
IN101 - TD06 Énoncé
Instructions générales

— En cas de problèmes, demandez de l’aide ! Mais n’oubliez pas de vous référer, en premier lieu, au diapo-
sitives du cours magistral et aux références bibliographiques. L’index disponible en ligne vous aidera à lier
concepts abordés et suports de cours.

— Utilisez l’éditeur de texte de votre choix pour les exercices. En cas d’hésitation, privilégiez gedit.
— Si ce n’est pas encore le cas, créez un dossier IN101/.
— Dans ce dossier IN101/, créez un nouveau sous-dossier pour la séance de TD, que vous nommerez TD06/.
— Pour les questions du type : "Write, in natural language, an algorithm that. . . ", ouvrez un nouveau fichier

texte (d’extension ".txt") plutôt qu’un fichier python (d’extension ".py").
Exemple : helloworld.txt

— Documentez et commentez précisément votre code : décrivez l’objectif général de l’algorithme, expliquez
les points-clefs de son implémentation, détaillez les conditions normales d’éxécution du script (c.-à-d. le
fichier ".py") et exposez les cas extrêmes et les erreurs prévus.

Everyone

1 Mathematical Expressions in Infix Notation : Trees

Aims: Apply a binary tree to a concrete problem : evaluating mathematical expression in infix
notation.

In this exercise, we will represent a mathematical expression, for example 4 + (2 ∗ 3), as a
tree, as illustrated below. As these trees exemplify, every leaf node should contain a number,
and every non-leaf node should contain a mathematical operator.

’+’

4 ’*’

2 3

operator

number operator

number number

non-leaf

leaf

None None

non-leaf

leaf

None None

leaf

None None

For this exercise, you MUST download the module math_expression_tree (http://perso.
ensta-paristech.fr/~paun/ENSTA_IN101/math_expression_tree.py), and use it as a ba-
sis for your work. This module already contains the names of the functions and appropriate
asserts. Do NOT change the name of the module or the functions inside.

Several tests have already been provided in the module, but these tests are currently com-
mented out. Once you have written a function, uncomment the tests to see if your function
succeeds. Do this incrementally, instead of waiting until you have written all the functions.

Q1 Have a look at the existing code, and understand the relationship between the __init__
function and the illustration above. The main idea is that the data field in a MathTreeNode
can be either an integer number (1, 2, 3, etc), or a mathematical operator represented as a

1

http://perso.ensta-paristech.fr/~paun/ENSTA_IN101/math_expression_tree.py
http://perso.ensta-paristech.fr/~paun/ENSTA_IN101/math_expression_tree.py

character (’+’, ’-’, ’*’ or ’/’). For example, representing the mathematical expression (2 ∗ 3) with
a tree consisting of MathTreeNodes would be done as follows :

tree_object = MathTreeNode(MathTreeNode(None,2,None), ’∗’, MathTreeNode(None,3,None)))

Q2 Implement the member function is_leaf (self). Uncomment the relevant tests to see if the
function works as expected.

Q3 Implement the member function __str__(self) that returns a string representation of the
tree (including brackets) in infix notation. For instance, printing the tree above should yield the
string ‘(4+(2∗3)) ’ . Uncomment the relevant tests to see if the function works as expected.

Q4 Implement the member function prefix_expression(self) that returns a string representation of
the tree in prefix notation, which is also known as the “Polish notation”. See the docstring of this
function for examples. Uncomment the relevant tests to see if the function works as expected.

Q5 Implement the member function postfix_expression(self) that returns a string representation
of the tree in postfix notation, which is also known as the “reverse Polish notation”. See the
docstring of this function for examples. Uncomment the relevant tests to see if the function
works as expected.

Q6 Implement the member function evaluate(self), which evaluates the mathematical expres-
sion, i.e. the result of calling tree_object.evaluate() on the above example tree representing (4 +
(2 ∗ 3)) should yield the number ‘10’. Uncomment the relevant tests to see if the function works
as expected.

while number_of_things_i_dont_understand() > 0:
ask_question_to_mdc()

There will be an exam soon on the entire course. If you have any general/specific questions
about algorithmics/Python/debugging, this TD is a good opportunity (the last...) to ask your
MdC. Also, if you have not completed last week’s TD on linked lists, now is a good time to do
so.

If you are confident that you have understood everything : below is the last exercise of the
this week’s TD !

Advanced

2 Searching in trees

Aims: In the previous exercise, the MathTreeNode represented a node in a binary tree, be-
cause it had two subnodes (left and right). In this exercise, we consider trees that can have an
arbitrary number of subnodes, and we perform search within this tree.

Download the following module : http://perso.ensta-paristech.fr/~paun/ENSTA_IN101/
search_tree.py Several tests have already been provided in the module, but these tests are
currently commented out. Once you have written a function, uncomment the tests to see if your

2

http://perso.ensta-paristech.fr/~paun/ENSTA_IN101/search_tree.py
http://perso.ensta-paristech.fr/~paun/ENSTA_IN101/search_tree.py

function succeeds.

Q7 Have a look at the __init__ and add_child functions. How is the tree illustrated below repre-
sented by the TreeNode ? Why do you think the member variable is called ‘children’ ? Why is it
a list ?

Q8 Implement the member function find (self ,data) to TreeNode. This function returns True
if a TreeNode or any of its descendants contains data, and False otherwise. In the example
tree below, tree . find (9) should return True, but tree . find (8) should return False. Uncomment the
relevant tests to see if the function works as expected.

Q9 Implement the member function find_min_depth(self,data) to TreeNode. This function returns
the minimum depth at which a value was found, and None if the value could not be found at
the tree. In the example tree below, tree .find_depth(3) should return 0, tree .find_depth(17) should
return 1 (not 3 !), but tree . find (8) should return None. (why is it not Zen to return False in this
function ?). Uncomment the relevant tests to see if the function works as expected.

Q10 Implement the member function count_up_to_depth(self,data,depth) which counts the number
of occurences of ‘data’ in the tree, but only up to a certain depth. In the example tree be-
low, tree .count_up_to_depth(17) should return 0, 1, 1, 3 for depths of 0, 1, 2, 3, 4, 5 respectively.
Uncomment the relevant tests to see if the function works as expected.

3

4 9

12

5 17

18

7

11

17

10 5

17

3 New Tree structure

Aims: Understand Abstract Data Types

In a new module, called dic_tree.py provide a new full implementation of the Tree Abstract
Data Type using the default Python structure dict. All methods should be implemented as
simple functions that may take as an argument a variable of dict type.
Hint
Use a custom key ("data" for example) to store (as the value) the generic type of the information
stored in the node. Use an additional key (called "children" for example) to store the list of
children.

3

	Mathematical Expressions in Infix Notation: Trees
	Searching in trees
	New Tree structure

