
License CC BY-NC-SA 2.0

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

IN101: Algorithmique et Programmation
F. Brandner, A. Gepperth, T. Hecht, F. Stulp, V. Paun
ENSTA ParisTech

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Algorithms

What is an algorithm?

Output

Input

Instructions

• An algorithm is like a cooking recipe

1 Input (80gr de sucre, etc.)
2 Instructions
3 Output (galette des rois)

• Example from computer science
• sorting (“tri”)

5 1 4 2 3Input:

↓

Instructions
↓

1 2 3 4 5Output:

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

What is an algorithm?

Output

Input

Instructions

• An algorithm is like a cooking recipe
1 Input (80gr de sucre, etc.)

2 Instructions
3 Output (galette des rois)

• Example from computer science
• sorting (“tri”)

5 1 4 2 3Input:

↓

Instructions
↓

1 2 3 4 5Output:

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

What is an algorithm?

Output

Input

Instructions

• An algorithm is like a cooking recipe
1 Input (80gr de sucre, etc.)
2 Instructions

3 Output (galette des rois)

• Example from computer science
• sorting (“tri”)

5 1 4 2 3Input:

↓

Instructions
↓

1 2 3 4 5Output:

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

What is an algorithm?

Output

Input

Instructions

• An algorithm is like a cooking recipe
1 Input (80gr de sucre, etc.)
2 Instructions
3 Output (galette des rois)

• Example from computer science
• sorting (“tri”)

5 1 4 2 3Input:

↓

Instructions
↓

1 2 3 4 5Output:

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

What is an algorithm?

Output

Input

Instructions

• An algorithm is like a cooking recipe
1 Input (80gr de sucre, etc.)
2 Instructions
3 Output (galette des rois)

• Example from computer science
• sorting (“tri”)

5 1 4 2 3Input:

↓

Instructions
↓

1 2 3 4 5Output:

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

What is an algorithm?

Output

Input

Instructions

• An algorithm is like a cooking recipe
1 Input (80gr de sucre, etc.)
2 Instructions
3 Output (galette des rois)

• Example from computer science
• sorting (“tri”)

5 1 4 2 3Input:

↓

Instructions
↓

1 2 3 4 5Output:

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

What is an algorithm?

Output

Input

Instructions

• An algorithm is like a cooking recipe
1 Input (80gr de sucre, etc.)
2 Instructions
3 Output (galette des rois)

• Example from computer science
• sorting (“tri”)

5 1 4 2 3Input:

↓

Instructions
↓

1 2 3 4 5Output:

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

5 1 4 2 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

5 1 4 2 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

5 1 4 2 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

5 1 4 2 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 5 4 2 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 5 4 2 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 5 4 2 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 5 4 2 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 2 4 5 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 2 4 5 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 2 4 5 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 2 4 5 3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 2 3 5 4

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 2 3 5 4

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 2 3 5 4

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 2 3 5 4

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 2 3 4 5

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

1 2 3 4 5

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

• You call a sorting algorithm dozens of times a day!

• It is not magic. . . somewhere, a sorting algorithm is doing the work
• Algorithms automate repetitive work, if we program them

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

• You call a sorting algorithm dozens of times a day!

• It is not magic. . . somewhere, a sorting algorithm is doing the work
• Algorithms automate repetitive work, if we program them

Sort search results by relevance

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

• You call a sorting algorithm dozens of times a day!

• It is not magic. . . somewhere, a sorting algorithm is doing the work
• Algorithms automate repetitive work, if we program them

Sort hotels by price or stars

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

• You call a sorting algorithm dozens of times a day!
• It is not magic. . . somewhere, a sorting algorithm is doing the work

• Algorithms automate repetitive work, if we program them

Sort hotels by price or stars

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Algorithms

Example Algorithm: Selection Sort

Instructions

Go through all positions from front to back and do the following:
Find the number with the smallest value starting after the current position
Swap that smallest number with the number in the current position

• You call a sorting algorithm dozens of times a day!
• It is not magic. . . somewhere, a sorting algorithm is doing the work
• Algorithms automate repetitive work, if we program them

Sort hotels by price or stars

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Programming

What is programming?

• Represent algorithms in a formal language that
• Humans can (learn to) understand and write
• Computers can read and execute

• Example languages: C, C++, Java, Matlab, Python

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Programming

What is programming?

• Represent algorithms in a formal language that
• Humans can (learn to) understand and write
• Computers can read and execute

• Example languages: C, C++, Java, Matlab, Python

Finding the smallest number
in a list of numbers in Python

Input
an_input = [8, 9, 6, 5]
print(an_input)

Instructions
smallest = an_input[0]
for number in an_input:

if (number < smallest):
smallest = number

Output
output = smallest
print(output)

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Programming

Example Algorithm: Inceptionism

• “Inceptionism: Going Deeper into Neural Networks”
http://googleresearch.blogspot.co.uk/2015/06/inceptionism-going-deeper-into-neural.html

• Neural networks that dream!
• So what do they dream? Example...

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

http://googleresearch.blogspot.co.uk/2015/06/inceptionism-going-deeper-into-neural.html

Cours IN101

Outline

1 Algorithms

2 Programming

3 Cours IN101
Why IN101?
Objectives
Modalités

4 Python Basics

5 TD

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Cours IN101 Why IN101?

IN101 Algorithmique et Programmation: Why?

Automation is everywhere!
⇒ Algorithms are everywhere!

⇒ Programming is everywhere!

• Many programs are called every time you:
• do an Internet search
• use your smartphone
• drive your car

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Cours IN101 Why IN101?

IN101 Algorithmique et Programmation: Why?

Automation is everywhere!
⇒ Algorithms are everywhere!

⇒ Programming is everywhere!

• Many programs are called every time you:
• do an Internet search
• use your smartphone
• drive your car (even more if your car drives by itself!)

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Cours IN101 Why IN101?

IN101 Algorithmique et Programmation: Why?

Automation is everywhere!
⇒ Algorithms are everywhere!

⇒ Programming is everywhere!

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Cours IN101 Why IN101?

IN101 Algorithmique et Programmation: Why?

Automation is everywhere!
⇒ Algorithms are everywhere!

⇒ Programming is everywhere!

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Cours IN101 Why IN101?

IN101 Algorithmique et Programmation: Why?

Automation is everywhere!
⇒ Algorithms are everywhere!

⇒ Programming is everywhere!

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Cours IN101 Why IN101?

IN101 Algorithmique et Programmation: Why?

Automation is everywhere!
⇒ Algorithms are everywhere!

⇒ Programming is everywhere!

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Cours IN101 Why IN101?

IN101 Algorithmique et Programmation: Why?

Automation is everywhere!
⇒ Algorithms are everywhere!

⇒ Programming is everywhere!

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Cours IN101 Why IN101?

IN101 Algorithmique et Programmation: Why?

Automation is everywhere!
⇒ Algorithms are everywhere!

⇒ Programming is everywhere!

Two robots cooking pancakes, with algorithms written in Python and C++.

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Cours IN101 Objectives

IN101 Algorithmique et Programmation: Objectives

• Objectives are to learn to
• formulate algorithms from problem descriptions

• implement algorithms in a programming language
• the programming language being Python

• apply several common algorithms in computer science

• formulate and implement algorithms autonomously

• Objectives are not to learn
• how algorithms/programs are executed on a computer (→ IN102)
• all features of Python (→ https://docs.python.org/)
• all programming concepts (→ IN102, IN103, IN104, IN204)

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

https://docs.python.org/

Cours IN101 Objectives

IN101 Algorithmique et Programmation: Objectives

• Objectives are to learn to
• formulate algorithms from problem descriptions

• implement algorithms in a programming language
• the programming language being Python

• apply several common algorithms in computer science

• formulate and implement algorithms autonomously

• Objectives are not to learn
• how algorithms/programs are executed on a computer (→ IN102)
• all features of Python (→ https://docs.python.org/)
• all programming concepts (→ IN102, IN103, IN104, IN204)

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

https://docs.python.org/

Cours IN101 Modalités

IN101 Modalites

• Main source of information is DFR website:
• http://wwwdfr.ensta.fr/Cours/index.php?usebdd=ensta&sigle=IN101
• Schedule, links to books, links to PDFs of CM and TDs.

• Every week
• 15:15 – ≈16:15 “cours magistral”
• 15 minute break
• ≈16:30 – 18:30 “travaux dirigés”

• programming autonomously, exercises
• Contrôle de connaissances, marks

50% 1 graded TD
50% TD8, 15.11.2016

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

http://wwwdfr.ensta.fr/Cours/index.php?usebdd=ensta&sigle=IN101

Cours IN101 Modalités

IN101 Modalites

• Main source of information is DFR website:
• http://wwwdfr.ensta.fr/Cours/index.php?usebdd=ensta&sigle=IN101
• Schedule, links to books, links to PDFs of CM and TDs.

• Every week
• 15:15 – ≈16:15 “cours magistral”
• 15 minute break
• ≈16:30 – 18:30 “travaux dirigés”

• programming autonomously, exercises

• Contrôle de connaissances, marks
50% 1 graded TD
50% TD8, 15.11.2016

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

http://wwwdfr.ensta.fr/Cours/index.php?usebdd=ensta&sigle=IN101

Cours IN101 Modalités

IN101 Modalites

• Main source of information is DFR website:
• http://wwwdfr.ensta.fr/Cours/index.php?usebdd=ensta&sigle=IN101
• Schedule, links to books, links to PDFs of CM and TDs.

• Every week
• 15:15 – ≈16:15 “cours magistral”
• 15 minute break
• ≈16:30 – 18:30 “travaux dirigés”

• programming autonomously, exercises
• Contrôle de connaissances, marks

50% 1 graded TD
50% TD8, 15.11.2016

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

http://wwwdfr.ensta.fr/Cours/index.php?usebdd=ensta&sigle=IN101

Cours IN101 Modalités

Who are we?

• Cours magistraux (+ travaux dirigés)
• Vladimir Paun

• Research topics: formal methods, hard real-time system verification, WCET
• Nationality: Romanian
• Email: paun@ensta-paristech.fr
• Office: R.3.28 UIIS, ENSTA ParisTech

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Cours IN101 Modalités

Who are you?

• Up until 2 years ago, 90% of the students that arrived at ENSTA had
never programmed before

• But you have all (?) had Python in your “prépa”
• but we don’t know at all how well you learned it...

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Cours IN101 Modalités

Who are you?

• Up until 2 years ago, 90% of the students that arrived at ENSTA had
never programmed before

• But you have all (?) had Python in your “prépa”
• but we don’t know at all how well you learned it...

• Our strategy
• If you don’t know Python at all: we want you to be able to learn

• “Basic” part of the TD
• If you are already a hacker: we don’t want to bore you

• “Advanced” part of the TD (you can skip “Basic”, if you want)

• “Everyone” part of the TD: for everyone

• Please give us your (constructive) feedback!

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics

Outline

1 Algorithms

2 Programming

3 Cours IN101

4 Python Basics
Python Interpreter
Variables
Operators
Control flow
Ancient algorithms still used today

5 TD

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics

Programming

• Programming: represent algorithms in a formal language that
• Humans can (learn to) understand and write
• Computers can read and execute

• Example languages: C, C++, Java, Matlab, Python

• Why Python in IN101?
• easy to learn
• emphasizes readability
• multiple programming paradigms
• fun!
• you already know it from the prépa

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics

Programming

• Programming: represent algorithms in a formal language that
• Humans can (learn to) understand and write
• Computers can read and execute

• Example languages: C, C++, Java, Matlab, Python
• Why Python in IN101?

• easy to learn
• emphasizes readability
• multiple programming paradigms
• fun!
• you already know it from the prépa

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics

Origins of Python

Guido van Rossum – “in December 1989, I was
looking for a "hobby" programming project that would
keep me occupied during the week around Christmas.”

Name from “Monty Python’s Flying Circus”

Core philosophy: “The Zen of Python”
• Beautiful is better than ugly

• Explicit is better than implicit

• Simple is better than complex

• Complex is better than complicated

• Readability countsIN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics

Origins of Python

Guido van Rossum – “in December 1989, I was
looking for a "hobby" programming project that would
keep me occupied during the week around Christmas.”

Name from “Monty Python’s Flying Circus”

Core philosophy: “The Zen of Python”
• Préfèrer le beau au laid,

• l’explicite à l’implicite,

• le simple au complexe,

• le complexe au compliqué,

• La lisibilité compte.IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics

And now for something completely different...

let’s write some programs in Python!
IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Python Interpreter

“Hello World” in the Python language

• Put the following in a file helloworld.py
• Called a “Python script”

print("Hello World!")

• Execute the instructions in the script in a terminal

• Calls the “Python interpreter”
• Interprets the instructions and executes them one by one
• “Reads” from top to bottom

commline> python3 he l l owo r l d . py
He l lo World !

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Python Interpreter

“Hello World” in the Python language

• Put the following in a file helloworld.py
• Called a “Python script”

print("Hello World!")

• Execute the instructions in the script in a terminal
• Calls the “Python interpreter”
• Interprets the instructions and executes them one by one
• “Reads” from top to bottom

commline> python3 he l l owo r l d . py
He l lo World !

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Python Interpreter

Comments in Python

• Comments
• Everything on a line following # (le dièze)
• Ignored by the Python interpreter
• Intended only for humans reading the script

• Why comments?
• Documentation: explaining the code

This is a Python script that will print
"Hello World"
print("Hello World!")

commline> python3 helloworldcomments . py
He l lo World !

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Python Interpreter

Summary

• Python is a programming language
• The Python interpreter. . .

• is called from the command line (in a terminal)
• interprets a Python script from top to bottom
• executes the instructions in the script
• ignore comments (everything after a #)

• Writing a Python script

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Python Interpreter

Summary

• Python is a programming language
• The Python interpreter. . .

• is called from the command line (in a terminal)
• interprets a Python script from top to bottom
• executes the instructions in the script
• ignore comments (everything after a #)

• Writing a Python script

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Variables

Outline

1 Algorithms

2 Programming

3 Cours IN101

4 Python Basics
Python Interpreter
Variables
Operators
Control flow
Ancient algorithms still used today

5 TD

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Variables

Variables

• Variables in mathematics
• Character which is not fully specified, or unknown
• Example: f (x) = x2 (what is the value of the variable x?)

• Variables in computer science and programming are different. . .

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Variables

Variables: names and values

• Variables (in computer science/programming)
• A name/indentifier (“a”) associated with a value (“1”)
• Assignment: associating a variable with a value (“a = 1”)
• The value of a variable can change

a 1

b 3

a = 1 # Assign value ’1’ to variable with name ’a’
print(a)

commline > python3 variables1.py
1

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Variables

Variables: names and values

• Variables (in computer science/programming)
• A name/indentifier (“a”) associated with a value (“1”)
• Assignment: associating a variable with a value (“a = 1”)
• The value of a variable can change

a 7

b 3

a = 1 # Assign value ’1’ to variable with name ’a’
print(a)
a = 7 # Assign a new value to variable ’a’
print(a)

commline > python3 variables1.py
1
7

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Variables

Variables: names and values

• Variables (in computer science/programming)
• A name/indentifier (“a”) associated with a value (“1”)
• Assignment: associating a variable with a value (“a = 1”)
• The value of a variable can change

a 7 b 3

a = 1 # Assign value ’1’ to variable with name ’a’
print(a)
a = 7 # Assign a new value to variable ’a’
print(a)
b = 3 # Assign value ’3’ to variable with name ’b’
print(b)

commline > python3 variables1.py
1
7
3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Variables

Variables: names and values

• Variables (in computer science/programming)
• A name/indentifier (“a”) associated with a value (“1”)
• Assignment: associating a variable with a value (“a = 1”)
• The value of a variable can change

a 7 b 21

a = 1 # Assign value ’1’ to variable with name ’a’
print(a)
a = 7 # Assign a new value to variable ’a’
print(a)
b = 3 # Assign value ’3’ to variable with name ’b’
print(b)
b = a * b # Assign value ’a*b’ (=7*3) to variable with name ’b’
print(b)

commline > python3 variables1.py
1
7
3
21

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Variables

Different types of variables
• What types of variables are there? Some examples

Numbers – whole numbers or real numbers
Boolean – either True or False
Strings – sequence of characters

• Determine variable type with type()
• ‘Typing’ discussed in detail in IN102

whole_number = 1
real_number = 1.540
boolean = True
string = "Hello world"
print(whole_number)
print(real_number)
print(boolean)
print(string)

commline> python3 va r iab les2 . py
1
1.54
True
Hel lo wor ld

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Variables

Different types of variables
• What types of variables are there? Some examples

Numbers – whole numbers or real numbers
Boolean – either True or False
Strings – sequence of characters

• Determine variable type with type()

• ‘Typing’ discussed in detail in IN102

whole_number = 1
real_number = 1.540
boolean = True
string = "Hello world"
print(type(whole_number)) # integer
print(type(real_number)) # float
print(type(boolean)) # bool
print(type(string)) # str

commline> python3 va r iab les3 . py
<class ’ i n t ’ >
<class ’ f l o a t ’ >
<class ’ bool ’ >
<class ’ s t r ’ >

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Variables

Different types of variables
• What types of variables are there? Some examples

Numbers – whole numbers or real numbers
Boolean – either True or False
Strings – sequence of characters

• Determine variable type with type()
• ‘Typing’ discussed in detail in IN102

whole_number = 1
real_number = 1.540
boolean = True
string = "Hello world"
print(type(whole_number)) # integer
print(type(real_number)) # float
print(type(boolean)) # bool
print(type(string)) # str

commline> python3 va r iab les3 . py
<class ’ i n t ’ >
<class ’ f l o a t ’ >
<class ’ bool ’ >
<class ’ s t r ’ >

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Operators

Operators

• Returns a value when evaluated (e.g. 4 + 3 evaluates to 7)

• Assignment Operators: =
• Arithmetic Operators: + − ∗ / ∗∗ %
• Comparison Operators: == ! = < > <= >=
• Logical Operators: and or not

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Operators

Operators

• Returns a value when evaluated (e.g. 4 + 3 evaluates to 7)
• Assignment Operators: =

• Arithmetic Operators: + − ∗ / ∗∗ %
• Comparison Operators: == ! = < > <= >=
• Logical Operators: and or not

a = 1 # Assignment operator
print(a)
a = 3 # Assignment operator
print(a)

commline> python3 operators1 . py
1
3

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Operators

Operators

• Returns a value when evaluated (e.g. 4 + 3 evaluates to 7)
• Assignment Operators: =
• Arithmetic Operators: + − ∗ / ∗∗ %

• Comparison Operators: == ! = < > <= >=
• Logical Operators: and or not

a = 4 + 3 # Addition
print(a)
print(4 - 3) # Subtraction
print(4 * 3) # Multiplication
print(4 / 3) # Division
print(4 ** 3) # To the power of

commline> python3 operators2 . py
7
1
12
1.3333333333333333
64

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Operators

Operators

• Returns a value when evaluated (e.g. 4 + 3 evaluates to 7)
• Assignment Operators: =
• Arithmetic Operators: + − ∗ / ∗∗ %

• Comparison Operators: == ! = < > <= >=
• Logical Operators: and or not

Division
print(9 / 2) # => 4.5 (float)
print(9 // 2) # => 4 (int)

Remainder (modulo operator)
print(9 % 9)
print(9 % 7)

commline> python3 operators4 . py
4.5
4
0
2

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Operators

Operators

• Returns a value when evaluated (e.g. 4 + 3 evaluates to 7)
• Assignment Operators: =
• Arithmetic Operators: + − ∗ / ∗∗ %
• Comparison Operators: == ! = < > <= >=

• Logical Operators: and or not

print(4 == 3) # Equal?
print(4 != 3) # Not equal?
print(4 < 3) # Smaller than?
print(4 > 3) # Larger than?

a = (4==3) # Assign result of operator
to variable with name ’a’

print(a)

commline> python3 operators3 . py
False
True
False
True
False

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Operators

Operators

• Returns a value when evaluated (e.g. 4 + 3 evaluates to 7)
• Assignment Operators: =
• Arithmetic Operators: + − ∗ / ∗∗ %
• Comparison Operators: == ! = < > <= >=
• Logical Operators: and or not

print(1>0 and 1>2) # Both true: No...
print(1>0 or 1>2) # One of them true: Yes!
print(not (1>0 and 1>2)) # Not true that both are true? Yes!
print(not not 1>0) # Double negation

commline> python3 operators5 . py
False
True
True
True

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Operators

Operators

• Returns a value when evaluated (e.g. 4 + 3 evaluates to 7)
• Assignment Operators: =
• Arithmetic Operators: + − ∗ / ∗∗ %
• Comparison Operators: == ! = < > <= >=
• Logical Operators: and or not

• Expression: valid combination of value, variables and operators
• Examples: 23 23+4 23+a 2*(23+a)

• Examples: True True and (1>0)

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Operators

Operators

• Returns a value when evaluated (e.g. 4 + 3 evaluates to 7)
• Assignment Operators: =
• Arithmetic Operators: + − ∗ / ∗∗ %
• Comparison Operators: == ! = < > <= >=
• Logical Operators: and or not

• Later in IN101
• Formal definition
• Membership and Identity Operators
• + = − = ∗ = / = ∗∗ =
• Operators are actually functions (CM02)

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Operators

Summary

• Variables are names associated with values
• Variables and values may be combined with operators

• this yields expressions, which themselves yield values

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Outline

1 Algorithms

2 Programming

3 Cours IN101

4 Python Basics
Python Interpreter
Variables
Operators
Control flow
Ancient algorithms still used today

5 TD

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Outline: Control Flow

1 for loop (“boucle for”)
2 conditional execution (“alternatives”)
3 while loop (“boucle tant que”)

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Control Flow: for loop (“boucle for”)

• What if you want to execute the same instruction several times?

• for loop: assigns values in a list to a variable, one after the other
• range() function (→ CM2) generates sequences of numbers

• Careful, range(n1,n2) stops at n2-1
• range(n) starts at 0 and stops at n-1

1 number = 0
2 print(7 * number)
3 number = 1
4 print(7 * number)
5 number = 2
6 print(7 * number)
7 number = 3
8 print(7 * number)

commline> python3 fo r l oop0 . py
0
7
14
21

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Control Flow: for loop (“boucle for”)

• What if you want to execute the same instruction several times?
• for loop: assigns values in a list to a variable, one after the other

• range() function (→ CM2) generates sequences of numbers
• Careful, range(n1,n2) stops at n2-1
• range(n) starts at 0 and stops at n-1

1 number = 0
2 print(7 * number)
3 number = 1
4 print(7 * number)
5 number = 2
6 print(7 * number)
7 number = 3
8 print(7 * number)

for number in [0, 1, 2, 3]:
print(7 * number)

commline> python3 fo r l oop0 . py
0
7
14
21

commline> python3 fo r l oop1 . py
0
7
14
21

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Control Flow: for loop (“boucle for”)

• What if you want to execute the same instruction several times?
• for loop: assigns values in a list to a variable, one after the other
• range() function (→ CM2) generates sequences of numbers

• Careful, range(n1,n2) stops at n2-1
• range(n) starts at 0 and stops at n-1

1 number = 0
2 print(7 * number)
3 number = 1
4 print(7 * number)
5 number = 2
6 print(7 * number)
7 number = 3
8 print(7 * number)

for number in [0, 1, 2, 3]:
print(7 * number)

for number in range(0, 4):
print(7 * number)

for number in range(4):
print(7 * number)

commline> python3 fo r l oop0 . py
0
7
14
21

commline> python3 fo r l oop2 . py
0
7
14
21
0
7
14
21
0
7
14
21

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Indentation and code blocks

• Indentation is very important in Python

• Code block (“bloc d’instructions”)
• A section of code which is grouped together.
• Python groups code based on indentation

• Indentation: 4 spaces

1 for number in [0, 1, 2]:
2
3 # Inside the code block
4 print(7 * number)
5
6 # Inside the code block
7 print("abc")

for number in [0, 1, 2]:

Inside the code block
print(7 * number)

Outside the code block
print("abc")

commline> python3 inden ta t i on1 . py
0
abc
7
abc
14
abc

commline> python3 inden ta t i on2 . py
0
7
14
abc

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Indentation and code blocks

• Indentation is very important in Python

• Code block (“bloc d’instructions”)
• A section of code which is grouped together.
• Python groups code based on indentation

• Indentation: 4 spaces

1 for number in [0, 1, 2]:
2
3 # Inside the code block
4 print(7 * number)
5
6 # Inside the code block
7 print("abc")

for number in [0, 1, 2]:

Inside the code block
print(7 * number)

Outside the code block
print("abc")

commline> python3 inden ta t i on1 . py
0
abc
7
abc
14
abc

commline> python3 inden ta t i on2 . py
0
7
14
abc

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Indentation and code blocks

• Indentation is very important in Python
• Code block (“bloc d’instructions”)

• A section of code which is grouped together.
• Python groups code based on indentation

• Indentation: 4 spaces

1 for number in [0, 1, 2]:
2
3 # Inside the code block
4 print(7 * number)
5
6 # Inside the code block
7 print("abc")

for number in [0, 1, 2]:

Inside the code block
print(7 * number)

Outside the code block
print("abc")

commline> python3 inden ta t i on1 . py
0
abc
7
abc
14
abc

commline> python3 inden ta t i on2 . py
0
7
14
abc

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Indentation and code blocks

• Indentation is very important in Python
• Code block (“bloc d’instructions”)

• A section of code which is grouped together.
• Python groups code based on indentation

• Indentation: 4 spaces

1 for number in [0, 1, 2]:
2
3 # Inside the code block
4 print(7 * number)
5
6 # Inside the code block
7 print("abc")

for number in [0, 1, 2]:

Inside the code block
print(7 * number)

Outside the code block
print("abc")

commline> python3 inden ta t i on1 . py
0
abc
7
abc
14
abc

commline> python3 inden ta t i on2 . py
0
7
14
abc

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Nested loop (“boucle imbriquée”)

• Nested loop: a loop inside a loop

for number1 in [4000, 1000]:
for number2 in [20, 30]:

print(number1 + number2)

commline> python3 fo r loopnes ted . py
4020
4030
1020
1030

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Nested loop (“boucle imbriquée”)

• Nested loop: a loop inside a loop

for number1 in [4000, 1000]:
for number2 in [20, 30]:

for number3 in [6, 7]:
print(number1 + number2 + number3)

commline> python3 for loopnested2 . py
4026
4027
4036
4037
1026
1027
1036
1037

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

A first algorithm with for: factorial

• Implement factorial: f (n) = n! = 1 · 2 · · · · · (n − 2) · (n − 1) · n
1 Basic version (only for f (4), i.e. f (4) = 1 ∗ 2 ∗ 3 ∗ 4 = 24)

2 With for loop (only for f (4))
3 With range (only for f (4))
4 With input (for f (n))

Algorithm: computes factorial = 4! = 1*2*3*4 = 24
factorial = 1 # 1
factorial = 2 * factorial # 2 <- 2*1
factorial = 3 * factorial # 6 <- 3*2
factorial = 4 * factorial # 24 <- 4*6

print(factorial) # Output

commline> python3 f a c t o r i a l 0 . py
24

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

A first algorithm with for: factorial

• Implement factorial: f (n) = n! = 1 · 2 · · · · · (n − 2) · (n − 1) · n
1 Basic version (only for f (4), i.e. f (4) = 1 ∗ 2 ∗ 3 ∗ 4 = 24)
2 With for loop (only for f (4))

3 With range (only for f (4))
4 With input (for f (n))

Algorithm: computes factorial = 4! = 1*2*3*4 = 24
factorial = 1
for i in [2, 3, 4]: # 2, 3, 4

factorial = i * factorial # 2<-2*1, 6<-3*2, 24<-4*6

print(factorial) # Output

commline> python3 f a c t o r i a l 1 . py
24

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

A first algorithm with for: factorial

• Implement factorial: f (n) = n! = 1 · 2 · · · · · (n − 2) · (n − 1) · n
1 Basic version (only for f (4), i.e. f (4) = 1 ∗ 2 ∗ 3 ∗ 4 = 24)
2 With for loop (only for f (4))
3 With range (only for f (4))

4 With input (for f (n))

Algorithm: computes factorial = 4! = 1*2*3*4 = 24
factorial = 1
for i in range(2, 4+1): # 2, 3, 4

factorial = i * factorial # 2<-2*1, 6<-3*2, 24<-4*6

print(factorial) # Output

commline> python3 f a c t o r i a l 1 a . py
24

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

A first algorithm with for: factorial

• Implement factorial: f (n) = n! = 1 · 2 · · · · · (n − 2) · (n − 1) · n
1 Basic version (only for f (4), i.e. f (4) = 1 ∗ 2 ∗ 3 ∗ 4 = 24)
2 With for loop (only for f (4))
3 With range (only for f (4))
4 With input (for f (n))

n = 4 # Input
Algorithm: computes factorial = n! = 1*2*...*(n-2)*(n-1)*n
factorial = 1
for i in range(2, n+1): # 2, 3, 4, ..., n-2, n-1, n

factorial = i * factorial # 2=2*1, 6=3*2, 24=4*6, etc.

print(factorial) # Output

commline> python3 f a c t o r i a l 2 . py
24

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

A first algorithm with for: factorial

• Implement factorial: f (n) = n! = 1 · 2 · · · · · (n − 2) · (n − 1) · n
1 Basic version (only for f (4), i.e. f (4) = 1 ∗ 2 ∗ 3 ∗ 4 = 24)
2 With for loop (only for f (4))
3 With range (only for f (4))
4 With input (for f (n))

n = 10 # Input
Algorithm: computes factorial = n! = 1*2*...*(n-2)*(n-1)*n
factorial = 1
for i in range(2, n+1): # 2, 3, 4, ..., n-2, n-1, n

factorial = i * factorial # 2=2*1, 6=3*2, 24=4*6, etc.

print(factorial) # Output

commline> python3 f a c t o r i a l 2 a . py
3628800

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Conditional execution (“alternatives”)

• if statement (“test si”)
• execute intructions only if a certain condition holds

• if-then-else statement (“test si sinon”): for convencience
• elif: combines else and if: for convencience

a = 3
b = 4
if (a < b): # Condition (expression yielding boolean)

print("a is smaller than b")
if (b <= a): # Condition (expression yielding boolean)

print("b is smaller than or equal to a")

commline> python3 i f s t a t e m e n t . py
a is smal le r than b

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Conditional execution (“alternatives”)

• if statement (“test si”)
• execute intructions only if a certain condition holds

• if-then-else statement (“test si sinon”): for convencience

• elif: combines else and if: for convencience

a = 3
b = 4
if (a < b): # Condition (expression yielding boolean)

print("a is smaller than b")
else: # If condition above doesn’t hold

print("b is smaller than or equal to a")

commline> python3 i f t hene l ses ta temen t . py
a is smal le r than b

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Conditional execution (“alternatives”)

• if statement (“test si”)
• execute intructions only if a certain condition holds

• if-then-else statement (“test si sinon”): for convencience
• elif: combines else and if: for convencience

a = 3
b = 4
if (a < b): # Condition (expression yielding boolean)

print("a is smaller than b")
elif (a > b): # Condition (expression yielding boolean)

print("a is larger than b")
else: # If conditions above do not hold

print("a is equal to b")

commline> python3 i f t h e n e l i f e l s e s t a t e m e n t . py
a is smal le r than b

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Control Flow: while loop (“boucle tant que”)

• Combines a loop with a condition
• useful when you don’t know number of iterations in advance

Print(the first multiple of 7)
that is larger than 10000
number = 0
while (number <= 10000):
number = number + 7

print(number)

commline> python3 wh i le loop . py
10003

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Control flow

Outline

1 Algorithms

2 Programming

3 Cours IN101

4 Python Basics
Python Interpreter
Variables
Operators
Control flow
Ancient algorithms still used today

5 TD

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Euclid’s algorithm (≈ 300 BC)
• Specification: Greatest common divisor (“Plus grand commun diviseur”)

• Divisors of 12: 1, 2, 3, 4, 6, 12
• Divisors of 16: 1, 2, 4, 8, 16
• Greatest common divisor of 12 and 16: 4

• Algorithm: Euclid’s algorithm in English
• Starting with a pair of positive integers, form a new pair consisting of the smaller number and the

difference between the larger number and the smaller number. This process repeats until the

numbers in the new pair are equal to each other; that value is the greatest common divisor of the

original pair. (taken from Wikipedia)

• Programming: Euclid’s algorithm in Python

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Euclid’s algorithm (≈ 300 BC)
• Specification: Greatest common divisor (“Plus grand commun diviseur”)

• Divisors of 12: 1, 2, 3, 4, 6, 12
• Divisors of 16: 1, 2, 4, 8, 16
• Greatest common divisor of 12 and 16: 4

• Algorithm: Euclid’s algorithm in English
• Starting with a pair of positive integers, form a new pair consisting of the smaller number and the

difference between the larger number and the smaller number. This process repeats until the

numbers in the new pair are equal to each other; that value is the greatest common divisor of the

original pair. (taken from Wikipedia)

• Programming: Euclid’s algorithm in Python

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Euclid’s algorithm (≈ 300 BC)
• Specification: Greatest common divisor (“Plus grand commun diviseur”)

• Divisors of 12: 1, 2, 3, 4, 6, 12
• Divisors of 16: 1, 2, 4, 8, 16
• Greatest common divisor of 12 and 16: 4

• Algorithm: Euclid’s algorithm in English
• Starting with a pair of positive integers, form a new pair consisting of the smaller number and the

difference between the larger number and the smaller number. This process repeats until the

numbers in the new pair are equal to each other; that value is the greatest common divisor of the

original pair. (taken from Wikipedia)

• Programming: Euclid’s algorithm in Python

a = 12 # Input
b = 16 # Input

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Euclid’s algorithm (≈ 300 BC)
• Specification: Greatest common divisor (“Plus grand commun diviseur”)

• Divisors of 12: 1, 2, 3, 4, 6, 12
• Divisors of 16: 1, 2, 4, 8, 16
• Greatest common divisor of 12 and 16: 4

• Algorithm: Euclid’s algorithm in English
• Starting with a pair of positive integers, form a new pair consisting of the smaller number and the

difference between the larger number and the smaller number. This process repeats until the

numbers in the new pair are equal to each other; that value is the greatest common divisor of the

original pair. (taken from Wikipedia)

• Programming: Euclid’s algorithm in Python

a = 12 # Input
b = 16 # Input

if (a > b):
a = a - b # ’a’ is the largest number

else:
b = b - a # ’b’ is the largest number

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Euclid’s algorithm (≈ 300 BC)
• Specification: Greatest common divisor (“Plus grand commun diviseur”)

• Divisors of 12: 1, 2, 3, 4, 6, 12
• Divisors of 16: 1, 2, 4, 8, 16
• Greatest common divisor of 12 and 16: 4

• Algorithm: Euclid’s algorithm in English
• Starting with a pair of positive integers, form a new pair consisting of the smaller number and the

difference between the larger number and the smaller number. This process repeats until the

numbers in the new pair are equal to each other; that value is the greatest common divisor of the

original pair. (taken from Wikipedia)

• Programming: Euclid’s algorithm in Python

a = 12 # Input
b = 16 # Input

while (???): # continue until...
if (a > b):

a = a - b # ’a’ is the largest number
else:

b = b - a # ’b’ is the largest number

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Euclid’s algorithm (≈ 300 BC)
• Specification: Greatest common divisor (“Plus grand commun diviseur”)

• Divisors of 12: 1, 2, 3, 4, 6, 12
• Divisors of 16: 1, 2, 4, 8, 16
• Greatest common divisor of 12 and 16: 4

• Algorithm: Euclid’s algorithm in English
• Starting with a pair of positive integers, form a new pair consisting of the smaller number and the

difference between the larger number and the smaller number. This process repeats until the

numbers in the new pair are equal to each other; that value is the greatest common divisor of the

original pair. (taken from Wikipedia)

• Programming: Euclid’s algorithm in Python

a = 12 # Input
b = 16 # Input

while (a != b): # continue until ’a’ and ’b’ are equal
if (a > b):

a = a - b # ’a’ is the largest number
else:

b = b - a # ’b’ is the largest number

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Euclid’s algorithm (≈ 300 BC)
• Specification: Greatest common divisor (“Plus grand commun diviseur”)

• Divisors of 12: 1, 2, 3, 4, 6, 12
• Divisors of 16: 1, 2, 4, 8, 16
• Greatest common divisor of 12 and 16: 4

• Algorithm: Euclid’s algorithm in English
• Starting with a pair of positive integers, form a new pair consisting of the smaller number and the

difference between the larger number and the smaller number. This process repeats until the

numbers in the new pair are equal to each other; that value is the greatest common divisor of the

original pair. (taken from Wikipedia)

• Programming: Euclid’s algorithm in Python

a = 12 # Input
b = 16 # Input

while (a != b): # continue until ’a’ and ’b’ are equal
if (a > b):

a = a - b # ’a’ is the largest number
else:

b = b - a # ’b’ is the largest number

gcd = a
print(gcd) # Output

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Euclid’s algorithm (≈ 300 BC)
• Specification: Greatest common divisor (“Plus grand commun diviseur”)

• Divisors of 12: 1, 2, 3, 4, 6, 12
• Divisors of 16: 1, 2, 4, 8, 16
• Greatest common divisor of 12 and 16: 4

• Algorithm: Euclid’s algorithm in English
• Starting with a pair of positive integers, form a new pair consisting of the smaller number and the

difference between the larger number and the smaller number. This process repeats until the

numbers in the new pair are equal to each other; that value is the greatest common divisor of the

original pair. (taken from Wikipedia)

• Programming: Euclid’s algorithm in Python

• Why is a > 2 millenia old algorithm still important today?
• Used in security protocols (e.g. in the RSA algorithm)
• Any secure communication (e.g. https://) will call this algorithm many

times

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Sieve of Eratosthenes (≈ 200 BC)

• Prime number (“nombre premier”)
• natural number {1,2,3, . . .}
• greater than 1
• only 2 positive divisors: 1 and itself

• Requested algorithm
• Input: number n
• Output: all prime numbers ≤ n

Design an algorithm for this with your neighbor(s)!

Sieve of Eratosthenes

• Eratosthenes of Cyrene, 276 BC – 195 BC
• Found one of the most efficient algorithms
• Explanation will have to wait until CM3. . .

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Sieve of Eratosthenes (≈ 200 BC)

• Prime number (“nombre premier”)
• natural number {1,2,3, . . .}
• greater than 1
• only 2 positive divisors: 1 and itself

• Requested algorithm
• Input: number n
• Output: all prime numbers ≤ n

Design an algorithm for this with your neighbor(s)!

Sieve of Eratosthenes

• Eratosthenes of Cyrene, 276 BC – 195 BC
• Found one of the most efficient algorithms
• Explanation will have to wait until CM3. . .

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Sieve of Eratosthenes (≈ 200 BC)

• Prime number (“nombre premier”)
• natural number {1,2,3, . . .}
• greater than 1
• only 2 positive divisors: 1 and itself

• Requested algorithm
• Input: number n
• Output: all prime numbers ≤ n

Design an algorithm for this with your neighbor(s)!

Sieve of Eratosthenes

• Eratosthenes of Cyrene, 276 BC – 195 BC
• Found one of the most efficient algorithms
• Explanation will have to wait until CM3. . .

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Prime factorization

• Requested algorithm
• Input: n, the product of two unknown primes n = a · b
• Output: a and b

• Finding a slow algorithm is straightforward (TD2)
1 Compute all primes up to n − 2

• Using the algorithm you just made
• Or the Sieve of Eratosthenes

2 Multiply combinations of primes until you get n
• Finding a fast algorithm is really difficult

• if you find a fast algorithm, I will pay you 1.000.000EUR for it.

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Prime factorization

• Requested algorithm
• Input: n, the product of two unknown primes n = a · b
• Output: a and b

• Finding a slow algorithm is straightforward (TD2)
1 Compute all primes up to n − 2

• Using the algorithm you just made
• Or the Sieve of Eratosthenes

2 Multiply combinations of primes until you get n

• Finding a fast algorithm is really difficult

• if you find a fast algorithm, I will pay you 1.000.000EUR for it.

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Prime factorization

• Requested algorithm
• Input: n, the product of two unknown primes n = a · b
• Output: a and b

• Finding a slow algorithm is straightforward (TD2)
1 Compute all primes up to n − 2

• Using the algorithm you just made
• Or the Sieve of Eratosthenes

2 Multiply combinations of primes until you get n
• Finding a fast algorithm is really difficult

• if you find a fast algorithm, I will pay you 1.000.000EUR for it.

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Python Basics Ancient algorithms

Prime factorization

• Requested algorithm
• Input: n, the product of two unknown primes n = a · b
• Output: a and b

• Finding a slow algorithm is straightforward (TD2)
1 Compute all primes up to n − 2

• Using the algorithm you just made
• Or the Sieve of Eratosthenes

2 Multiply combinations of primes until you get n
• Finding a fast algorithm is really difficult

• if you find a fast algorithm, I will pay you 1.000.000EUR for it.

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

TD

Summary of this CM
• Algorithm

• a recipe with input, instructions, and output
• a set of rules that precisely defines a sequence of operations.

• Programming
• implement algorithms in a (formal) language that can be written by a human,

and executed by a computer

• Python
• programming language, easy to learn, fun, Monty Python
• executing instructions in a script: Python interpreter

• Python language
• variables: names with values
• types of values: numbers, lists, strings, booleans
• operators: combining values and variables
• control flow: for, if, while

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

TD

Aims of the upcoming TD
• Write your first Python program, calling the interpreter

• Design your first algorithm

• Program your first algorithms

• Create a clean, comfortable programming environment
• Choose an editor you are proficient in

• Learn to find solutions yourself, with help from
• the slides
• the Python documentation: https://docs.python.org/3/
• your favourite search engine
• the books that are provided as PDFs

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

https://docs.python.org/3/

Part I: Basics
CM1 variables, control flow a=1, for/if/while
CM2 functions and modules factorial(6), import math

Part II: Data Structures (Built-in)
CM3 lists, arrays, dictionaries [2, 3, 1]

Part III: Search and Sort
CM4 searching/sorting [2, 3, 1]→ [1, 2, 3]
CM5 Exam 1

Part IV: Linked Data Structures
CM6 objects/classes circle_object = Circle(0,1,3)
CM7 linked lists ‘a’→ ‘e’→ ‘b’→ x
CM8 trees Ψ

CM9 Exam 2

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

Have fun programming your first algorithms in the first TD!

IN101: Algorithmique et Programmation (Introduction) – Freek Stulp

	Algorithms
	Programming
	Cours IN101
	Why IN101?
	Objectives
	Modalités

	Python Basics
	Python Interpreter
	Variables
	Operators
	Control flow
	Ancient algorithms still used today

	TD

