Dual Approximate Dynamic Programming for Large Scale Hydro Valleys

Pierre Carpentier and Jean-Philippe Chancelier

ENSTA ParisTech and ENPC ParisTech

PGMO Days 2015

Joint work with J.-C. Alais and C. Ousri, supported by the FMJH Program Gaspard Monge for Optimization.
Motivation

Electricity production management for hydro valleys

- **1 year time horizon**: compute each month the Bellman functions (“water values”)
- **stochastic framework**: rain, market prices
- **large-scale valley**: 5 dams and more

We wish to remain within the scope of Dynamic Programming.
How to avoid the curse of dimensionality?

Aggregation methods
- fast to run method
- require some homogeneity between units

Stochastic Dual Dynamic Programming (SDDP)
- efficient method for this kind of problems
- strong assumptions (convexity, linearity)

Dual Approximate Dynamic Programming (DADP)
- spatial decomposition method
- complexity almost linear in the number of dams
- approximation methods in the stochastic framework

This talk: present numerical results for large-scale hydro valleys using DADP.
Lecture outline

1. **Dams management problem**
 - Hydro valley modeling
 - Optimization problem

2. **DADP in a nutshell**
 - Spatial decomposition
 - Constraint relaxation

3. **Numerical experiments**
 - Academic examples
 - More realistic examples
1. Dams management problem
 - Hydro valley modeling
 - Optimization problem

2. DADP in a nutshell
 - Spatial decomposition
 - Constraint relaxation

3. Numerical experiments
 - Academic examples
 - More realistic examples
Operating scheme

\[u_t^i : \text{water turbinated by dam } i \text{ at time } t, \]
\[x_t^i : \text{water volume of dam } i \text{ at time } t, \]
\[a_t^i : \text{water inflow at dam } i \text{ at time } t, \]
\[p_t^i : \text{water price at dam } i \text{ at time } t, \]

Randomness: \[w_t^i = (a_t^i, p_t^i) \text{ , } w_t = (w_t^1, \ldots, w_t^N). \]
Dynamics and cost functions

Dam dynamics:

\[x_{t+1}^i = f_t^i(x_t^i, u_t^i, w_t^i, z_t^i) , \]

\[= x_t^i - u_t^i + a_t^i + z_t^i - s_t^i , \]

\[z_{t+1}^i \text{ being the outflow of dam } i: \]

\[z_{t+1}^i = g_t^i(x_t^i, u_t^i, w_t^i, z_t^i) , \]

\[= u_t^i + \max \left\{ 0, x_t^i - u_t^i + a_t^i + z_t^i - \bar{x}_t^i \right\} . \]

We assume the Hazard-Decision information structure \((u_t^i \text{ is chosen once } w_t^i \text{ is observed}), \) so that \(u_t^i \leq u_t^i \leq \min \{ \bar{u}_t^i, x_t^i + a_t^i + z_t^i - \bar{x}_t^i \} . \)

Gain at time \(t < T : \)

\[L_t^i(x_t^i, u_t^i, w_t^i, z_t^i) = p_t^i u_t^i - \epsilon(u_t^i)^2. \]

Final gain at time \(T : \)

\[K_t^i(x_T^i) = -a T \min\{0, x_T^i - \bar{x}_T^i \}^2. \]
1. **Dams management problem**
 - Hydro valley modeling
 - Optimization problem

2. **DADP in a nutshell**
 - Spatial decomposition
 - Constraint relaxation

3. **Numerical experiments**
 - Academic examples
 - More realistic examples
The **global optimization problem** reads:

\[
\begin{align*}
\max_{(X,U,Z)} \quad & \mathbb{E}\left(\sum_{i=1}^{N} \left(\sum_{t=0}^{T-1} L_{t}^{i}(X_{t}^{i}, U_{t}^{i}, W_{t}^{i}, Z_{t}^{i}) + K_{i}(X_{T}) \right) \right),
\end{align*}
\]

subject to:

\[
\begin{align*}
X_{t+1}^{i} &= f_{t}^{i}(X_{t}^{i}, U_{t}^{i}, W_{t}^{i}, Z_{t}^{i}), \quad \forall i, \quad \forall t, \\
\sigma(U_{t}^{i}) &\subset \sigma(W_{0}, \ldots, W_{t}), \quad \forall i, \quad \forall t, \\
Z_{t+1}^{i} &= g_{t}^{i}(X_{t}^{i}, U_{t}^{i}, W_{t}^{i}, Z_{t}^{i}), \quad \forall i, \quad \forall t.
\end{align*}
\]

Assumption. Noises \(W_{0}, \ldots, W_{T-1}\) are independent over time.
1. Dams management problem
 - Hydro valley modeling
 - Optimization problem

2. DADP in a nutshell
 - Spatial decomposition
 - Constraint relaxation

3. Numerical experiments
 - Academic examples
 - More realistic examples
Price decomposition

- Dualize the coupling constraints \(Z_t^{i+1} = g_t^i(X_t^i, U_t^i, W_t^i, Z_t^i) \).
 Note that the associated multiplier \(\Lambda_t^{i+1} \) is a random variable.

- Solve the dual problem using a gradient-like algorithm.

- At iteration \(k \), the duality term:
 \[\Lambda_t^{i+1,(k)} \cdot (Z_t^{i+1} - g_t^i(X_t^i, U_t^i, W_t^i, Z_t^i)) \]
 is the difference of two terms:
 - \(\Lambda_t^{i+1,(k)} \cdot Z_t^{i+1} \leadsto \text{dam } i+1 \),
 - \(\Lambda_t^{i+1,(k)} \cdot g_t^i(\cdots) \leadsto \text{dam } i \).

- Dam by dam decomposition for the maximization in \((X, U, Z) \)
at \(\Lambda_t^{i+1,(k)} \) fixed.
1. Dams management problem
 - Hydro valley modeling
 - Optimization problem

2. DADP in a nutshell
 - Spatial decomposition
 - Constraint relaxation

3. Numerical experiments
 - Academic examples
 - More realistic examples
DADP core idea

The i-th subproblem writes:

$$
\max_{u^i, z^i, x^i} \mathbb{E}\left(\sum_{t=0}^{T-1} \left(L_t^i(x^i_t, u^i_t, w^i_t, z^i_t) + \Lambda_t^i(k) \cdot z^i_t \right) - \Lambda_t^{i+1} \cdot g_t^i(x^i_t, u^i_t, w^i_t, z^i_t) \right) + K^i(x^i_T),
$$

but $\Lambda_t^{i,(k)}$ depends on the whole past of noises (w_0, \ldots, w_t). . .

The core idea of DADP is

- to replace the constraint $z_t^{i+1} - g_t^i(x^i_t, u^i_t, w^i_t, z^i_t) = 0$ by its conditional expectation with respect to y_t^i:

$$
\mathbb{E}(z_t^{i+1} - g_t^i(x^i_t, u^i_t, w^i_t, z^i_t) \mid y_t^i) = 0,
$$

- where $(y_0^i, \ldots, y_{T-1}^i)$ is a “well-chosen” information process.
DADP core idea

The i-th subproblem writes:

$$\max_{u_i, z_i, x_i} \mathbb{E}\left(\sum_{t=0}^{T-1} \left(L_t^i(x_t^i, u_t^i, w_t^i, z_t^i) + \Lambda_t^i(k) \cdot z_t^i \right. \right.$$

$$\left. \left. - \Lambda_{t+1,k}^i \cdot g_t^i(x_t^i, u_t^i, w_t^i, z_t^i) \right) + K^i(x_T^i) \right),$$

but $\Lambda_t^i(k)$ depends on the whole past of noises (w_0, \ldots, w_T). . .

The core idea of DADP is

- to replace the constraint $z_{t+1}^i - g_t^i(x_t^i, u_t^i, w_t^i, z_t^i) = 0$ by its conditional expectation with respect to y_t^i:

$$\mathbb{E}(z_{t+1}^i - g_t^i(x_t^i, u_t^i, w_t^i, z_t^i) \mid y_t^i) = 0,$$

- where $(y_0^i, \ldots, y_{T-1}^i)$ is a “well-chosen” information process.
Subproblems in DADP

DADP thus consists of a constraint relaxation.

It is easy to see that such a relaxation is equivalent to replace the multiplier $\Lambda_t^{i,(k)}$ by its conditional expectation $\mathbb{E}(\Lambda_t^{i,(k)} \mid Y_{t-1}^i)$. The expression of the i-th subproblem becomes:

\[
\max_{U^i, Z^i, X^i} \mathbb{E} \left(\sum_{t=0}^{T-1} \left(L_t^i(X_t^i, U_t^i, W_t^i, Z_t^i) + \mathbb{E}(\Lambda_t^{i,(k)} \mid Y_{t-1}^i) \cdot Z_t^i \right. \\
- \mathbb{E}(\Lambda_t^{i+1,(k)} \mid Y_t^i) \cdot g_t^i(X_t^i, U_t^i, W_t^i, Z_t^i) \right) \\
+ K^i(X_T^i) \right).
\]

If the process Y_{t-1}^i follows a dynamical equation, DP applies.
A crude relaxation: \(Y^i_t \equiv \text{cste} \)

1. The multipliers \(\Lambda^i,(k) \) appear only in the subproblems by means of their expectations \(\mathbb{E}(\Lambda^i,(k)) \), so that each subproblem involves a 1-dimensional state variable.

2. For the gradient algorithm, the coordination task reduces to:

 \[
 \mathbb{E}(\Lambda^i,(k+1)) = \mathbb{E}(\Lambda^i,(k)) \\
 + \rho_t \mathbb{E}\left(Z^i_{t+1,(k)} - g^i_t(X^i_t, U^i_t, W^i_t, Z^i_t)\right).
 \]

3. The constraints taken into account by DADP are in fact:

 \[
 \mathbb{E}\left(Z^i_{t+1} - g^i_t(X^i_t, U^i_t, W^i_t, Z^i_t)\right) = 0.
 \]

The DADP solutions do not satisfy the initial constraints: need to use an heuristic method to regain admissibility.
1. Dams management problem
 - Hydro valley modeling
 - Optimization problem

2. DADP in a nutshell
 - Spatial decomposition
 - Constraint relaxation

3. Numerical experiments
 - Academic examples
 - More realistic examples
Three case studies

Discretization

\[T \sim 12 \]
\[X \sim 41 \]
\[U \sim 6 \]
\[W \sim 10 \]

“3Dams” Valley

“4Dams” Valley

“5Dams” Valley
Results

<table>
<thead>
<tr>
<th>Valley</th>
<th>3Dams</th>
<th>4Dams</th>
<th>5Dams</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP CPU time</td>
<td>5'</td>
<td>1700'</td>
<td>677000'</td>
</tr>
<tr>
<td>DP value</td>
<td>2482.0</td>
<td>3742.7</td>
<td>4685.1</td>
</tr>
</tbody>
</table>

Table: Results obtained by DP

<table>
<thead>
<tr>
<th>Valley</th>
<th>3Dams</th>
<th>4Dams</th>
<th>5Dams</th>
</tr>
</thead>
<tbody>
<tr>
<td>DADP CPU time</td>
<td>3'</td>
<td>5'</td>
<td>6'</td>
</tr>
<tr>
<td>DADP value</td>
<td>2401.3</td>
<td>3667.0</td>
<td>4633.7</td>
</tr>
<tr>
<td>Gap with DP</td>
<td>−3.2%</td>
<td>−2.0%</td>
<td>−1.1%</td>
</tr>
<tr>
<td>Dual value</td>
<td>2687.5</td>
<td>3995.8</td>
<td>4885.9</td>
</tr>
</tbody>
</table>

Table: Results obtained by DADP “Expectation”

2Results obtained using a 16 core 32 threads Intel®Core i7 based computer.
Results

<table>
<thead>
<tr>
<th>Valley</th>
<th>3Dams</th>
<th>4Dams</th>
<th>5Dams</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP CPU time</td>
<td>5’</td>
<td>1700’</td>
<td>677000’</td>
</tr>
<tr>
<td>DP value</td>
<td>2482.0</td>
<td>3742.7</td>
<td>4685.1</td>
</tr>
<tr>
<td>SDDP (_d) value</td>
<td>2467.1</td>
<td>3730.7</td>
<td>4674.3</td>
</tr>
<tr>
<td>SDDP (_d) CPU time</td>
<td>65’</td>
<td>580’</td>
<td>4800’</td>
</tr>
</tbody>
</table>

Table: Results obtained by DP and SDDP \(_d\)

<table>
<thead>
<tr>
<th>Valley</th>
<th>3Dams</th>
<th>4Dams</th>
<th>5Dams</th>
</tr>
</thead>
<tbody>
<tr>
<td>DADP CPU time</td>
<td>3’</td>
<td>5’</td>
<td>6’</td>
</tr>
<tr>
<td>DADP value</td>
<td>2401.3</td>
<td>3667.0</td>
<td>4633.7</td>
</tr>
<tr>
<td>Gap with DP</td>
<td>-3.2%</td>
<td>-2.0%</td>
<td>-1.1%</td>
</tr>
<tr>
<td>Dual value</td>
<td>2687.5</td>
<td>3995.8</td>
<td>4885.9</td>
</tr>
</tbody>
</table>

Table: Results obtained by DADP “Expectation”

Results obtained using a 16 core 32 threads Intel® Core i7 based computer.
Results

<table>
<thead>
<tr>
<th>Valley</th>
<th>3Dams</th>
<th>4Dams</th>
<th>5Dams</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP CPU time</td>
<td>5’</td>
<td>1700’</td>
<td>677000’</td>
</tr>
<tr>
<td>DP value</td>
<td>2482.0</td>
<td>3742.7</td>
<td>4685.1</td>
</tr>
<tr>
<td>SDDP(_d) value</td>
<td>2467.1</td>
<td>3730.7</td>
<td>4674.3</td>
</tr>
<tr>
<td>SDDP(_d) CPU time</td>
<td>65’</td>
<td>580’</td>
<td>4800’</td>
</tr>
</tbody>
</table>

Table: Results obtained by DP and SDDP\(_d\)

<table>
<thead>
<tr>
<th>Valley</th>
<th>3Dams</th>
<th>4Dams</th>
<th>5Dams</th>
</tr>
</thead>
<tbody>
<tr>
<td>DADP CPU time</td>
<td>3’</td>
<td>5’</td>
<td>6’</td>
</tr>
<tr>
<td>DADP value</td>
<td>2401.3</td>
<td>3667.0</td>
<td>4633.7</td>
</tr>
<tr>
<td>Gap with DP</td>
<td>-3.2%</td>
<td>-2.0%</td>
<td>-1.1%</td>
</tr>
<tr>
<td>Dual value</td>
<td>2687.5</td>
<td>3995.8</td>
<td>4885.9</td>
</tr>
</tbody>
</table>

Table: Results obtained by DADP “Expectation”

Results obtained using a 16 core 32 threads Intel®Core i7 based computer.
1. Dams management problem
 - Hydro valley modeling
 - Optimization problem

2. DADP in a nutshell
 - Spatial decomposition
 - Constraint relaxation

3. Numerical experiments
 - Academic examples
 - More realistic examples
Three valleys

Discretization

$T \sim 12, \ W \sim 10$

fine grids for X and U

Vicdessos Valley Dordogne Valley Stooopt Valley
Results

<table>
<thead>
<tr>
<th>Valley</th>
<th>Vicdessos</th>
<th>Dordogne</th>
<th>Stooopt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDDP<sub>d</sub> CPU time</td>
<td>29500'</td>
<td></td>
<td>106000'</td>
</tr>
<tr>
<td>SDDP<sub>d</sub> value</td>
<td>2228.5</td>
<td></td>
<td>7007.4</td>
</tr>
</tbody>
</table>

Table: Results obtained by SDDP_d

<table>
<thead>
<tr>
<th>Valley</th>
<th>Vicdessos</th>
<th>Dordogne</th>
<th>Stooopt</th>
</tr>
</thead>
<tbody>
<tr>
<td>DADP CPU time</td>
<td>8'</td>
<td>150'</td>
<td>12'</td>
</tr>
<tr>
<td>DADP value</td>
<td>2237.7</td>
<td>21641.0</td>
<td>6812.6</td>
</tr>
<tr>
<td>Gap with SDDP<sub>d</sub></td>
<td>+0.4%</td>
<td></td>
<td>−2.8%</td>
</tr>
<tr>
<td>Dual value</td>
<td>2285.6</td>
<td>22991.1</td>
<td>7521.9</td>
</tr>
</tbody>
</table>

Table: Results obtained by DADP "Expectation"
Results

<table>
<thead>
<tr>
<th>Valley</th>
<th>Vicdessos</th>
<th>Dordogne</th>
<th>Stooopt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDDP_d CPU time</td>
<td>29500’</td>
<td></td>
<td>106000’</td>
</tr>
<tr>
<td>SDDP_d value</td>
<td>2228.5</td>
<td></td>
<td>7007.4</td>
</tr>
</tbody>
</table>

Table: Results obtained by SDDP_d

<table>
<thead>
<tr>
<th>Valley</th>
<th>Vicdessos</th>
<th>Dordogne</th>
<th>Stooopt</th>
</tr>
</thead>
<tbody>
<tr>
<td>DADP CPU time</td>
<td>8’</td>
<td>150’</td>
<td>12’</td>
</tr>
<tr>
<td>DADP value</td>
<td>2237.7</td>
<td>21641.0</td>
<td>6812.6</td>
</tr>
<tr>
<td>Gap with SDDP_d</td>
<td>+0.4%</td>
<td></td>
<td>–2.8%</td>
</tr>
<tr>
<td>Dual value</td>
<td>2285.6</td>
<td>22991.1</td>
<td>7521.9</td>
</tr>
</tbody>
</table>

Table: Results obtained by DADP “Expectation”
CPU time comparison

CPU time (logarithmic scale)

dams

Time

DP
SDDP
DADP

P. Carpentier & J.-P. Chancelier
DADP applied to large scale hydro valleys
PGMO Days 22 / 23
Conclusions and perspectives

Conclusions for DADP

- Fast numerical convergence of the method.
- Near-optimal results even when using a “crude” relaxation.
- Method that can be used for very large valleys

General perspectives

- Apply to more complex topologies (smart grids).
- Connection with other decomposition methods.
- Theoretical study.
P. Carpentier et G. Cohen.
Décomposition-coordination en optimisation déterministe et stochastique.

P. Girardeau.
Résolution de grands problèmes en optimisation stochastique dynamique.

J.-C. Alais.
Risque et optimisation pour le management d’énergies.
Thèse de doctorat, Université Paris-Est, 2013.

V. Leclère.
Contributions aux méthodes de décomposition en optimisation stochastique.

K. Barty, P. Carpentier, G. Cohen and P. Girardeau,
Price decomposition in large-scale stochastic optimal control.