) −u♯)

}
k∈N

converges in law4 to a centered gaussian
distribution with covariance matrix Σ, that is,

1√
ǫ(k)

(
U (k) − u♯

)
D−→ N

(
0, Σ

)
, (2.14)

in which Σ is the solution of the so-called Lyapunov equation

(
H − λI

)
Σ +Σ

(
H − λI

)
= Γ . (2.15)

For a proof, see [58, Chapter 4]; see also [53] for a detailed step-by-step proof.

Remark 2.12. As already mentioned in Remark 2.7, the Robbins-Monro the-
orem 2.6 remains valid when one adds a projection operator to (2.11). This
is not true for Theorem 2.11 which only deals with unconstrained problems
(Uad = U), or at least with problems such that u♯ belongs to the interior of
the set Uad. ♦

For the sake of completeness, we recall the characterization of solutions of
Lyapunov equations. The following theorem can be found in [91, Theorem 4.6].

Proposition 2.13. Let H be a positive-definite matrix and Γ be a symmetric
positive-definite matrix. Then, the Lyapunov equation

HΣ +ΣH⊤ = Γ (2.16)

admits a unique symmetric positive-definite solution Σ given by:

Σ =

∫ +∞

0

e−tHΓe−tH⊤

dt . (2.17)

Remark 2.14. This result remains true if Γ is a nonnegative-definite matrix:
then, the matrix Σ given by (2.17) is a nonnegative-definite matrix, and is
the solution of Equation (2.16). ♦

In order to be more accurate about the convergence rate given by Theo-
rem 2.11, let us examine the respective influence of the coefficients α, β and γ
entering the expression of step sizes ǫ(k) defined in Assumption 2.9-4.

4 See §B.3.4 for this convergence notion and for the associated notation
D
−→.
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• The convergence result of Theorem 2.11 can be rephrased as

k
γ
2

(
U (k) − u♯

)
D−→ N

(
0, αΣ

)
, (2.18)

so that the coefficient β has in fact no influence on the convergence rate.
The way in which β alters the transient behavior of the algorithm is
explained in §2.6.2.

• It follows from (2.18) that the optimal choice for γ, that is, the value
achieving the greatest convergence rate in (2.14), is γ = 1. We recover the
“classical” rate 1/

√
k provided by a Monte Carlo estimator.

The next question is: which choice of α induces a covariance matrix αΣ
in (2.18) as small as possible (in the cone of positive-definite matrices)? This
problem is addressed in §2.5. Observe, for the time being, that the simplistic
reasoning which consists in taking α as small as possible in order to minimize
the covariance in (2.18) does not hold. Indeed, using the optimal value γ = 1,
the solution Σ of the Lyapunov equation (2.15) depends on λ and hence on α,
so that the covariance matrix αΣ is not a linear nor a monotonic function
of α. For example, in the scalar case (n = 1), H and Γ are real numbers and
the solution of (2.15) is

Σ =
αΓ

2αH − 1
.

Minimizing αΣ w.r.t. α leads to the optimal value α♯ = 1/H, which is com-
patible with the condition α > 1/2H imposed by Assumption 2.9-5.

2.4 Convergence Analysis

We now consider a generalization of the stochastic gradient algorithm 2.1
derived from the so-called Auxiliary Problem Principle, and we give a conver-
gence result for this generalized algorithm.

2.4.1 Auxiliary Problem Principle

Consider the following optimization problem

min
u∈Uad

J(u) . (2.19)

Let u♯ ∈ Uad be a solution of this problem. We recall (see Theorem A.10)
that the associated optimality condition writes

〈
∇J(u♯) , u− u♯

〉
≥ 0 , ∀u ∈ Uad . (2.20)

In the deterministic framework, the Auxiliary Problem Principle5 (APP) con-
sists in replacing Problem (2.19) by a sequence of auxiliary problems indexed

5 See [39] for a reference about the Auxiliary Problem Principle.



38 2 Open-Loop Control: the Stochastic Gradient Method

by k ∈ N. Let K be a real-valued differentiable function defined on U and
let ǫ be a positive constant. At iteration k, knowing u(k) ∈ Uad, consider the
auxiliary problem

min
u∈Uad

K(u) +
〈
ǫ∇J(u(k))−∇K(u(k)) , u

〉
. (2.21)

Its solution u(k+1) is used to formulate the (k + 1)-th auxiliary problem.
The interest of such a principle lies in the fact that the resolution of the

auxiliary problem (2.21) may be much easier to obtain than the solution of
the initial problem (2.19). Namely, the function K appearing in (2.21) is part
of the algorithm design (K is called a core). The choice of K being subject to
rather mild conditions, one can take advantage of a proper choice in order to
obtain many special features for Problem (2.21). The main properties of the
Auxiliary Principle Problem are examined hereafter.

• APP is consistent. Assuming that the sequence of solutions {u(k)}k∈N

converges to some u♯ and taking the limit in the optimality condition of
Problem (2.21)

〈
∇K(u(k+1)) + ǫ∇J(u(k))−∇K(u(k)) , u− u(k+1)

〉
≥ 0 , ∀u ∈ Uad ,

we obtain the optimality conditions (2.20), up to a factor ǫ, by cancellation
of the gradients ofK (we assume that∇K is continuous at u♯). This shows
that u♯ is a solution of Problem (2.19) at least in the convex case.

• APP encompasses numerous classical optimization algorithms. For ex-
ample, using a quadratic core K(u) = (1/2) ‖u‖2, Problem (2.21) writes

min
u∈Uad

1

2
‖u‖2 +

〈
ǫ∇J(u(k))− u(k) , u

〉
,

and its solution has the following closed-form expression

u(k+1) = projUad

(
u(k) − ǫ∇J(u(k))

)
.

We thus obtain the well-known projected gradient algorithm.
• APP allows for decomposition. Assume that the space U is the Cartesian
product of N spaces:

U =

N∏

i=1

Ui .

Assume, moreover, that the admissible set Uad is the Cartesian product
of N sets (Uad

1 , . . . , Uad
N ), with Uad

i ⊂ Ui. That is, the constraint u ∈ Uad

is equivalent to the set of N independent constraints ui ∈ Uad
i for the

components ui of u. If we choose a core function K additive according
to that decomposition of u, namely K(u) =

∑N
i=1Ki(ui), Problem (2.21)

becomes
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min
(u1,...,uN )∈Uad

1
×···×Uad

N

N∑

i=1

(
Ki(ui) +

〈
ǫ∇ui

J(u(k))−∇Ki(u
(k)
i ) , ui

〉)
.

This problem splits up into N independent optimization subproblems,
the i-th subproblem being

min
ui∈Uad

i

Ki(ui) +
〈
ǫ∇ui

J(u(k))−∇Ki(u
(k)
i ) , ui

〉
.

The reader is referred to [39, 41, 40] for a detailed description of the APP
(see also the more recent lecture notes [38]).

2.4.2 Stochastic Auxiliary Problem Principle Algorithm

Let us consider the optimization problem (2.3), that we repeat here for con-
venience

min
u∈Uad

J(u) , (2.22)

with J(u) = E
(
j(u,W )

)
. In order to mix the ideas of the Auxiliary Prob-

lem Principle and of the Stochastic Gradient Method, we first replace Prob-
lem (2.22) by the associated sequence of auxiliary problems, namely

min
u∈Uad

K(u) +
〈
ǫ∇J(u(k))−∇K(u(k)) , u

〉
.

Then, in each auxiliary problem, we replace the gradient of J by the gradient
of j evaluated at sampled realizations of W ; moreover, the “large” (constant)
step size ǫ must be replaced by “small” (going to zero as index k goes to
infinity) step sizes ǫ(k). The k-th instance of the stochastic auxiliary problem
is thus

min
u∈Uad

K(u) +
〈
ǫ(k)∇uj(u

(k), w(k+1))−∇K(u(k)) , u
〉
, (2.23)

w(k+1) being a realization of the random variable W . This results in the
following algorithm.

Algorithm 2.15 (Stochastic APP Algorithm).

1. Pick up some u(0) ∈ Uad and choose a positive real sequence {ǫ(k)}k∈N.
2. At iteration k, draw a realization w(k+1) of the random variable W .
3. Update u(k+1) by solving the auxiliary problem (2.23):

u(k+1) ∈ argmin
u∈Uad

K(u) +
〈
ǫ(k)∇uj(u

(k), w(k+1))−∇K(u(k)) , u
〉
.

4. Set k = k + 1 and go to step 2.

As already pointed out when devising Algorithm 2.1, the values w(k) involved
in Algorithm 2.15 are drawn in such a way that the sequence (w(1), . . . , w(k))
is a realization of a k–sample of W .
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Remark 2.16. With the choice K(u) = ‖u‖2 /2, the auxiliary problem (2.23)
becomes

min
u∈Uad

1

2
‖u‖2 +

〈
ǫ(k)∇uj(u

(k), w(k+1))− u(k) , u
〉
.

Its unique solution u(k+1) is given by

u(k+1) = projUad

(
u(k) − ǫ(k)∇uj(u

(k), w(k+1))
)
.

This relation precisely corresponds to the stochastic gradient iteration of Al-
gorithm 2.1. ♦

We now focus on the convergence analysis of the stochastic APP algo-
rithm 2.15. We restrict ourselves to the differentiable case, but everything
remains valid for subdifferentiable functions (see [45, 47] for further details).

2.4.3 Convergence Theorem

As in §2.3, we consider the stochastic APP algorithm 2.15 in terms of ran-
dom variables. Let {W (k)}k∈N be an infinite dimensional sample of W . The
auxiliary problem at iteration k is

min
u∈Uad

K(u) +
〈
ǫ(k)∇uj(U

(k),W (k+1))−∇K(U (k)) , u
〉
, (2.24)

and the minimization in (2.24) is to be understood ω per ω. Assume that the
set-valued random mapping corresponding to the argmin of Problem (2.24)
admits a measurable selection U (k+1) (this is justified in the proof of the
following theorem). The convergence properties of the sequence of random
variables {U (k)}k∈N generated by (2.24) and the connection with the initial
problem (2.22) are stated in the following theorem.

Theorem 2.17. We make the following assumptions.

1. Uad is a non empty closed convex subset of a Hilbert space U.
2. The function j : U × W → R is a normal integrand,6 and E

(
j(u,W )

)

exists for all u ∈ Uad.
3. The function j(·, w) : U → R is proper, convex, lower semi-continuous

and differentiable on an open subset containing Uad, for all w ∈ W.7

4. The function j(·, w) has linearly bounded gradients (LBG), uniformly in w:

∃c1 > 0 , ∃c2 > 0 , ∀w ∈ W , ∀u ∈ Uad , ‖∇uj(u,w)‖ ≤ c1 ‖u‖+ c2 .

5. The function J is coercive on Uad.8

6 See Definition 8.22. This implies that j(u,W ) : Ω → R is measurable ∀u ∈ Uad.
7 Note that the semi-continuity of j(·, w) stems from the fact that j is a normal
integrand.

8 See (A.5) for the meaning of this term.
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6. The core function K is proper, strongly convex with modulus b, lower
semi-continuous and differentiable on an open subset containing Uad.

7. The sequence {ǫ(k)}k∈N is a σ-sequence.

Then the following conclusions hold true.

1. Problem (2.22) has a non empty set of solutions U ♯.
2. Problem (2.24) has a unique solution U (k+1).
3. The sequence of random variables {J(U (k))}k∈N almost surely converges

to min
u∈Uad

J(u).

4. The sequence of random variables {U (k)}k∈N is almost surely bounded,
and every cluster point of a realization of this sequence belongs to the
optimal set U ♯.

At last, if J is strongly convex, U ♯ is a singleton {u♯} and the sequence
{U (k)}k∈N almost surely converges to the unique solution u♯ of Problem (2.22).

Proof. The proof of Theorem 2.4.3 is rather long and technical. This is the
reason why it has been postponed to the end of the present chapter, and we
just give here a sketch of the proof. The proof of the first two statements is
based on classical theorems in the field of convex optimization. The property
that the solution U (k+1) of Problem (2.24) is a random variable (hence, mea-
surable) is a consequence of the fact that the criterion j is a normal integrand.
The proof of the last two statements involves four steps.

1. Select a Lyapunov function Λ. Let u♯ ∈ U ♯ be a solution of (2.22) and
consider the function

Λ(u) = K(u♯)−K(u)−
〈
∇K(u) , u♯ − u

〉
.

From the strong convexity of K, we have that

∥∥U − u♯
∥∥2 ≤ 2

b
Λ(U ) , P-a.s. . (2.25)

2. Bound from above the variation of Λ. The optimality conditions for
the auxiliary problem (2.24) evaluated at U = U (k) together with the
strong convexity of K imply that

∥∥U (k+1) −U (k)
∥∥ ≤ ǫ(k)

b

∥∥∇uj(U
(k),W (k+1))

∥∥ , P-a.s. . (2.26)

From the LBG assumption and using (2.25), we obtain that there exist
positive constants α and β such that

∥∥∇uj(U
(k),W (k+1))

∥∥2 ≤ αΛ(U (k)) + β , P-a.s. . (2.27)

All these inequalities are combined to obtain the following inequality:
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E
(
Λ(U (k+1))

∣∣ F(k)
)
≤ (1 + α(k))Λ(U (k)) + β(k)−

ǫ(k)
(
J(U (k))− J(u♯)

)
, P-a.s. . (2.28)

with α(k) = (α/b)(ǫ(k))2 and β(k) = (β/b)(ǫ(k))2.
3. Prove the convergence. A straightforward application of the Robbins-

Siegmund theorem 2.27 shows that the sequence
{
Λ(U (k))

}
k∈N

almost
surely converges to a finite random variable Λ∞, and that the series∑
ǫ(k)
(
J(U (k))− J(u♯)

)
almost surely converges.

4. Characterize the sequence limits. The convergence of
{
Λ(U (k))

}
k∈N

together with (2.27) imply that the sequence
{
∇uj(U

(k),W (k+1))
}
k∈N

is almost surely finite. Thank to (2.26), Lemma 2.28 applies, so that the
sequence {J(U (k))}k∈N almost surely converges to J(u♯). From (2.25),
we obtain that the sequence {U (k)}k∈N is also almost surely finite: by a
compactness argument, there exist subsequences converging to elements
belonging to the set U ♯. �

2.4.4 Conclusions

We have given a general convergence theorem for the stochastic Auxiliary
Problem Principle method. This theorem encompasses the standard stochastic
gradient algorithm (obtained using the core function K(u) = ‖u‖2/2), as well
as the so-called matrix-gain algorithm (the core function being in this case
K(u) = 〈u ,Au〉 /2, A being a positive definite matrix).

From a theoretical point of view, Theorem 2.17 has been proved under
natural assumptions. As a matter of fact, the convexity and differentiabil-
ity assumptions are standard in the framework of convex optimization. Note
moreover that, even if an explicit convexity property is not required in the
Robbins-Monro theorem 2.6, Assumption 2.3-2 plays in fact a very similar
role.

As far as decomposition is concerned, the Auxiliary Problem Principle
opens this possibility as a way to solve large stochastic optimization problems
of the type (2.3).

2.5 Efficiency and Averaging

In this section we focus on the convergence rate of the stochastic gradient
method. We use the setting considered in §2.3.2 for a non constrained stochas-
tic optimization problem, that is,

min
u∈Rn

J(u) , (2.29)

with J(u) = E
(
j(u,W )

)
. Using a σ(α, β, γ)-sequence {ǫ(k)}k∈N, that is, step

sizes ǫ(k) of the form α/(kγ + β), we know from Theorem 2.11 that
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k
γ
2

(
U (k) − u♯

)
D−→ N

(
0, αΣ

)
.

It has already been noted that the choice γ = 1 leads to the largest conver-
gence rate. We want now to improve the convergence speed by minimizing the
covariance matrix αΣ w.r.t. the symmetric positive-definite matrix cone.

2.5.1 Stochastic Newton Algorithm

In deterministic optimization, it is well-known that pre-multiplying the gra-
dient of the function to be optimized by a (cleverly chosen) matrix can signif-
icantly improve the algorithm behavior. For example, using the inverse of the
Hessian matrix leads to the Newton algorithm, which yields a (local) quadratic
convergence rate whereas the convergence rate of the gradient method is only
linear. It is of course unrealistic to expect such a nice result in the field of
stochastic approximation because the step size ǫ(k) goes to zero as k goes
to infinity, but we can expect some improvement of the method by a proper
preconditioning of the gradient.

In order to apply this idea to the stochastic gradient method, we choose a
symmetric positive-definite matrix A of dimension n. The step sizes ǫ(k) are
then built using the optimal choice γ = 1 and replacing the scalar gain α by
the matrix gain A. Using these choices, the stochastic gradient iteration (2.12)
becomes

U (k+1) = U (k) − 1

k + β
A∇uj(U

(k),W (k+1)) ,

which in the Stochastic Approximation setting (2.11)—(2.13) writes

U (k+1) = U (k) +
1

k + β

(
Ah(U (k)) +Aξ(k+1)

)
. (2.30)

The results stated in §2.3.2 are thus available, provided that we make use of
modified data, namely a mapping Ah, noises Aξ(k) and step sizes 1/(k + β).
In the context of (2.30), Assumption 2.9-5 reads: AH − I/2 is a positive-
definite matrix. Theorem 2.11 applies, so that the sequence {U (k)}k∈N gener-
ated by (2.30) is such that

√
k
(
U (k) − u♯

)
D−→ N

(
0, ΣA

)
. (2.31)

The asymptotic covariance matrix ΣA is the unique solution of

(
AH − I

2

)
ΣA +ΣA

(
HA− I

2

)
= AΓA , (2.32)

H and Γ being respectively the Hessian matrix of J and the covariance matrix
of j, both evaluated at u♯. Let CH be the set of symmetric positive-definite
matrices A, such that AH−I/2 is a positive-definite matrix. The next theorem
characterizes the optimal choice for the gain matrix A over the set CH .
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Theorem 2.18. The choice A♯ = H−1 for the matrix gain A in (2.30) mini-
mizes the asymptotic covariance matrix ΣA defined by (2.32) over the set CH ,
that is, (ΣA − ΣA♯) is a nonnegative-definite matrix for all A ∈ CH . The
expression of the minimal asymptotic covariance matrix is

ΣA♯ = H−1ΓH−1 .

Proof. We look for the asymptotic covariance matrix ΣA appearing in the
Lyapunov equation (2.32) in the equivalent form

ΣA = H−1ΓH−1 +∆A .

Plugging this expression in (2.32) yields

(
AH − I

2

)
∆A +∆A

(
HA− I

2

)
=
(
A−H−1

)
Γ
(
A−H−1

)
.

The matrix ∆A thus satisfies another Lyapunov equation, the right-hand side
of which is a nonnegative-definite matrix whatever the choice of A. According
to Proposition 2.13 and Remark 2.14, the solution∆A is a nonnegative-definite
matrix, with ∆A = 0 if A = H−1. We deduce that the inequality ΣA ≥
H−1ΓH−1 (in the sense of symmetric nonnegative-definite matrices) is valid
for any matrix A ∈ CH , the equality being obtained for the optimal value A♯ =
H−1 ∈ CH . �

Remark 2.19. The gain H−1 corresponds to the inverse of the Hessian matrix
of J evaluated at u♯, hence the name “Stochastic Newton Algorithm” given
to (2.30) with the optimal gain choice. Note, however, that the step sizes
associated with the stochastic algorithm have a length 1/k, whereas the length
is equal to 1 in the deterministic Newton algorithm. This is the reason why
the convergence speeds are essentially different:

• in the deterministic case, the use of the Newton algorithm leads to a
quadratic convergence speed (that is a2k, with |a| < 1),

• whereas in the stochastic case, the convergence speed of both the scalar
and the matrix gain algorithms is a/

√
k.

In the stochastic case, the improvement provided by using a matrix gain arises
from a better multiplicative constant9 and not from the speed

√
k. ♦

We give the following definition, characterizing algorithms providing the
same asymptotic convergence rate as the stochastic Newton algorithm.

Definition 2.20. A stochastic gradient algorithm is Newton-efficient if the
sequence {U (k)}k∈N it generates has the same asymptotic convergence rate as
the stochastic Newton algorithm, namely

9 in fact a better covariance matrix
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√
k
(
U (k) − u♯

)
D−→ N

(
0, H−1ΓH−1

)
.

According to this terminology, the iterates U (k) generated by such an algorithm
are asymptotically unbiased Newton-efficient estimators of u♯.

We have seen that Newton-efficient algorithms are in some sense optimal
in the stochastic gradient algorithms class. A natural question then arises.
How to implement a Newton-efficient stochastic algorithm? The problem we
have to tackle is the following: the implementation of the stochastic Newton
algorithm requires the prior knowledge of the optimal gain H−1, that is, the
Hessian matrix of J at the solution u♯ we are looking for! Rather than approx-
imating H−1 as the algorithm runs, we now introduce an averaging method
leading to a Newton-efficient algorithm.

2.5.2 Stochastic Gradient Algorithm with Averaging

In order to overcome the difficulty of implementing a Newton-efficient stochas-
tic algorithm, in [120, 121], Polyak proposed a modification of the standard
stochastic gradient method which consists in adding an averaging stage in the
algorithm. More precisely, assuming that the admissible set Uad is equal to
the whole space U, the standard stochastic iteration

U (k+1) = U (k) − ǫ(k)∇uj(U
(k),W (k+1)) , (2.33)

is replaced by

U (k+1) = U (k) − ǫ(k)∇uj(U
(k),W (k+1)) , (2.34a)

U
(k+1)
M =

1

k + 1

k+1∑

l=1

U (l) . (2.34b)

The first stage (2.34a) is identical to (2.33), whereas the aim of the second
stage (2.34b) is to compute the arithmetic mean of the iterates U (k) obtained
at the first stage. An equivalent recursive form for stage (2.34b) is

U
(k+1)
M = U

(k)
M +

1

k + 1

(
U (k+1) −U

(k)
M

)
. (2.34c)

The algorithm associated with this averaging idea is summarized as follows.

Algorithm 2.21 (Stochastic Gradient Algorithm with Averaging).

1. Select some u(0) ∈ Uad and choose a positive real sequence {ǫ(k)}k∈N.
2. At iteration k, draw a realization w(k+1) of the random variable W .
3. Compute the gradient of j w.r.t. u at point (u(k), w(k+1)), and up-

date u(k+1) by formula: u(k+1) = u(k) − ǫ(k)∇uj(u
(k), w(k+1)).

4. Update u
(k+1)
M by formula: u

(k+1)
M = u

(k)
M + 1

k+1

(
u(k+1) − u

(k)
M

)
.

5. Set k = k + 1 and go to step 2.



46 2 Open-Loop Control: the Stochastic Gradient Method

As before, the value w(k) involved in Algorithm 2.21 is such that the se-
quence (w(1), . . . , w(k)) is a realization of a k-sample of W .

Remark 2.22. Observe that u
(k)
M is not recycled in the algorithm, that is, the

stochastic gradient is evaluated at u(k) and not at u
(k)
M . This u

(k)
M is just an

additional output of the algorithm which does not influence its dynamics. ♦

By Cesàro’s lemma, the almost sure convergence of the sequence {U (k)}k∈N

implies the almost sure convergence of the averaged sequence {U (k)
M }k∈N. But

the salient feature of the averaged recurrence (2.34) is its asymptotic conver-
gence speed. We use here similar assumptions as those made for Theorem 2.11,
but we now suppose that the exponent γ is strictly smaller that 1, replacing
Assumption 2.9-4 by

Assumption 2.23.

The sequence {ǫ(k)}k∈N is a σ(α, β, γ)-sequence, with 1/2 < γ < 1.

According to Theorem 2.11, with γ < 1, the convergence speed achieved by
the sequence {U (k)}k∈N is strictly smaller than 1/

√
k, so that the associated

convergence rate is not optimal. Better convergence properties are, however,

obtained regarding the averaged sequence {U (k)
M }k∈N, as shown by the follow-

ing theorem.

Theorem 2.24. Under Assumptions 2.3 and 2.9, where Item 2.9-4 is replaced
by Assumption 2.23, the averaged stochastic gradient algorithm is Newton-
efficient: √

k
(
U

(k)
M − u♯

)
D−→ N

(
0, H−1ΓH−1

)
.

For a proof, see [58, Chapter 4].
We are thus able to easily implement a Newton-efficient stochastic gradient

algorithm. The averaged stochastic gradient algorithm is also referred to as the
robust approach in Stochastic Approximation. Such a terminology is justified
in §2.6.

2.5.3 Sample Average Approximation

As illustrated by Equation (2.33) or (2.34a), the random variables W (k) are
incorporated one at a time in the different versions of the stochastic gradient
algorithm. Such iterative methods belong to the Stochastic Approximation
approach (SA). There is another method, called the Sample Average Approxi-
mation (SAA), which makes use of all the W (k) at once. As already mentioned
in §2.2.1, the Sample Average Approximation method consists of replacing the
expectation to be minimized by a Monte Carlo approximation. This approach
is widely used in stochastic optimization for large classes of one-stage and
multi-stage problems, and there is an extensive literature on Sample Average
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Approximation. For references on the issue of convergence10 treated in the
framework of epi-convergence, see, for example, [61] and [5]. The issue of epi-
convergence of the Sample Average Approximation method is also discussed
in §8.4 of this book. Central Limit Theorem-like results under regularity con-
ditions are also available ([61] and [137]), as well as results based on large
deviations theory ([139]). See also [140, Chapter 5] for an overview of the
method, and [107] for a comparison between the Sample Average Approxima-
tion method and the Stochastic Approximation approach.

Consider Problem (2.2), and replace J(u) by its Monte Carlo approxima-
tion J(k)(u) obtained using a k-sample (W (1), . . . ,W (k)) of W :

J(k)(u) =
1

k

k∑

l=1

j(u,W (l)) .

The Sample Average Approximation method consists of minimizing J(k)(u)
for some ω ∈ Ω:

min
u∈Uad

1

k

k∑

l=1

j
(
u,W (l)(ω)

)
. (2.35)

The set of minimizers of Problem (2.35) is denoted by

Υ (k)(ω) = argmin
u∈Uad

1

k

k∑

l=1

j
(
u,W (l)(ω)

)
.

The properties of measurability, convergence and convergence rate of se-
quences {U (k)}k∈N such that U (k)(ω) ∈ Υ (k)(ω) are given in [61]. Here, we
just recall the main result concerning the convergence rate of such sequences
[61, Theorem 4.8]. Among various technical assumptions,11 it is assumed that

• the solution u♯ of Problem (2.2) is unique and belongs to the interior
of Uad,

• the function J is twice continuously differentiable with nonsingular Hes-
sian H at u♯,

• the sequence of random variables
{√

k ∇uJ
(k)(u♯)

}
k∈N

converges in law
to a centered gaussian distribution with covariance matrix Γ .

Then, there exists a sequence
{
U (k)

}
k∈N

of minimizers of (2.35) such that

√
k
(
U (k) − u♯

)
D−→ N

(
0, H−1ΓH−1

)
.

Under mild technical assumptions, the matrix Γ is the covariance matrix
of j evaluated at u♯ (recall that E

(
∇uj(u

♯,W )
)
= 0):

10 consistency in the terminology of Statistics
11 See [61, §4] for further details.
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Γ = E

(
∇uj(u

♯,W )
(
∇uj(u

♯,W )
)⊤)

.

The asymptotic covariance matrix obtained in that case is thus equal to the
optimal covariance matrix obtained when using the stochastic Newton algo-
rithm described in §2.5.1: the sequence {U (k)}k∈N generated by the Sample
Average Approximation (2.35) is Newton-efficient.

2.6 Practical Considerations

In order to successfully implement a stochastic gradient algorithm, one has to
keep in mind some typical difficulties that we comment upon now.

2.6.1 Stopping Criterion

A first question is related to the convergence assessment of the stochas-
tic gradient algorithm. Of course, a stopping test based on the difference
norm ‖u(k+1) − u(k)‖ cannot be used, since this difference is forced to zero
because of the assumptions on the step sizes ǫ(k). Moreover, the norm of the
“descent” direction ‖∇uj(u

(k), w(k+1))‖ does not give any information about
convergence since what is minimized is J .

However, the expectation of the random variable ∇uj(U
(k),W (k+1)) con-

verges towards the true gradient ∇J(u♯) at the optimum, and is accordingly
usable to test the convergence. An estimation of ∇J(u♯) being given by

(
k∑

l=1

ǫ(l)

)−1(
k∑

l=1

ǫ(l)∇uj(u
(l), w(l+1))

)

it would be possible to test whether a certain degree of convergence has been
reached.

A common practice consists of fixing a given — sufficiently large — num-
ber of iterations, and to check (through plots representing the evolution of
quantities related to the problem: components or norm of the variables, of the
gradient. . . ) whether convergence is achieved. This is a major difference with
the deterministic case for which stopping criteria are usually available.

2.6.2 Tuning the Standard Algorithm

A fundamental issue pertains to the choice of the step sizes ǫ(k). In order to
satisfy the assumptions of the convergence theorem 2.6, it seems reasonable
to take ǫ(k) shaped as 1/kγ, with 1/2 < γ ≤ 1. This is why taking a σ(α, β, γ)-
sequence is quite natural. The three coefficients α, β and γ, entering the choice
of ǫ(k) are determined according to the following guidelines.
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• From Theorem 2.11, the optimal convergence rate is reached for γ = 1,
leading to the well-known 1/

√
k rate of the Monte Carlo approximation.

• According to (2.18), the multiplicative coefficient α also plays a role in the
asymptotic behavior. From Equation (2.15), with λ = 1/(2α), it is easy to
figure out that the covariance matrix αΣ asymptotically grows as α goes
to infinity. On the other hand, using a too small value of α generates small
gradient steps, which may exceedingly slow down the convergence.12 The
choice of α thus corresponds to a trade-off between stability and precision.

• Ultimately, the coefficient β makes it possible to regulate the transient
behavior of the algorithm. During the first iterations, the term kγ may
be ignored w.r.t. β if this is chosen large enough. The coefficient ǫ(k) is
approximately equal to α/β, which thus corresponds to the initial gradient
step size. If α/β is too small, the transient phase may be slow. On the
contrary, taking a too large ratio may lead to a numerical burst during
the first iterations. Note that a first guess for the ratio α/β is given by
the step size to be used by the gradient method applied to the underlying
deterministic problem.

Let us illustrate the influence of parameter α with the help of a quadratic
Gaussian example. The optimization problem under consideration is

min
u∈R10

E

(1
2
u⊤Au+W ⊤u

)
,

where A is a symmetric positive definite matrix, W being a R
10-valued Gaus-

sian random variable with expectation m and covariance matrix Γ . The so-
lution of this problem is obviously u♯ = −A−1m. The classical Monte Carlo
estimator Û (k) of u♯, namely

Û
(k)

= − 1

k

k∑

l=1

A−1W (l) , (2.36)

is an efficient estimator of u♯, that is, its normalized variance reaches the
Cramer-Rao lower bound (see e.g. [89] for details):

kVar
(
Û

(k))
= A−1ΓA−1 . (2.37)

Using step sizes ǫ(k) = α/(k + β), the stochastic gradient iteration writes

12 From Assumption 2.9-5, the condition α > 1/(2c) is required, c being the strong
convexity modulus of J . It is easy to produce a simple problem with extremely
slow convergence in the case when this condition is not satisfied. For example, with
j(u, w) = (1/2)u2 (deterministic cost function such that c = 1), with ǫ(k) = 1/(5k)
and starting from u(0) = 1, the solution obtained after one billion iterations is
about 0.015, hence relatively far from the optimal solution u♯ = 0 (see [107] for
details).
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U (k+1) = U (k) − α

k + β

(
AU (k) +W (k+1)

)
. (2.38)

Figure 2.1 displays four runs of the algorithm for different values of α
(namely α = 0.3, 1.0, 5.0 and 10.0), the ratio α/β being constant and
equal to 0.1. For each run, we have plotted the Monte Carlo estimator
(k 7→

∥∥û (k) − u♯
∥∥ — black curve) and the stochastic gradient algorithm esti-

mator (k 7→
∥∥u(k) − u♯

∥∥ — light gray curve), where û (k) and u(k) correspond

to realizations of the random variables Û (k) and U (k) respectively. Obviously,
a “small” value of α = 0.3 (upper left-hand side plot) prevents the algorithm
from converging in a reasonable time, whereas “large” values α = 5.0 and 10.0
(lower plots) lead to excessive oscillations. In this particular example, the
choice α = 1 (upper right-hand side plot) may be considered as optimal.
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Fig. 2.1. Standard stochastic gradient runs for α = 0.3, 1.0, 5.0 and 10.0

In order to go further into the asymptotic analysis, let us compute the
covariance matrix of the iterates U (k). From Equation (2.38), denoting the
identity matrix by I, we obtain that

Var
(
U (k+1)

)
= Var

((
I − ǫ(k)A

)
U (k) − ǫ(k)W (k+1)

)

=
(
I − ǫ(k)A

)
Var

(
U (k)

)(
I − ǫ(k)A

)
+
(
ǫ(k)
)2
Γ .
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The limit of the sequence of the normalized covariance matrices kVar
(
U (k)

)

induced by this relation is then compared to the Cramer-Rao bound (2.37).
The lowest and greatest eigenvalues λmin and λmax of these matrices are re-
ported in Table 2.1 for different values of (α, β). We notice that the greatest
eigenvalue of the Cramer-Rao bound and of the “best” covariance matrix
(obtained using α = 1) are nearly identical.

Standard Stochastic Gradient Algorithm λmin λmax

Cramer-Rao bound 0.108 11.258

α = 0.3 — β = 3.0 0.192 6170.542

α = 0.6 — β = 6.0 0.347 24.523

α = 1.0 — β = 10.0 0.556 11.286

α = 2.0 — β = 20.0 1.083 15.244

α = 5.0 — β = 50.0 2.664 32.056

α = 10.0 — β = 100.0 5.299 60.936

Table 2.1. Extreme eigenvalues of the covariance matrix for different values of (α, β)

This remark enlightens a result given in [56], asserting that the greatest
eigenvalue of the “optimal” covariance matrix is about (M/c)2, c being the
strong convexity modulus of j and M being an upper bound of the norm of
the gradient of j.

As a conclusion, the implementation of the stochastic gradient algorithm is
not straightforward and often requires several experiments. A common error is
to consider that convergence has occurred when in fact the sequence {ǫ(k)}k∈N

is just badly scaled.

Remark 2.25. Many other adaptation rules have been developed in order to
improve the efficiency of the stochastic gradient algorithm. For example,
Chen’s projection method [35] — a theoretical tool which alleviates the as-
sumptions required for convergence in Stochastic Approximation (see [53] for
further details) — also makes it possible to prevent numerical bursts in the
transient phase of the algorithm. The idea is to project the iterates U (k)

on compact subsets of U forming an increasing sequence. Another approach,
namely Kesten’s algorithm [90], is precisely described in [54]. There, the un-
derlying idea is to decrease the step size ǫ(k) only when the directions of
two consecutive gradients are opposite. More precisely, we define a (random)
sequence of integers Nk by

N (k+1) = N (k) + 1{〈
∇uj(U

(k−1),W (k)) ,∇uj(U
(k),W (k+1))

〉
<0
} ,

1Ω0
being the indicator function of the set Ω0 ⊂ Ω. The step size is then

given by

ǫ(k) =
α(

N (k)
)γ

+ β
.
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Let us mention that there exist multiplicative rules [118] for the adaptation
of the step size, which allow for a faster convergence towards an approx-
imate solution of the original problem, and that numerous references deal
with stochastic algorithms using constant step sizes (see e.g. [17]). ♦

2.6.3 Robustness of the Averaged Algorithm

From a theoretical point of view, the averaged stochastic gradient is, in some
sense, optimal because it has the same asymptotic convergence rate as the
stochastic Newton algorithm (see Theorem 2.24). From the practical point of
view, the implementation of the averaged algorithm is feasible because it does
not require the knowledge of the optimal matrix gain H−1. The step sizes ǫ(k)

form a σ(α, β, γ)-sequence, with 1/2 < k < 1. The following considerations
are relevant when choosing the parameters α, β and γ.

• The value γ = 2/3 is considered as a good choice by some authors (see [53]
for further details).

• The tuning of parameters α and β is much easier than for the standard
algorithm. Indeed, the problem of “too small” step sizes arising from a
bad choice of α is not so critical because the term kγ goes down more
slowly towards zero. Of course, the ratio α/β must always be chosen in
such a way that numerical bursts do not occur during the first iterations
of the algorithm.

Remark 2.26. It seems wise not to start the averaging process from the very
first iteration, because the whole transient phase of the algorithm is then

taken into account in the averaged values U
(k)
M . It would be preferable to

start the averaging process once the iterates U (k) given by (2.34a) are oscil-
lating near the convergence zone, but it is usually difficult to detect such a
starting point. Another possibility is to average the stochastic gradient algo-
rithm iterates U (k) on a sliding window, with leads to the same asymptotic
properties (see [98] for details). ♦

We now apply the averaged stochastic gradient algorithm to the example
used in §2.6.2, namely

U (k+1) = U (k) − α

kγ + β

(
AU (k) +W (k+1)

)
,

U
(k+1)
M =

1

k + 1

k+1∑

l=1

U (l) .

We use the same values of α and β as for the standard stochastic algorithm, γ
being now equal to 2/3. The four runs of the averaged algorithm are plotted
in Figure 2.2. For each run, we have again plotted the Monte Carlo estimator
given by (2.36) (k 7→ ‖û (k) − u♯‖ — black curve), the stochastic gradient
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Fig. 2.2. Averaged stochastic gradient runs for α = 0.3, 1.0, 5.0 and 10.0

algorithm estimator (k 7→ ‖u(k) − u♯‖ — light gray curve), and finally the av-

eraged stochastic gradient algorithm estimator (k 7→
∥∥u(k)M −u♯

∥∥ — dark gray
curve). The changes of parameter α (from 0.3 to 10.0) affect the behavior of
the stochastic gradient algorithm estimator, the oscillations of which increase
with α. Nevertheless, the behavior of the averaged stochastic gradient algo-
rithm estimator remains remarkably stable, hence the term “robust” given to
the averaged algorithm.

It is again possible to iteratively compute the covariance matrices of the

iterates U
(k)
M . The lowest and greatest eigenvalues of these matrices are given

in Table 2.2 for the different values of α. We observe that the full spectrum
of the Cramer-Rao bound is obtained whatever the value of α.

2.7 Conclusion

In this chapter, we have tried to give a broad (of course non exhaustive)
overview of the stochastic gradient method. After recalling some classical re-
sults from Stochastic Approximation, we have presented an algorithm based
on both the Stochastic Gradient Method and on the Auxiliary Problem Princi-
ple, for which we provided a detailed convergence analysis. We then presented
some issues related to the efficiency of the stochastic gradient algorithm. Fi-
nally, we have made some practical considerations about the algorithm im-
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Averaged Stochastic Gradient Algorithm λmin λmax

Cramer-Rao bound 0.108 11.258

α = 0.3 — β = 3.0 0.108 11.360

α = 0.5 — β = 5.0 0.108 11.318

α = 1.0 — β = 10.0 0.108 11.288

α = 2.0 — β = 20.0 0.108 11.273

α = 5.0 — β = 50.0 0.108 11.264

α = 10.0 — β = 100.0 0.108 11.262

Table 2.2. Extreme eigenvalues of the covariance matrix for different values of (α, β)

plementation. Note that this domain is still very active, as demonstrated by
the recent paper [161] providing new adaptive step length schemes in order
to improve the performance of stochastic gradient algorithms, and by the
paper [107] comparing the Sample Average Approximation method with a
properly modified Stochastic Approximation approach. About the last paper,
it is interesting to remark the strong connections between the Mirror Descent
Stochastic Approximation method and the Auxiliary Problem Principle. Al-
though restricted to the computation of open-loop solutions,13 the stochastic
gradient method is a basic component of stochastic optimization which can be
embedded in many dynamic situations, when some control variables have to
be decided upon once and for all or some static parameters have to be tuned. It
is the case for two-stage stochastic optimization problems, for which the first
time step decisions are open-loop decisions. It is also the case for multistage
stochastic optimization problems when it is possible to restrict the admissible
feedback laws to a particular class of functions which can be characterized in
terms of a finite number of parameters, e.g., (s, S)-policies, impulse control,
etc. See [147], and also [144] for a more recent application.

Throughout this book, in addition to the challenge of dealing with expec-
tations (which was the main purpose of this chapter), we will deal with the
additional difficulty related to the issue of information, that is, the measura-
bility constraints.

2.8 Appendix

This last section is devoted to the proof of the main convergence theorem 2.17.
The proof is based on two results, namely the Robbins-Siegmund theorem and
a technical lemma, that are beforehand recalled.

13 There however exist extensions of the stochastic gradient method to closed-loop
optimization problem: see [14] for further details.
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2.8.1 Robbins-Siegmund Theorem

The following theorem is one of the keys to Stochastic Approximation.

Theorem 2.27. Let {Λ(k)}k∈N, {α(k)}k∈N, {β(k)}k∈N and {η(k)}k∈N be four
positive sequences of real-valued random variables adapted to the filtration
{F(k)}k∈N. Assume that

E
(
Λ(k+1)

∣∣ F(k)
)
≤
(
1 +α(k)

)
Λ(k) + β(k) − η(k) , ∀k ∈ N ,

and that ∑

k∈N

α(k) < +∞ and
∑

k∈N

β(k) < +∞ , P-a.s. .

Then, the sequence {Λ(k)}k∈N almost surely converges to a finite14 random
variable Λ∞, and

∑
k∈N

η(k) < +∞, P-a.s..

A proof can be found e.g. in [59, Theorem 1.3.12].

2.8.2 A Technical Lemma

The following lemma is also used in order to prove the convergence of the
stochastic APP algorithm.

Lemma 2.28. Let J be a real-valued function defined on a Hilbert space U.
We assume that J is Lipschitz continuous with constant L. Let {u(k)}k∈N be
a sequence of elements of U and let {ǫ(k)}k∈N be a sequence of positive real
numbers such that

(a)
∑

k∈N

ǫ(k) = +∞,

(b) ∃ µ ∈ R,
∑

k∈N

ǫ(k)
∣∣J(u(k))− µ

∣∣ < +∞,

(c) ∃ δ > 0, ∀k ∈ N,
∥∥u(k+1) − u(k)

∥∥ ≤ δǫ(k).

Then the sequence
{
J(u(k))

}
k∈N

converges to µ.

Proof. Let α be a given positive real number. We define the subset Nα of N
and its complementary N c

α as follows:

Nα =
{
k ∈ N,

∣∣J(u(k))− µ
∣∣ ≤ α

}
and N c

α = N \Nα .

From the definition of N c
α, we have that

∑

k∈Nc
α

ǫ(k)
∣∣J(u(k))− µ

∣∣ ≥ α
∑

k∈Nc
α

ǫ(k) ,

14 A random variable X is finite if P
(

{ω ∈ Ω |X (ω) = +∞}
)

= 0.
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and Property (b) implies that

∑

k∈Nc
α

ǫ(k)
∣∣J(u(k))− µ

∣∣ ≤
∑

k∈N

ǫ(k)
∣∣J(u(k))− µ

∣∣ < +∞ .

We thus deduce that the series
∑

k∈Nc
α
ǫ(k) converges, that is,

∀β > 0 , ∃nβ ∈ N ,
∑

k∈Nc
α , k≥nβ

ǫ(k) ≤ β . (2.39)

Then, from (2.39) and Property (a), we obtain that Nα is not a finite set.
For each ǫ > 0, we choose α = ǫ/2 and β = ǫ/(2Lδ). Let nβ be the integer

defined by (2.39). For any k ≥ nβ ,

• either k ∈ Nα and, we have, by definition

∣∣J(u(k))− µ
∣∣ ≤ α < ǫ ,

• or k ∈ N c
α; then let m be the smallest element of Nα such that m > k

(such an element exists because Nα is not a finite set); using the Lipschitz
assumption on J and Property (c), we obtain

∣

∣J(u(k))− µ
∣

∣ ≤
∣

∣J(u(k))− J(u(m))
∣

∣+
∣

∣J(u(m))− µ
∣

∣ ≤ L
∥

∥

∥
u(k) − u(m)

∥

∥

∥
+ α

≤ Lδ

(

m−1
∑

l=k

ǫ(l)
)

+ α ≤ Lδ





∑

l≥nβ ,l∈Nc
α

ǫ(l)



+ α ≤ ǫ ,

hence the result. �

2.8.3 Proof of Theorem 2.17

Here we give the complete proof of the main convergence theorem.

Proof. The proof of the first statement is based on classical theorems in
the field of convex optimization (see Theorem A.8). The existence of a ran-
dom variable U (k+1) solution of Problem (2.24) is a consequence of the fact
that the criterion to be minimized in (2.24) is a normal integrand, so that
the argmin is closed-valued and measurable, and thus admits measurable se-
lections (see [134, Theorem 14.37] for further details). The solution U (k+1) is
unique because K is strongly convex.

The proof of the last two statements involves four steps.
Select a Lyapunov function Λ. Let u♯ ∈ U ♯ be a solution of (2.22). We
consider the so-called Lyapunov function Λ : U → R, defined by

Λ(u) = K(u♯)−K(u)−
〈
∇K(u) , u♯ − u

〉
.

From the strong convexity of K, we have that
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b

2

∥∥u− u♯
∥∥2 ≤ Λ(u) . (2.40)

The Lyapunov function Λ is thus bounded from below and coercive.
Bound from above the variation of Λ. We consider the difference

∆(k) = Λ(u(k+1))− Λ(u(k)) ,

{u(k)}k∈N being the sequence of solutions generated by Algorithm 2.15 for a
realization (w(1), . . . , w(k), . . . ) of the infinite-dimensional sample of W :

∆(k) = K(u(k))−K(u(k+1))−
〈
∇K(u(k)) , u(k) − u(k+1)

〉
︸ ︷︷ ︸

T1

+
〈
∇K(u(k))−∇K(u(k+1)) , u♯ − u(k+1)

〉
︸ ︷︷ ︸

T2

.

• From the convexity of K, we have that

T1 ≤ 0 .

• Let r(k) = ∇uj(u
(k), w(k+1)). The optimality condition of Problem (2.23)

writes

〈
∇K(u(k+1))+ ǫ(k)r(k) −∇K(u(k)) , u−u(k+1)

〉
≥ 0 , ∀u ∈ Uad . (2.41)

Evaluating (2.41) at u = u♯ leads to

T2 ≤ ǫ(k)
〈
r(k) , u♯ − u(k+1)

〉

≤ ǫ(k)
〈
r(k) , u♯ − u(k)

〉
︸ ︷︷ ︸

T3

+ǫ(k)
〈
r(k) , u(k) − u(k+1)

〉
︸ ︷︷ ︸

T4

.

– From the convexity of j(·, w(k+1)), we have that

T3 ≤ j(u♯, w(k+1))− j(u(k), w(k+1)) .

– The evaluation of (2.41) at u = u(k) and the strong monotonicity
of ∇K imply that

b
∥∥u(k+1) − u(k)

∥∥2 ≤ ǫ(k)
〈
r(k) , u(k) − u(k+1)

〉
.

Using the Schwartz inequality, we obtain

∥∥u(k+1) − u(k)
∥∥ ≤ ǫ(k)

b

∥∥r(k)
∥∥ . (2.42)

Applying also the Schwartz inequality to the term T4 and using (2.42)
yield



58 2 Open-Loop Control: the Stochastic Gradient Method

T4 ≤ ǫ(k)

b

∥∥r(k)
∥∥2 .

An equivalent form for the LBG assumption is that there exist positive
constants c3 and c4 such that

∥∥r(k)
∥∥ ≤ c3

∥∥u(k) − u♯
∥∥+ c4. Taking the

square of the last inequality, using (a+b)2 ≤ 2(a2+b2) as well as (2.40),
we obtain that

∃α > 0 , ∃β > 0 , ∀k ∈ N ,
∥∥r(k)

∥∥2 ≤ αΛ(u(k)) + β ,

and, consequently,

T4 ≤ ǫ(k)

b

(
αΛ(u(k)) + β

)
.

Collecting the upper bounds obtained for T1, T3 and T4, we deduce that

∆(k) ≤ ǫ(k)
(
j(u♯, w(k+1))− j(u(k), w(k+1))

)
+

(
ǫ(k)
)2

b

(
αΛ(u(k)) + β

)
.

Consider this inequality in terms of random variables. Taking the conditional
expectation w.r.t. the σ-field F

(k) generated by (W (1), . . . ,W (k)) on both
sides, recalling thatW (k+1) is independent of the previousW (l) and thatU (k)

is F(k)-measurable, we obtain that

E
(
Λ(U (k+1))− Λ(U (k))

∣∣ F(k)
)
≤ α(k)

E
(
Λ(U (k))

∣∣ F(k)
)
+ β(k)

+ ǫ(k)
(
J(u♯)− J(U (k))

)
, (2.43)

α(k) = (α/b)(ǫ(k))2 and β(k) = (β/b)(ǫ(k))2 being the terms of two convergent
series. Thanks to the optimality of u♯, we have that J(u♯)− J(U (k)) ≤ 0.
Convergence. A straightforward application of the Robbins-Siegmund the-
orem 2.27 shows that the sequence

{
Λ(U (k))

}
k∈N

almost surely converges to
a finite random variable Λ∞, and that

+∞∑

k=0

ǫ(k)
(
J(U (k))− J(u♯)

)
< +∞ , P-a.s. . (2.44)

Sequence Limit. As proved in the previous step, the sequence
{
Λ(U (k))

}
k∈N

almost surely converges to a finite random variable, and hence is almost
surely bounded. According to (2.40) and the LBG assumption, we deduce
that both sequences {U (k)}k∈N and

{
∇uj(U

(k),W (k+1))
}
k∈N

are almost

surely bounded. Thanks to (2.42), the same holds true for the sequence{
‖U (k+1) −U (k)‖/ǫ(k)

}
k∈N

. This last fact together with (2.44) make it possi-

ble to use Lemma 2.28 to claim that the sequence {J(U (k))}k∈N almost surely
converges to J(u♯).

LetΩ0 denote the subset of Ω such that
{
Λ(U (k))

}
k∈N

is not bounded, and

let Ω1 denote the subset of Ω for which (2.44) does not hold: P(Ω0 ∪Ω1) = 0.
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Pick some ω /∈ Ω0 ∪Ω1. The sequence of realizations {u(k)}k∈N of {U (k)}k∈N

associated with ω is bounded, and each u(k) belongs to the closed sub-
set Uad. By a compactness argument,15 there exists a convergent subsequence
{u(Φ(k))}k∈N (note that the subsequence itself depends on ω); let u be the
limit of this subsequence. By the lower semi-continuity of function J , we have
that

J(u) ≤ lim inf
k→+∞

J(u(Φ(k))) = J(u♯) .

We thus deduce that u ∈ U ♯.

We ultimately consider the case when J is strongly convex with modulus a.
Then Problem (2.22) has a unique solution u♯. Thanks to the optimality con-
dition (2.20), the strong convexity property of J writes

J(U (k))− J(u♯) ≥
〈
∇J(u♯) ,U (k) − u♯

〉
+
a

2

∥∥U (k) − u♯
∥∥2

≥ a

2

∥∥U (k) − u♯
∥∥2 .

Since J(U (k)) converges almost surely to J(u♯), we deduce that
∥∥U (k) − u♯

∥∥
almost surely converges to zero. The proof is complete. �

15 A subset of U is compact if it is closed and bounded, provided that U is a finite-
dimensional space. If U is an infinite-dimensional Hilbert space, such a property
remains true only in the weak topology, and the lower semi-continuity property
of J is preserved in that topology because J is convex. See [63] for further details.
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