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Dual Effect for Multi-Agent Stochastic
Input-Output Systems

10.1 Introduction

In stochastic optimal control, a key issue is that “solutions” are searched
for in terms of “closed-loop control laws” over available information and, as
a consequence, a major potential difficulty is the fact that present control
may affect future available information. This is known as the “dual effect” of
control, and has been discussed in §1.1.3, §1.2.1, §1.3.2 and §4.2.3. Following
[13], we will characterize the maximal set of closed-loop control laws containing
open-loop laws and for which the information provided by observations closed
with such a feedback remains fixed.

For this purpose, we consider in §10.2 the following variant of the Witsen-
hausen intrinsic model in §9.2. A multi-agent stochastic input-output system,
in short MASIOS, is a multi-agent stochastic control system as in §9.2 where
the information of an agent is described by an observation mapping (a sig-
nal), and where measurability is w.r.t. (complete) partition fields and not to
σ-fields (see §3.3.2 and §3.4.2). In parallel to the discussion on the precedence
and information-memory relations for multi-agent stochastic control systems
in §9.4, we introduce their counterparts for MASIOS, as well as a typology of
MASIOS.

The counterpart of a policy in the Witsenhausen intrinsic model in §9.2
is a control law, that is, a random variable defined on the universe Ω. An
admissible control law for a focal agent is one that is measurable w.r.t. the
agent closed-loop observation after control (of all agents). A collection of con-
trol laws (indexed by the set of agents) induces a partition of the universe Ω.
No open-loop dual effect holds true when all constant control laws induce the
same fixed partition. This is the object of §10.3.

Thanks to the typology of MASIOS introduced in §10.2, we characterize
in §10.3.3 classes of control laws for which the induced partition coincides with
this fixed partition. Therefore, if we restrict a stochastic optimization prob-
lem to such no dual effect control laws, the discretization of the control laws
domain can be made in advance.
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10.2 Multi-Agent Stochastic Input-Output Systems
(MASIOS)

We introduce a multi-agent stochastic input-output system, which is a multi-
agent stochastic control system as in §9.2, but where the information of an
agent is described by an observation mapping (a signal), and where measura-
bility is w.r.t. (complete) partition fields and not to σ-fields. We provide state
models, especially linear ones, as examples inducing MASIOS. In parallel to
the discussion on the precedence and information-memory relations for multi-
agent stochastic control systems in §9.4, we introduce their counterparts for
MASIOS, as well as a typology of MASIOS.

10.2.1 Multi-Agent Stochastic Input-Output Systems

Let A be a finite set representing agents. Each agent α ∈ A is supposed to make
only one decision uα ∈ Uα, where Uα is the control set for agent α, equipped
with the complete π-field Uα = 2Uα . Let Ω (universe or sample space) be
a measurable set, with the complete π-field F = 2Ω, which represents all
uncertainties: any ω ∈ Ω is called a state of Nature.

Remark 10.1. We adopt the same formalism as in Chapter 9, but for measur-
ability which, here, is w.r.t. (complete) partition fields and not to σ-fields. We
refer the reader to §3.3.2 for details. This option makes statements more com-
pact and proofs more intuitive as compared to measurability w.r.t. σ-fields.

♦

As in (9.1) and (9.2), we define the decision set UA, and we equip it with
the complete product π-field UA (see Remark 3.12), called decision field :

UA :=
∏

α∈A

Uα , UA :=
⊗

α∈A

Uα . (10.1)

The history space H and its associated complete product π-field H, called
history field, are:

H := UA ×Ω , H := UA ⊗ F . (10.2)

To each agent α ∈ A is attached an observation function

oα : H → Yα . (10.3)

Remark 10.2. Here, the information of agent α is described by a mapping
oα : H → Yα defined over the history space H = UA × Ω, whereas, in §9.2.2,
it is described by an information σ-field Iα ⊂ H. When this σ-field is a π-field
(for instance, when H is finite), the connection between both approaches is
given by

Iα = π(oα) , (10.4)

where the π-field generated by a mapping has been introduced in Defini-
tion 3.32. ♦
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Definition 10.3. A multi-agent stochastic input-output system (MASIOS) is
a collection consisting of agents A, states of Nature Ω and complete π-field F,
control sets and complete π-fields {Uα,Uα}α∈A, and observation functions
{Uα, oα}α∈A.

Example 10.4. For instance, if, in the description of a sequential optimal
stochastic control problem as revealed in §4.5.1, informations fields It are
given by signals Yt : H → Yt, where (Yt,Yt) is some measurable space
(see Remark 9.8 and Equation (10.4)), we obtain a MASIOS with agents
A = {0, . . . , T − 1}. △

Example 10.5. As another example of MASIOS, consider a state model as
defined in §4.4.1. We set

A = {0, . . . , T } , Ω = X0 ×
T∏

t=1

Wt , (10.5)

so that states of Nature are scenarios

ω =
(
x0, w(·)

)
=

(
x0, w1, w2, . . . , wT

)
. (10.6)

Identifying any u ∈ U{0,...,T} with an open-loop feedback γ ≡ u, we now define
different observation functions as follows, with the help of the state map Xf

(see Definition 4.7).
When the state xt is observed at time t, this corresponds to

ot(u, ω) = Xf [0, x0, u, w(·)]t . (10.7)

The case when past states x0, . . . , xt are observed at time t is given by

ot(u, ω) =
(
Xf [0, x0, u, w(·)]0, . . . , Xf [0, x0, u, w(·)]t

)
. (10.8)

△

10.2.2 Control Laws

We define the counterpart of a policy in the Witsenhausen intrinsic model
in §9.2: it is a control law, that is, a random variable defined on the universeΩ.
An admissible control law for a focal agent is one that is measurable w.r.t.
the agent closed-loop observation after control (of all agents).

Definition 10.6. A control law for agent α is a random variable Uα : Ω →
Uα, and a collection of control laws is a collection {Uβ}β∈A where Uβ : Ω →
Uβ. We define the set of collections of control laws by:

UA :=
∏

β∈A

U
Ω
β =

{
U = {Uβ}β∈A

∣∣∣Uβ : Ω → Uβ , ∀β ∈ A
}

. (10.9)
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We warn the reader that, though typographically close, the notations UA

for the set of collections of control laws in (10.9) and UA for the decision field
in (10.1) are distinct. In what follows, except in Remark 10.10, we do not use
the decision field notation.

Remark 10.7. Both Uα and Ω being equipped with complete π-fields, con-
trol laws are necessarily measurable. Notice that a control law for agent α is
a mapping defined over the universe Ω, whereas in §9.2.2 a policy for agent α
was represented by a mapping λα : H → Uα. A parallel can be established
between a collection {Uβ}β∈A of control laws and the mapping Mλ : Ω → UA

attached to a collection λ ∈ Λad
A of admissible policies, when the solvability

property holds true (see Definition 9.10). In this chapter, control laws are
random variables (see Definition 3.44). ♦

Definition 10.8. For any collection U ∈ UA of control laws and for any
agent α ∈ A, the observation of agent α after control is the random variable

η
U

α : Ω → Yα defined by

η
U

α (ω) := oα
(
U (ω), ω

)
, ∀ω ∈ Ω . (10.10)

The collection {η
U

β }β∈A of random variables is called closed-loop observa-
tions.

In general, the observation available to agent α depends, through the collection
U = {Uβ}β∈A of control laws, upon the control laws of other agents by
expanding (10.10) into

η
U

α (ω) = oα
(
{Uβ(ω)}β∈A, ω

)
. (10.11)

A control law is said to be admissible for an agent if she makes her decision
with no more than her observation after control.

Definition 10.9. An admissible control law for agent α is a control law Uα :
Ω → Uα such that

Uα � η
U

α . (10.12)

The set of admissible (collections of) control laws is defined by:

Uad
A :=

{
U = {Uα}α∈A ∈ UA

∣∣∣Uα � η
U

α , ∀α ∈ A
}

. (10.13)

The measurability constraint Uα � η
U

α is taken in the sense of measurability
with respect to partition fields as in Definition 3.32 (see also Proposition 3.35).

Remark 10.10. Here, admissible control laws and the measurability constraint

Uα � η
U

α are the counterparts of admissible policies λα : H → Uα measurable
w.r.t. Iα, that is, satisfying λ−1

α (Uα) ⊂ Iα as in Definition 9.6. ♦
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Remark 10.11. When not specified, the notation � is relative to mappings
with common domain Ω (see §3.4.2). ♦

A special class of admissible control laws is the one made of open-loop or
deterministic or constant control laws.

Definition 10.12. The set ⊥A of open-loop control laws, or deterministic
control laws, consists of the constant control laws, namely control laws mea-
surable w.r.t. the trivial π-field {∅, Ω} on Ω:

⊥A :=
{
U = {Uα}α∈A ∈ UA

∣∣Uα � {∅, Ω} , ∀α ∈ A
}

. (10.14)

Each Uα : Ω → Uα in U = {Uα}α∈A ∈ ⊥A takes a constant value in Uα.
The notation ⊥A refers to the fact that the class of constant mappings is the
bottom of the lattice of equivalence classes of mappings (see Proposition 3.42).

10.2.3 Precedence and Memory-Communication Relations

Thanks to the connection (10.4) between information fields and observations,
we can characterize, in the MASIOS framework of §10.2, the precedence and
memory-communication binary relations already introduced in §9.4.

For this purpose, we make use of the following notations. Consider B ⊂ A

a subset of agents. We set

uB := {uβ}β∈B , (10.15)

and, for any collection {Hα}α∈A of mappings defined over Ω,

HB := {Hβ}β∈B . (10.16)

The precedence binary relation P of Definition 9.15 identifies couples of
agents, where the decision of the first agent indeed influences the observation
of the second. By the correspondance (10.4), the subset 〈α〉P of predecessors
of α is (the smallest subset) such that there exist a mapping õα satisfying

oα(u, ω) = õα(u〈α〉P
, ω) , (10.17)

expressing that oα(u, ω) depends only on the components u〈α〉P
= {uβ}β∈〈α〉P

of the decision u.

Thememory-communication binary relationM of Definition 9.32 identifies
couples of agents, where the observation of the first one is passed on to the
second one. By the correspondance (10.4), the subset 〈α〉M of agents whose
information is embedded within the information of agent α is (the largest
subset) such that:

o〈α〉
M
(·, ·) �UA×Ω oα(·, ·) , ∀α ∈ A . (10.18)

Here, we specify that measurability is w.r.t. to mappings with domain UA×Ω

(see Remark 10.11).
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10.2.4 A Typology of MASIOS

Thanks to the precedence and information-memory relations, we now intro-
duce a typology of MASIOS, inspired from the discussion in §9.5.1.

Partially Nested MASIOS

We say that a MASIOS is partially nested when the precedence relation P is
included in the memory-communication relation M, that is, when

〈α〉P ⊂ 〈α〉M , ∀α ∈ A , (10.19)

or, by (10.18), when

o〈α〉
P
(·, ·) �UA×Ω oα(·, ·) , ∀α ∈ A . (10.20)

Remark 10.13. A consequence of Proposition 3.39 and of (10.20) is that, for
all U ∈ UA, we have that o〈α〉P

(
U (·), ·

)
� oα

(
U (·), ·

)
for all U ∈ UA. This

property is taken as the definition of a partially nested information structure
in [80, 82]: it imposes conditions on the closed-loop observations (10.10), so
that measurability is w.r.t. to mappings with domain Ω (see Remark 10.11).
On the contrary, assumption (10.20) is an “open-loop” assumption, which
does not require assumptions w.r.t. the closed-loop observations, and which
makes use of measurability w.r.t. to mappings with domain UA ×Ω. ♦

Sequential MASIOS

Consider the case where each agent in A is supposed to represent a time
period t:

A = {0, . . . , T } where T ∈ N
∗ . (10.21)

With the notations of §10.2.3, and especially Equation (10.1), we have that

T∏

t=0

Ut = U{0,...,T} . (10.22)

Following §9.5.1, the MASIOS given by the family {ot}t=0,...,T of observation
functions

ot : U{0,...,T} ×Ω → Yt (10.23)

is said to be a sequential MASIOS if it is sequential with the ordering 0, . . . , T .
By (9.50) and with the notations of §10.2.3, this is equivalent to

〈0〉P = ∅ and 〈t〉P ⊂ {0, . . . , t− 1} , ∀t ∈ {1, . . . , T } . (10.24)

In other words, the observation at time t depends at most upon the past
decisions u0, . . . , ut−1 (and the state of Nature ω). Indeed, by (10.17) and
Proposition 3.38, there exist mappings õt, for t = 0, . . . , T , such that
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ot(u0, . . . , uT , ω) = õt(u0, . . . , ut−1, ω) , ∀t = 1, . . . , T , (10.25)

with the special case o0(u0, . . . , uT , ω) = õ0(ω).

Example 10.14. Following Example 10.5, consider the MASIOS induced by a
state model as defined in §4.4.1. It can be checked that any expression of the
form (with Xf the state map of Definition 4.7)

ot(u, ω) = õt
(
Xf [0, x0, u, w(·)]0, . . . , Xf [0, x0, u, w(·)]t, w(·)

)
(10.26)

defines a sequential MASIOS. This includes imperfect and corrupted observa-
tions of the past states.

An important class of sequential MASIOS is given by linear state mod-
els with linear observations. More precisely, linear state models are those
for which the dynamics ft : Xt × Ut × Wt+1 → Xt+1 are linear map-
pings. Linear observations correspond to ot(u, ω) being a linear expression
in w(·), Xf [0, x0, u, w(·)]0, . . . , Xf [0, x0, u, w(·)]t. △

Quasiclassical MASIOS

As in §9.5.1, we say that a MASIOS is quasiclassical if it is sequential (with
the ordering 0, . . . , T ) and partially nested, that is,

〈0〉P = ∅ and 〈t〉P ⊂ {0, . . . , t− 1} ∩ 〈t〉M , ∀t ∈ {1, . . . , T } . (10.27)

In other words, if decisions made at time s affect the observation ot (s ∈ 〈t〉P),
then s ≤ t−1 and the observation os is embedded in the observation ot. Indeed,
by s ∈ 〈t〉M, (10.18) and Proposition 3.38, there exists a mapping fs,t such
that os = fs,t(ot).

Classical MASIOS

We say that a sequential MASIOS (with the ordering 0, . . . , T ) displays perfect
memory if

{0, . . . , t} ⊂ 〈t〉M , ∀t ∈ {0, . . . , T } . (10.28)

Information accumulates with time, that is, the π-fields It = π(ot) form a
filtration:

I0 ⊂ · · · ⊂ It−1 ⊂ It ⊂ · · · ⊂ IT . (10.29)

As a consequence of (9.52), a sequential MASIOS displaying perfect memory
is classical (see §9.5.1), hence quasiclassical, with the ordering 0, . . . , T .

Remark 10.15. Define closed-loop perfect memory as the property that, for all
t = 0, . . . , T ,

ot
(
U (·), ·

)
�Ω ot+1

(
U (·), ·

)
, ∀U ∈ Uad

A . (10.30)
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As in Remark 10.13, this definition imposes conditions on the closed-loop ob-
servations (10.10), so that measurability is w.r.t. to mappings with domain
Ω (see Remark 10.11). In contrast, Assumption (10.28) for the definition of
perfect memory is an “open-loop” assumption, which does not require as-
sumptions w.r.t. the closed-loop observations, and which makes use of mea-
surability w.r.t. to mappings with domain U{0,...,T} × Ω. Open-loop perfect
memory (10.28) implies closed-loop perfect memory (10.30). Notice that a
weaker form of open-loop perfect memory, namely

ot(u, ·) �Ω ot+1(u, ·) , ∀u ∈ U{0,...,T} ,

does not imply closed-loop perfect memory (10.30). This can directly be seen
with the following example: let o0(ω) = ω and o1(u, ω) = u− ω; then o0(·) �
o1(u, ·) for all u; whereas, for U (ω) = ω, this U is admissible since U � o0,
but obviously o0(·) 6� o1

(
U (·), ·

)
since the latter is the zero mapping. ♦

10.3 No Open-Loop Dual Effect and No Dual Effect
Control Laws

A collection of control laws induces a partition of the universe Ω. We say that
no open-loop dual effect holds true when all constant control laws induce the
same fixed partition.

10.3.1 No Open-Loop Dual Effect (NOLDE)

We now introduce the notion of no open-loop dual effect. For this purpose, we
use the measurability equivalence ≡ between mappings of Definition 3.40

Definition 10.16. The property of no open-loop dual effect (NOLDE) holds
true for the MASIOS discussed in §10.2 if we have that:

η
U

α ≡ η
U

′

α , ∀(U ,U ′) ∈ ⊥A ×⊥A , ∀α ∈ A . (10.31)

In the case of NOLDE, for any agent α ∈ A, all observations after open-loop
control are equivalent, in the sense of measurability equivalence between map-
pings of Definition 3.40. Therefore, all observations after open-loop control are
equivalent to a fixed mapping1 ζα with domain Ω:

η
U

α ≡ ζα , ∀U ∈ ⊥A . (10.32)

Example 10.17. It is shown in [127] that linear state models with linear ob-
servations, as defined in Example10.14, possess the NOLDE property if they
display perfect memory as defined in §10.2.4. △

1 For instance, take for ζα any mapping of the class of η
U

α for U ∈ ⊥A.
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Remark 10.18. In [81], Equation (5) expresses a similar property. ♦

The following proposition, adapted from [13], is a straightforward conse-
quence of Proposition 3.41.

Proposition 10.19. The property of no open-loop dual effect (NOLDE) holds
true if, and only if, there exist a collection of mappings {fα}α∈A where fα :
UA×Zα → Yα and a collection {ζα}α∈A of random variables where ζα : Ω →
Zα such that

• the partial mapping fα(u, ·) : Zα → Yα is injective, for all u ∈ UA;
• the observations satisfy oα(u, ω) = fα

(
u, ζα(ω)

)
, for all (u, ω) ∈ UA ×Ω.

10.3.2 No Dual Effect Control Laws

No dual effect control laws are those control laws for which, in case of NOLDE,
the closed-loop observations induce the same partitions as the constant con-
trol laws.

Definition 10.20. Assume that the NOLDE property holds true, with the
fixed observations ζ as in (10.32). The no dual effect control laws set is made
of all admissible control laws such that the closed-loop observations are equiv-
alent to the fixed mapping ζα:

Unde
A :=

{
U = {Uα}α∈A ∈ UA

∣∣∣ ηUα ≡ ζα , ∀α ∈ A
}
∩ Uad

A . (10.33)

Thus, “closing” the system with any control law belonging to the no dual
effect control law set produces the same fixed closed-loop observations.

Definition 10.21. Assume that the NOLDE property holds true, with the
fixed observations ζ as in (10.32). The set of control laws measurable w.r.t.
the fixed observations ζ = {ζα}α∈A is defined by:

Uζ
A :=

{
U = {Uα}α∈A ∈ UA

∣∣Uα � ζα , ∀α ∈ A
}

. (10.34)

We have the following relation between the no dual effect control laws
set Unde

A in (10.33) and the set Uζ
A in (10.34).

Proposition 10.22. Assume that the NOLDE property holds true, with the
fixed observations ζ as in (10.32). Then, no dual effect control laws are nec-
essarily measurable w.r.t. the fixed observation ζ, that is,

Unde
A ⊂ Uζ

A . (10.35)

Proof. Let U = {Uα}α∈A ∈ Unde
A . On the one hand, we have that Uα � η

U

α ,
for all agent α ∈ A, since U ∈ Uad

A by (10.33) and (10.13). On the other hand,

we have that η
U

α ≡ ζα by (10.33) and (10.32). Thus, Uα � η
U

α ≡ ζα. Since

this holds true for any agent α, we conclude that U ∈ Uζ
A. �
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10.3.3 Characterization of No Dual Effect Control Laws

We now characterize the no dual effect control laws according to the typology
discussed in §10.2.4. We use the following two lemmas.

Lemma 10.23. Consider three mappings Hi : Ω → Yi, i = 1, 2 and f : Y1 ×
Ω → Y3. Assume that, for all y1 ∈ Y1, f(y1, ·) � H2(·) and that H1(·) �
H2(·). Then f

(
H1(·), ·

)
� H2(·).

Proof. Let (ω, ω′) ∈ Ω2 be such that H2(ω) = H2(ω
′). Since H1(·) � H2(·), we

have thatH1(ω) = H1(ω
′) by Proposition 3.38. Putting y1 = H1(ω) = H1(ω

′),
we thus get f(y1, ω) = f(y1, ω

′) since f(y1, ·) � H2(·). We conclude that

f
(
H1(ω), ω

)
= f(y1, ω) = f(y1, ω

′) = f
(
H1(ω

′), ω′
)
.

The proof is complete by Proposition 3.38. �

Lemma 10.24. Let Hi : Ω → Yi, i = 1, 2 and f : Y1 × Ω → Y3. Assume
that, for all y1 ∈ Y1, H2(·) � f(y1, ·), and that H1(·) � f

(
H1(·), ·

)
. Then

H2(·) � f
(
H1(·), ·

)
.

Proof. Let (ω, ω′) ∈ Ω2 be such that f
(
H1(ω), ω

)
= f

(
H1(ω

′), ω′
)
. Since

H1(·) � f
(
H1(·), ·

)
, we have that H1(ω) = H1(ω

′). Putting y1 = H1(ω) =
H1(ω

′), we thus get

f(y1, ω) = f
(
H1(ω), ω

)
= f

(
H1(ω

′), ω′
)
= f(y1, ω

′) .

On the other hand, we have that H2(·) � f(y1, ·), so that H2(ω) = H2(ω
′).

The proof is complete by Proposition 3.38. �

Partially Nested MASIOS

The following main result, established in [13], provides a description of the set
of no dual effect control laws for MASIOS displaying the NOLDE property.

Theorem 10.25 ([13]). Assume that the NOLDE property holds true, with
the fixed observations ζ as in (10.32). Assume that the MASIOS is partially
nested as in (10.20). Then, the no dual effect control laws in (10.33) are
exactly the admissible control laws which are measurable w.r.t. the fixed ob-
servation ζ:

Unde
A = Uad

A ∩ Uζ
A . (10.36)

Proof. By Proposition 10.22, it suffices to show that Uad
A ∩ Uζ

A ⊂ Unde
A .

Let U = {Uβ}β∈A ∈ Uad
A ∩ Uζ

A, that is,

Uβ � ζβ and Uβ � η
U

β , ∀β ∈ A . (10.37)
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Let α ∈ A be fixed: we now prove that both η
U

α � ζα and ζα � η
U

α hold
true. We use the property that, by Equation (10.17) and by abuse of notation
(see (10.16)),

η
U

α = η
U
〈α〉

P
α , ∀α ∈ A . (10.38)

First, we show that η
U

α � ζα. For any u ∈ UA (identified with a constant
control law), we have that:

U〈α〉
P
= {Uβ}β∈〈α〉

P
by (10.16)

≡
∨

β∈〈α〉
P

Uβ by Proposition 3.42

�
∨

β∈〈α〉
P

ζβ because Uβ � ζβ by (10.37)

≡
∨

β∈〈α〉P

oβ(u, ·) , ∀u ∈ UA by (10.31), (10.32) and (10.10)

≡ {oβ(u, ·)}β∈〈α〉P
by Proposition 3.42

≡ o〈α〉
P
(u, ·) by (10.16)

� oα(u, ·) by (10.20)

≡ ζα(·) by (10.32).

Therefore, we have that, on the one hand, U〈α〉
P
(·) � oα(u, ·) ≡ ζα(·) and, on

the other hand, oα(u, ·) = õα(u〈α〉P
, ·) ≡ ζα(·), for all u ∈ UA by (10.17) and

(10.32). By Lemma 10.23, we deduce that:

η
U
〈α〉P

α (·) = õα
(
U〈α〉

P
(·), ·

)
� ζα(·) .

By (10.38), we conclude that

η
U

α � ζα .

Second, we prove that ζα � η
U

α . We have that
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U〈α〉P
= {Uβ}β∈〈α〉

P
by (10.16)

≡
∨

β∈〈α〉P

Uβ by Proposition 3.42

�
∨

β∈〈α〉
P

η
U

β because Uβ � η
U

β by (10.37)

≡ η
U

〈α〉
P

by (10.16) and Proposition 3.42

= o〈α〉P

(
U (·), ·

)
by (10.10)

� oα
(
U (·), ·

)
by the partially nested property (10.20)

= õα
(
U〈α〉

P
(·), ·

)
by (10.17).

Therefore, on the one hand, we have just proven that

U〈α〉
P
(·) � õα

(
U〈α〉

P
(·), ·

)
.

On the other hand, for all u ∈ UA, we have that

ζα(·) ≡ ηuα(·) by (10.32)

= oα(u, ·) by (10.10)

= õα(u〈α〉P
, ·) by (10.17).

By Lemma 10.24, we deduce that

ζα(·) � õα
(
U〈α〉P

(·), ·
)
.

By (10.38), we conclude that

ζα � η
U
〈α〉

P
α = η

U

α .

This completes the proof. �

Quasiclassical MASIOS

For sequential MASIOS, where each agent is supposed to represent a time pe-
riod, we are able to obtain a result, that is more precise than Theorem 10.25.
Indeed, we now show that, for quasiclassical MASIOS displaying the NOLDE
property, the no dual effect control laws are the control laws which are mea-
surable w.r.t. the fixed observations.

Proposition 10.26. Assume that the NOLDE property holds true, with the
fixed observations ζ as in (10.32). Assume that the MASIOS is quasiclassical,
as in 10.2.4 with the ordering 0, . . . , T of agents. Then, the no dual effect
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control laws in (10.33) are the control laws which are measurable w.r.t. the
fixed observation ζ, that is,

Unde
{0,...,T} = Uζ

{0,...,T} . (10.39)

Proof. By Proposition 10.22, it suffices to show that Uζ

{0,...,T} ⊂ Unde
{0,...,T}. Let

U = {Ut}t=0,...,T ∈ Uζ

{0,...,T}, that is,

Ut � ζt , ∀t = 0, . . . , T . (10.40)

We prove by induction that
(
∀t = 0, . . . , T , Ut � ζt

)
⇒

(
∀t = 0, . . . , T , Ut(·) � ot

(
U (·), ·

))
.

Let the induction assumption H(t) be
(
∀s = 0, . . . , t , Us � ζs

)
⇒

(
∀s = 0, . . . , t , Us(·) � os

(
U (·), ·

))
.

Suppose that U
0
(·) � ζ0(·). By (10.31), we know that ζ0(·) ≡ o0(u, ·), for

all u ∈ U. However, o0 is independent of u, since agent 0 has no predecessor
([0] = ∅). Thus, we conclude that

U
0
(·) � o0(u, ·) = o0

(
U (·), ·

)

and the induction assumption H(0) holds true.

Assume that the induction assumption H(t − 1) holds true, and suppose
that

Us � ζs , ∀s = 0, . . . , t . (10.41)

We have that

U〈t〉
P
(·) =

∨

s∈〈t〉
P

Us(·) by (10.16)

�
∨

s∈〈t〉P

os
(
U (·), ·

)
by assumption H(t− 1)

and since 〈t〉P ⊂ {0, . . . , t− 1} by (10.27)

�
∨

s∈〈t〉
M

os
(
U (·), ·

)
by the partially nested property (10.19)

≡ o〈t〉M

(
U (·), ·

)
by (10.16)

� ot
(
U (·), ·

)
by (10.18)

= õt
(
U〈t〉P

(·), ·
)

by (10.17).
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Therefore, we have proved that

U〈t〉
P
(·) � õt

(
U〈t〉

P
(·), ·

)
= ot

(
U (·), ·

)
.

Now, on the other hand, we have that

Ut(·) � ζt(·) ≡ ot(u〈t〉
P
, ·) , ∀{us}s∈{0,...,T} ∈ U{0,...,T} ,

by (10.41), (10.31) and (10.17). We now use Lemma 10.24 with H1 = Ut and
f(u, ω) = ot(u, ω) to obtain that2

Ut(·) � ot
(
U (·), ·

)
. (10.42)

Thus, assumption H(t) holds true. This completes the induction. �

Proposition 10.26 applies to sequential MASIOS displaying perfect mem-
ory because, as a consequence of (9.52), they are classical (see §9.5.1), hence
quasiclassical, with the ordering 0, . . . , T .

10.4 Conclusion

In this chapter, we have more deeply analyzed the “dual effect” of control pre-
viously discussed in §1.1.3, §1.2.1, §1.3.2 and §4.2.3. The specificity of sequen-
tial systems with perfect memory has been emphasized. When they display
the NOLDE property, the no dual effect control laws have a simple charac-
terization: they are the control laws which are measurable w.r.t. the fixed
observations. Therefore, this chapter brings to light another element possi-
bly explaining the importance of sequential systems with perfect memory in
stochastic control.

2 In fact, we use a slight variation of Lemma 10.24. Indeed U〈t〉P
(·) � ot

(

U〈t〉P
(·), ·

)

is a weaker assumption than U (·) � ot
(

U (·), ·
)

However, thanks to (10.17), the
proof of Lemma 10.24 can easily be adapted to obtain the same conclusion.
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