
I

License CC BY-NC-SA 2.0

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

MO101: Python and Shell Script
Vladimir Paun
ENSTA ParisTech

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Introduction

Shell Script

A shell script is a computer program designed to be run by the Unix shell, a
command-line interpreter. The various dialects of shell scripts are considered

to be scripting languages.

MO101: Python and Shell Script – Vladimir Paun

Introduction

Shell Script

Typical Unix/Linux/Posix-compliant installations include:
• Korn Shell (ksh)
• Bourne shell (sh) - one of the oldest still in use
• C Shell (csh),
• Bourne Again Shell (bash),
• a remote shell (rsh),
• a secure shell for SSL telnet connections (ssh), etc.

Other shells available based on programmes such as
• Python,
• Ruby,
• C,
• Java,
• Perl, etc.

MO101: Python and Shell Script – Vladimir Paun

Introduction

Shell Script

Typical Unix/Linux/Posix-compliant installations include:
• Korn Shell (ksh)
• Bourne shell (sh) - one of the oldest still in use
• C Shell (csh),
• Bourne Again Shell (bash),
• a remote shell (rsh),
• a secure shell for SSL telnet connections (ssh), etc.

Other shells available based on programmes such as
• Python,
• Ruby,
• C,
• Java,
• Perl, etc.

MO101: Python and Shell Script – Vladimir Paun

Introduction

Verisimilitude

The invocation of shell scripts interpreters is handled as a core operating
system feature.

Shell scripts are set up and executed by the OS itself

Modern shell script:
• not just on the same footing as system commands
• many system commands are actually shell scripts

or just scripts as some of them are not interpreted by a shell, but instead by
Perl, Python, or some other language

MO101: Python and Shell Script – Vladimir Paun

Introduction

Verisimilitude

The invocation of shell scripts interpreters is handled as a core operating
system feature.

Shell scripts are set up and executed by the OS itself

Modern shell script:
• not just on the same footing as system commands
• many system commands are actually shell scripts

or just scripts as some of them are not interpreted by a shell, but instead by
Perl, Python, or some other language

MO101: Python and Shell Script – Vladimir Paun

Introduction

Verisimilitude

The invocation of shell scripts interpreters is handled as a core operating
system feature.

Shell scripts are set up and executed by the OS itself

Modern shell script:
• not just on the same footing as system commands
• many system commands are actually shell scripts

or just scripts as some of them are not interpreted by a shell, but instead by
Perl, Python, or some other language

MO101: Python and Shell Script – Vladimir Paun

Introduction

Shell Script - Life Cycle

Shell scripts often:
• serve as an initial stage in software development, and
• later serve to a different underlying implementation, most commonly

being converted to Perl, Python, or C.

The interpreter directive:
• implementation detail - fully hidden inside the script,
• no exposed filename extension,
• provides for seamless reimplementation in different languages with no

impact on end users.

While files with the ".sh" file extension are usually a shell script of some kind,
most shell scripts do not have any filename extension.

MO101: Python and Shell Script – Vladimir Paun

Introduction

Shell Script - Life Cycle

Shell scripts often:
• serve as an initial stage in software development, and
• later serve to a different underlying implementation, most commonly

being converted to Perl, Python, or C.

The interpreter directive:
• implementation detail - fully hidden inside the script,
• no exposed filename extension,
• provides for seamless reimplementation in different languages with no

impact on end users.

While files with the ".sh" file extension are usually a shell script of some kind,
most shell scripts do not have any filename extension.

MO101: Python and Shell Script – Vladimir Paun

Introduction

Advantages and disadvantages

+ commands and syntax are exactly the same as those directly entered at
the command-line;

+ much quicker to write than equivalent code in other languages;
• easy program or file selection
• quick start
• interactive debugging

- prone to costly errors;

catastrophic (typing?) error: rm -rf * / instead of rm -rf */
or is it the other way around ?

NO!

- slow execution speed
- need to launch a new process for most of executed command
- pipelining helps, but complex script are several orders of magnitude

slower than equivalent compiled program

MO101: Python and Shell Script – Vladimir Paun

Introduction

Advantages and disadvantages

+ commands and syntax are exactly the same as those directly entered at
the command-line;

+ much quicker to write than equivalent code in other languages;
• easy program or file selection
• quick start
• interactive debugging

- prone to costly errors;

catastrophic (typing?) error: rm -rf * / instead of rm -rf */
or is it the other way around ?

NO!

- slow execution speed
- need to launch a new process for most of executed command
- pipelining helps, but complex script are several orders of magnitude

slower than equivalent compiled program

MO101: Python and Shell Script – Vladimir Paun

Introduction

Advantages and disadvantages

+ commands and syntax are exactly the same as those directly entered at
the command-line;

+ much quicker to write than equivalent code in other languages;
• easy program or file selection
• quick start
• interactive debugging

- prone to costly errors;

catastrophic (typing?) error: rm -rf * / instead of rm -rf */
or is it the other way around ?

NO!

- slow execution speed
- need to launch a new process for most of executed command
- pipelining helps, but complex script are several orders of magnitude

slower than equivalent compiled program

MO101: Python and Shell Script – Vladimir Paun

Introduction

Advantages and disadvantages

+ commands and syntax are exactly the same as those directly entered at
the command-line;

+ much quicker to write than equivalent code in other languages;
• easy program or file selection
• quick start
• interactive debugging

- prone to costly errors;
catastrophic (typing?) error: rm -rf * / instead of rm -rf */

or is it the other way around ?

NO!

- slow execution speed
- need to launch a new process for most of executed command
- pipelining helps, but complex script are several orders of magnitude

slower than equivalent compiled program

MO101: Python and Shell Script – Vladimir Paun

Introduction

Advantages and disadvantages

+ commands and syntax are exactly the same as those directly entered at
the command-line;

+ much quicker to write than equivalent code in other languages;
• easy program or file selection
• quick start
• interactive debugging

- prone to costly errors;
catastrophic (typing?) error: rm -rf * / instead of rm -rf */
or is it the other way around ?

NO!

- slow execution speed
- need to launch a new process for most of executed command
- pipelining helps, but complex script are several orders of magnitude

slower than equivalent compiled program

MO101: Python and Shell Script – Vladimir Paun

Introduction

Advantages and disadvantages

+ commands and syntax are exactly the same as those directly entered at
the command-line;

+ much quicker to write than equivalent code in other languages;
• easy program or file selection
• quick start
• interactive debugging

- prone to costly errors;
catastrophic (typing?) error: rm -rf * / instead of rm -rf */
or is it the other way around ? NO!

- slow execution speed
- need to launch a new process for most of executed command
- pipelining helps, but complex script are several orders of magnitude

slower than equivalent compiled program

MO101: Python and Shell Script – Vladimir Paun

Introduction

Advantages and disadvantages

+ commands and syntax are exactly the same as those directly entered at
the command-line;

+ much quicker to write than equivalent code in other languages;
• easy program or file selection
• quick start
• interactive debugging

- prone to costly errors;
catastrophic (typing?) error: rm -rf * / instead of rm -rf */
or is it the other way around ? NO!

- slow execution speed
- need to launch a new process for most of executed command
- pipelining helps, but complex script are several orders of magnitude

slower than equivalent compiled program

MO101: Python and Shell Script – Vladimir Paun

Introduction

Shell Script - typical Linux flow

Input Disk ----> sh/ksh/bash ------------------> Output Disk
| ^
v |
--> Python script ------
| ^
v |
--> awk script ---------
| ^
v |
--> sed script ----------
| ^
v |
--> C/C++ program ------
| ^
v |
--- Java program -------
| ^
v |
: :

MO101: Python and Shell Script – Vladimir Paun

Introduction

Shells are the glue of Linux

Linux shells like sh/ksh/bash/...
• provide input/output/flow-control designation facilities
• they are Turing complete languages in their own right while
• optimized to efficiently pass data and control to and from other executing

processes written in any language the O/S supports.

MO101: Python and Shell Script – Vladimir Paun

Introduction

Shell Scripting - Program Flow

Figure: default
MO101: Python and Shell Script – Vladimir Paun

To script or not to script

Scripting vs. Compiled Languages

Scripting languages
• Bash, Python, Perl, postscript, matlab/octave, ...
• Interactive mode
• Few optimisations
• Easy to use
• No binary files (hardly useful for commercial software)

Compiled languages
• C, C++, Fortran, ...
• Efficient for computational expensive tasks
• Source code is compiled to binary code

MO101: Python and Shell Script – Vladimir Paun

To script or not to script

Scripting vs. Compiled Languages

Scripting languages
• Bash, Python, Perl, postscript, matlab/octave, ...
• Interactive mode
• Few optimisations
• Easy to use
• No binary files (hardly useful for commercial software)

Compiled languages
• C, C++, Fortran, ...
• Efficient for computational expensive tasks
• Source code is compiled to binary code

MO101: Python and Shell Script – Vladimir Paun

To script or not to script

What to choose?

Unix Shell vs. Python

MO101: Python and Shell Script – Vladimir Paun

To script or not to script

Unix Shell vs. Python

Shell (Bash)
• Seperate program for each simple task
• Gluing together programs with a script
• Not really a full programming language
• Powerful tools available
• Suitable for small tools (1-100 lines of code)

Python
• Full programming language (one that you know already)
• Large number of libraries available
• Intuitive naming conventions
• Suitable for almost any task

MO101: Python and Shell Script – Vladimir Paun

To script or not to script

Unix Shell vs. Python

Shell (Bash)
• Seperate program for each simple task
• Gluing together programs with a script
• Not really a full programming language
• Powerful tools available
• Suitable for small tools (1-100 lines of code)

Python
• Full programming language (one that you know already)
• Large number of libraries available
• Intuitive naming conventions
• Suitable for almost any task

MO101: Python and Shell Script – Vladimir Paun

To script or not to script

Use of Shell Scripts

Where to use them:
• System administration
• Automating everyday terminal tasks
• Searching in and manipulating ASCII-Files, etc.

Where not to use them:
• Lots of mathematical operations
• Computational expensive tasks
• Large programs which need structuring and modularisation
• Arbitrary file access
• Data structures
• Platform-independent programs, etc.

MO101: Python and Shell Script – Vladimir Paun

To script or not to script

Use of Shell Scripts

Where to use them:
• System administration
• Automating everyday terminal tasks
• Searching in and manipulating ASCII-Files, etc.

Where not to use them:
• Lots of mathematical operations
• Computational expensive tasks
• Large programs which need structuring and modularisation
• Arbitrary file access
• Data structures
• Platform-independent programs, etc.

MO101: Python and Shell Script – Vladimir Paun

To script or not to script

General Programming Rules

• Comments
• Comments
• Comments
• Problem⇒ algorithm⇒ program
• Modular programming
• Tests
• Generic where possible, specific where necessary
• ...

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts

Python
• great flexible programming language

• imperative
• interpreted
• object oriented

• can be used in many situations.

In this lecture we use Python to enhance the Unix/Linux shell
environment.

Practical Note: You can even name your shell scripts with the .sh extension
and run them as you would run any bash shell script.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts

Python
• great flexible programming language

• imperative
• interpreted
• object oriented

• can be used in many situations.

In this lecture we use Python to enhance the Unix/Linux shell
environment.

Practical Note: You can even name your shell scripts with the .sh extension
and run them as you would run any bash shell script.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts

Python
• great flexible programming language

• imperative
• interpreted
• object oriented

• can be used in many situations.

In this lecture we use Python to enhance the Unix/Linux shell
environment.

Practical Note: You can even name your shell scripts with the .sh extension
and run them as you would run any bash shell script.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts - Example

Python scripts should start with the following line of code:

#! /usr/bin/env python
for i in range(4):

print(i,)

Of course this depends on where you have python installed.

Similar with bash scripts, remember?

Don’t forget to make the file executable. How?

$> chmod +x scriptName.py

and put it in a directory on your PATH (can be a symlink):

cd /bin/
ln -s /some/path/to/myscript/scriptName.py

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts - Example

Python scripts should start with the following line of code:

#! /usr/bin/env python
for i in range(4):

print(i,)

Of course this depends on where you have python installed.

Similar with bash scripts, remember?

Don’t forget to make the file executable. How?

$> chmod +x scriptName.py

and put it in a directory on your PATH (can be a symlink):

cd /bin/
ln -s /some/path/to/myscript/scriptName.py

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts - Example

Python scripts should start with the following line of code:

#! /usr/bin/env python
for i in range(4):

print(i,)

Of course this depends on where you have python installed.

Similar with bash scripts, remember?

Don’t forget to make the file executable. How?

$> chmod +x scriptName.py

and put it in a directory on your PATH (can be a symlink):

cd /bin/
ln -s /some/path/to/myscript/scriptName.py

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts - Example

Python scripts should start with the following line of code:

#! /usr/bin/env python
for i in range(4):

print(i,)

Of course this depends on where you have python installed.

Similar with bash scripts, remember?

Don’t forget to make the file executable. How?

$> chmod +x scriptName.py

and put it in a directory on your PATH (can be a symlink):

cd /bin/
ln -s /some/path/to/myscript/scriptName.py

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts - Example

Python scripts should start with the following line of code:

#! /usr/bin/env python
for i in range(4):

print(i,)

Of course this depends on where you have python installed.

Similar with bash scripts, remember?

Don’t forget to make the file executable. How?

$> chmod +x scriptName.py

and put it in a directory on your PATH (can be a symlink):

cd /bin/
ln -s /some/path/to/myscript/scriptName.py

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts - Example

Python scripts should start with the following line of code:

#! /usr/bin/env python
for i in range(4):

print(i,)

Of course this depends on where you have python installed.

Similar with bash scripts, remember?

Don’t forget to make the file executable. How?

$> chmod +x scriptName.py

and put it in a directory on your PATH (can be a symlink):

cd /bin/
ln -s /some/path/to/myscript/scriptName.py

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts - Example

A Python script:

#! /usr/bin/env python
for i in range(4):

print(i,)

Now you can execute your script by using the following command:

$> ./scriptName.py

Remember that you can loose the .py extension.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts - Example

A Python script:

#! /usr/bin/env python
for i in range(4):

print(i,)

Now you can execute your script by using the following command:

$> ./scriptName.py

Remember that you can loose the .py extension.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

Writing Python Scripts - Example

A Python script:

#! /usr/bin/env python
for i in range(4):

print(i,)

Now you can execute your script by using the following command:

$> ./scriptName.py

Remember that you can loose the .py extension.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

The sys module

If we import sys, then the command line content is stored in the sys.argv list.
For example:

#! /usr/bin/python
getlist.py
import sys
print (sys.argv,)

Then if we type

./getlist.py file1 file2 file3

the script would print

([’./getlist.py’, ’1’, ’2’, ’3’],)

Note: sys.argv contains the name of the file.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

sys - Years till 100

Write a python script that takes 2 command line arguments:
• name of a person
• age of the person

and checks how many years that person has left until reaching the age 100.

The script will be called using:

./years.py Joe 25

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

sys - Years till 100

#!/usr/bin/env python
import sys
if len(sys.argv) > 1:

name = sys.argv[1]
else:

name = raw_input(’Enter Name:’)
if len(sys.argv) > 2:

age = int(sys.argv[2])
else:

age = int(raw_input(’Enter Age:’))
sayHello = ’Hello ’ + name + ’,’
if age == 100:

sayAge = ’You are already 100 years old!’
elif age < 100:

sayAge = ’You will be 100 in ’ + str(100 - age) + ’ years!’
else:

sayAge = ’You turned 100 ’ + str(age - 100) + ’ years ago!’
print(sayHello , sayAge)

use:
./years.py Joe 25

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

optparse

The python class optparse.OptionParser - a powerful tool for creating
options for your script.

Previous example:
ok we had the user enter two command line arguments to the python script,
ko no specification of which is which.

Better: be able to give parameters in any specific order and specify which is
which

We can do this in python very easily, using the OptionParser module.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

optparse

The python class optparse.OptionParser - a powerful tool for creating
options for your script.

Previous example:
ok we had the user enter two command line arguments to the python script,
ko no specification of which is which.

Better: be able to give parameters in any specific order and specify which is
which

We can do this in python very easily, using the OptionParser module.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

optparse

The OptionParse class
• add options to your script
• generate a help option based on the options you provide.

We are adding two options:
• -n (or –name)
• -a (or –age).

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

optparse

The OptionParse class
• add options to your script
• generate a help option based on the options you provide.

We are adding two options:
• -n (or –name)
• -a (or –age).

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

optparse

The parameters of add_option
1 the short option and
2 the long option (it is common in the Unix to add a short and long version

of an option)
3 dest=, the variable name created,
4 help=, the help text generated and
5 type=, the type for the variable. By default the type is string, but for age,

we want to make it int.

#!/usr/bin/env python
import sys, optparse

parser = optparse.OptionParser()

parser.add_option(’-n’, ’--name’, dest=’name’, help=’Your Name’)
parser.add_option(’-a’, ’--age’, dest=’age’, help=’Your Age’, type=int)

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

optparse

The parameters of add_option
1 the short option and
2 the long option (it is common in the Unix to add a short and long version

of an option)
3 dest=, the variable name created,
4 help=, the help text generated and
5 type=, the type for the variable. By default the type is string, but for age,

we want to make it int.

#!/usr/bin/env python
import sys, optparse

parser = optparse.OptionParser()

parser.add_option(’-n’, ’--name’, dest=’name’, help=’Your Name’)
parser.add_option(’-a’, ’--age’, dest=’age’, help=’Your Age’, type=int)

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

optparse

After adding the options, we call the parse_args function, which will return:
• an options object,
• an args list object.

We can now access the variables defined in "dest=" on the options object
returned.

(options, args) = parser.parse_args()
if options.name is None:

options.name = raw_input(’Enter Name:’)
if options.age is None:

options.age = int(raw_input(’Enter Age:’))
sayHello = ’Hello ’ + options.name + ’,’
if options.age == 100:

sayAge = ’You are already 100 years old!’
elif options.age < 100:

sayAge = ’You will be 100 in ’ + str(100 - options.age) + ’ years!’
else:

sayAge = ’You turned 100 ’ + str(options.age - 100) + ’ years ago!’

Will have two options, options.name and options.age.
Also checks if one of the variables wasn’t passed.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

optparse - run the example

Another thing you can do now is run the help option, by specifying either -h or
- -help:

./years.py -h
#This will give the following output and then exit the script:
usage: years.py [options]

options:
-h, --help show this help message and exit
-n NAME, --name=NAME Your Name
-a AGE, --age=AGE Your Age

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

optparse

#!/usr/bin/env python
import sys, optparse

parser = optparse.OptionParser()
parser.add_option(’-n’, ’--name’, dest=’name’, help=’Your Name’)
parser.add_option(’-a’, ’--age’, dest=’age’, help=’Your Age’, type=int)
(options, args) = parser.parse_args()
if options.name is None:

options.name = raw_input(’Enter Name:’)
if options.age is None:

options.age = int(raw_input(’Enter Age:’))
sayHello = ’Hello ’ + options.name + ’,’
if options.age == 100:

sayAge = ’You are already 100 years old!’
elif options.age < 100:

sayAge = ’You will be 100 in ’ + str(100 - options.age) + ’ years!’
else:

sayAge = ’You turned 100 ’ + str(options.age - 100) + ’ years ago!’
print(sayHello , sayAge)

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

The subprocess module

One of the most useful packages for unix shell scripters in python is the
subprocess package.

The simplest use of this package is to use the call function to call a shell
command:

#!/usr/bin/env python
import subprocess
subprocess.call("ls -l", shell=True)

This script will call the unix command "ls -l" and print the output to the
console.

Useful, however you might want to process the results of the call inside your
script instead of just printing them to the console.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

The subprocess module

One of the most useful packages for unix shell scripters in python is the
subprocess package.

The simplest use of this package is to use the call function to call a shell
command:

#!/usr/bin/env python
import subprocess
subprocess.call("ls -l", shell=True)

This script will call the unix command "ls -l" and print the output to the
console.

Useful, however you might want to process the results of the call inside your
script instead of just printing them to the console.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

The subprocess module

One of the most useful packages for unix shell scripters in python is the
subprocess package.

The simplest use of this package is to use the call function to call a shell
command:

#!/usr/bin/env python
import subprocess
subprocess.call("ls -l", shell=True)

This script will call the unix command "ls -l" and print the output to the
console.

Useful, however you might want to process the results of the call inside your
script instead of just printing them to the console.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

The subprocess module

One of the most useful packages for unix shell scripters in python is the
subprocess package.

The simplest use of this package is to use the call function to call a shell
command:

#!/usr/bin/env python
import subprocess
subprocess.call("ls -l", shell=True)

This script will call the unix command "ls -l" and print the output to the
console.

Useful, however you might want to process the results of the call inside your
script instead of just printing them to the console.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

The subprocess module

One of the most useful packages for unix shell scripters in python is the
subprocess package.

The simplest use of this package is to use the call function to call a shell
command:

#!/usr/bin/env python
import subprocess
subprocess.call("ls -l", shell=True)

This script will call the unix command "ls -l" and print the output to the
console.

Useful, however you might want to process the results of the call inside your
script instead of just printing them to the console.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

subprocess

To do this, you will need to open the process with the Popen function: takes an
array containing

• the process to invoke
• its command line parameters.

So if we wanted to tail the last 500 lines of a log file, we would pass in each of
the parameters as a new element in the array. The following script shows
how:

#!/usr/bin/env python
import subprocess

proc = subprocess.Popen([’tail’, ’-500’, ’mylogfile.log’],
stdout=subprocess.PIPE)

for line in proc.stdout.readlines():
print(line.rstrip())

It pipes the output back to your script via the "proc.stdout" variable + loop.
This script will open the process on unix "tail -500 mylogfile.log", read
the output of the command and print it to the console.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

subprocess

To do this, you will need to open the process with the Popen function: takes an
array containing

• the process to invoke
• its command line parameters.

So if we wanted to tail the last 500 lines of a log file, we would pass in each of
the parameters as a new element in the array. The following script shows
how:

#!/usr/bin/env python
import subprocess

proc = subprocess.Popen([’tail’, ’-500’, ’mylogfile.log’],
stdout=subprocess.PIPE)

for line in proc.stdout.readlines():
print(line.rstrip())

It pipes the output back to your script via the "proc.stdout" variable + loop.
This script will open the process on unix "tail -500 mylogfile.log", read
the output of the command and print it to the console.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts

os module

The os module contains lots of useful things as well
• os.path.exists(’path’) - test if a path exists
• os.path.isfile(’file’) - test if its a file
• os.path.isdir(’dir’) - test if its a folder

and lots of other things including changing directories, deleting files and
changing permissions.

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts Compressing files

Compressing files

Example: module gzip
• Simple to use: just replace standard call to open

import gzip
fd = gzip.open("file.txt.gz", "w")
fd.write("""Funny lines in gzip file""")
fd.close()
fd = gzip.open("file.txt.gz")

print(fd.read())

...as easy as that File modes as usual (rwa + b for binary)

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts Compressing files

A simple HTTP server

Web server in 3 lines?

import SimpleHTTPServer , SocketServer
httpd = SocketServer.TCPServer(("", 8000), \

SimpleHTTPServer.SimpleHTTPRequestHandler)
httpd.serve_forever()

• What could this be good for?
• Want to share quickly some files with colleagues in the same network?
⇒ Goto directory, start python, run three lines, tell them your IP and the port

(here: 8000)
• That’sit!

MO101: Python and Shell Script – Vladimir Paun

Writing Python Scripts Compressing files

Web server in 3 lines?

import SimpleHTTPServer , SocketServer
httpd = SocketServer.TCPServer(("", 8000), \

SimpleHTTPServer.SimpleHTTPRequestHandler)
httpd.serve_forever()

• What could this be good for?
• Want to share quickly some files with colleagues in the same network?
⇒ Goto directory, start python, run three lines, tell them your IP and the port

(here: 8000)
• That’sit!

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Introduction

The re module was added in Python 1.5, and provides Perl-style regular
expression patterns.

What?
Regular expressions (called REs, or regexes, or regex patterns) are
essentially a tiny, highly specialized programming language embedded
inside Python and made available through the re module.

Why?
Using this little language, you specify the rules for the set of possible
strings that you want to match.

How?
Regular expression patterns are compiled into a series of bytecodes which
are then executed by a matching engine written in C.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Introduction

The re module was added in Python 1.5, and provides Perl-style regular
expression patterns.

What?
Regular expressions (called REs, or regexes, or regex patterns) are
essentially a tiny, highly specialized programming language embedded
inside Python and made available through the re module.

Why?
Using this little language, you specify the rules for the set of possible
strings that you want to match.

How?
Regular expression patterns are compiled into a series of bytecodes which
are then executed by a matching engine written in C.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Introduction

The re module was added in Python 1.5, and provides Perl-style regular
expression patterns.

What?
Regular expressions (called REs, or regexes, or regex patterns) are
essentially a tiny, highly specialized programming language embedded
inside Python and made available through the re module.

Why?
Using this little language, you specify the rules for the set of possible
strings that you want to match.

How?
Regular expression patterns are compiled into a series of bytecodes which
are then executed by a matching engine written in C.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Introduction

The re module was added in Python 1.5, and provides Perl-style regular
expression patterns.

What?
Regular expressions (called REs, or regexes, or regex patterns) are
essentially a tiny, highly specialized programming language embedded
inside Python and made available through the re module.

Why?
Using this little language, you specify the rules for the set of possible
strings that you want to match.

How?
Regular expression patterns are compiled into a series of bytecodes which
are then executed by a matching engine written in C.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Use Cases

The set of possible strings you want to match might contain:
• English sentences,

• e-mail addresses,
• TeX commands,
• ...or anything you like.

You can then ask questions such as
• “Does this string match the pattern?”,
• “Is there a match for the pattern anywhere in this string?”,

You can also use REs to modify a string or to split it apart in various ways.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Use Cases

The set of possible strings you want to match might contain:
• English sentences,
• e-mail addresses,

• TeX commands,
• ...or anything you like.

You can then ask questions such as
• “Does this string match the pattern?”,
• “Is there a match for the pattern anywhere in this string?”,

You can also use REs to modify a string or to split it apart in various ways.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Use Cases

The set of possible strings you want to match might contain:
• English sentences,
• e-mail addresses,
• TeX commands,

• ...or anything you like.

You can then ask questions such as
• “Does this string match the pattern?”,
• “Is there a match for the pattern anywhere in this string?”,

You can also use REs to modify a string or to split it apart in various ways.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Use Cases

The set of possible strings you want to match might contain:
• English sentences,
• e-mail addresses,
• TeX commands,
• ...or anything you like.

You can then ask questions such as
• “Does this string match the pattern?”,
• “Is there a match for the pattern anywhere in this string?”,

You can also use REs to modify a string or to split it apart in various ways.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Use Cases

The set of possible strings you want to match might contain:
• English sentences,
• e-mail addresses,
• TeX commands,
• ...or anything you like.

You can then ask questions such as
• “Does this string match the pattern?”,
• “Is there a match for the pattern anywhere in this string?”,

You can also use REs to modify a string or to split it apart in various ways.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Matching Characters

Here’s a complete list of the metacharacters;

. ^ $ * + ? { } [] \ | ()

[and] used for specifying a set of characters that you wish to match:
• listed individually
• range of characters can be indicated by giving two characters and

separating them by a ’-’

Example:

• [abc] will match any of the characters a, b, or c; (same as [a-c])
• [^5] will match any character except ’5’.

Question: How to match only lowercase letters?
Answer: your RE would be [a-z]

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Matching Characters

Here’s a complete list of the metacharacters;

. ^ $ * + ? { } [] \ | ()

[and] used for specifying a set of characters that you wish to match:
• listed individually
• range of characters can be indicated by giving two characters and

separating them by a ’-’

Example:

• [abc] will match any of the characters a, b, or c; (same as [a-c])
• [^5] will match any character except ’5’.

Question: How to match only lowercase letters?
Answer: your RE would be [a-z]

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Matching Characters

Here’s a complete list of the metacharacters;

. ^ $ * + ? { } [] \ | ()

[and] used for specifying a set of characters that you wish to match:
• listed individually
• range of characters can be indicated by giving two characters and

separating them by a ’-’

Example:

• [abc] will match any of the characters a, b, or c; (same as [a-c])
• [^5] will match any character except ’5’.

Question: How to match only lowercase letters?

Answer: your RE would be [a-z]

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Matching Characters

Here’s a complete list of the metacharacters;

. ^ $ * + ? { } [] \ | ()

[and] used for specifying a set of characters that you wish to match:
• listed individually
• range of characters can be indicated by giving two characters and

separating them by a ’-’

Example:

• [abc] will match any of the characters a, b, or c; (same as [a-c])
• [^5] will match any character except ’5’.

Question: How to match only lowercase letters?
Answer: your RE would be [a-z]

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - the backslash \

Some of the special sequences beginning with ’ŕepresent predefined sets of
characters that are often useful

• \d : decimal digit; this is equivalent to the class [0-9].
• \D : non-digit character; this is equivalent to the class [^0-9].
• \s : whitespace character; this is equivalent to the class [\t\n\r\f\v].
• \S : non-whitespace character; this is equivalent to the class [^\t\n\r\f\v].
• \w : alphanumeric character; this is equivalent to the class [a-zA-Z0-9_].
• \W : non-alphanumeric character; this is equivalent to the class

[^a-zA-Z0-9_].

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Repetition

You can specify that portions of the RE must be repeated a certain number of
times.
The first metacharacter for repeating things that we’ll look at is *.

• * doesn’t match the literal character *;
• specifies that the previous character can be matched zero or more times,

instead of exactly once.

Example: ca*t will match

• ct (0 a characters),
• cat (1 a),
• caaat (3 a characters),
• and so forth

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Repetition

You can specify that portions of the RE must be repeated a certain number of
times.
The first metacharacter for repeating things that we’ll look at is *.

• * doesn’t match the literal character *;
• specifies that the previous character can be matched zero or more times,

instead of exactly once.
Example: ca*t will match

• ct (0 a characters),
• cat (1 a),
• caaat (3 a characters),
• and so forth

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Repetition

You can specify that portions of the RE must be repeated a certain number of
times.
The first metacharacter for repeating things that we’ll look at is *.

• * doesn’t match the literal character *;
• specifies that the previous character can be matched zero or more times,

instead of exactly once.
Example: ca*t will match

• ct (0 a characters),

• cat (1 a),
• caaat (3 a characters),
• and so forth

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Repetition

You can specify that portions of the RE must be repeated a certain number of
times.
The first metacharacter for repeating things that we’ll look at is *.

• * doesn’t match the literal character *;
• specifies that the previous character can be matched zero or more times,

instead of exactly once.
Example: ca*t will match

• ct (0 a characters),
• cat (1 a),

• caaat (3 a characters),
• and so forth

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - Repetition

You can specify that portions of the RE must be repeated a certain number of
times.
The first metacharacter for repeating things that we’ll look at is *.

• * doesn’t match the literal character *;
• specifies that the previous character can be matched zero or more times,

instead of exactly once.
Example: ca*t will match

• ct (0 a characters),
• cat (1 a),
• caaat (3 a characters),
• and so forth

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - A step-by-step example

Let’s consider the expression a[bcd]*b. What does it do?

This matches:
• the letter ’a’, followed by
• zero or more letters from the class [bcd],
• and finally ends with the letter ’b’.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - A step-by-step example

Let’s consider the expression a[bcd]*b. What does it do?

This matches:
• the letter ’a’, followed by
• zero or more letters from the class [bcd],
• and finally ends with the letter ’b’.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - A step-by-step example

Regular Expressions a[bcd]*b
Matching against abcbd.

Step:

1 matched: a - The a in the RE matches.
2 matched: abcbd - The engine matches [bcd]*, going as far as it can,

which is to the end of the string.
3 matched: Failure - The engine tries to match b, but the current position is

at the end of the string, so it fails.
4 matched: abcb - Back up, so that [bcd]* matches one less character.
5 matched: Failure - Try b again, but the current position is at the last

character, which is a ’d’.
6 matched: abc - Back up again, so that [bcd]* is only matching bc.
7 matched: abcb - Try b again. This time the character at the current

position is ’b’, so it succeeds.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - A step-by-step example

Regular Expressions a[bcd]*b
Matching against abcbd.

Step:

1 matched: a - The a in the RE matches.
2 matched: abcbd - The engine matches [bcd]*, going as far as it can,

which is to the end of the string.
3 matched: Failure - The engine tries to match b, but the current position is

at the end of the string, so it fails.
4 matched: abcb - Back up, so that [bcd]* matches one less character.
5 matched: Failure - Try b again, but the current position is at the last

character, which is a ’d’.
6 matched: abc - Back up again, so that [bcd]* is only matching bc.
7 matched: abcb - Try b again. This time the character at the current

position is ’b’, so it succeeds.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - A step-by-step example

Regular Expressions a[bcd]*b
Matching against abcbd.

Step:
1 matched: a - The a in the RE matches.

2 matched: abcbd - The engine matches [bcd]*, going as far as it can,
which is to the end of the string.

3 matched: Failure - The engine tries to match b, but the current position is
at the end of the string, so it fails.

4 matched: abcb - Back up, so that [bcd]* matches one less character.
5 matched: Failure - Try b again, but the current position is at the last

character, which is a ’d’.
6 matched: abc - Back up again, so that [bcd]* is only matching bc.
7 matched: abcb - Try b again. This time the character at the current

position is ’b’, so it succeeds.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - A step-by-step example

Regular Expressions a[bcd]*b
Matching against abcbd.

Step:
1 matched: a - The a in the RE matches.
2 matched: abcbd - The engine matches [bcd]*, going as far as it can,

which is to the end of the string.

3 matched: Failure - The engine tries to match b, but the current position is
at the end of the string, so it fails.

4 matched: abcb - Back up, so that [bcd]* matches one less character.
5 matched: Failure - Try b again, but the current position is at the last

character, which is a ’d’.
6 matched: abc - Back up again, so that [bcd]* is only matching bc.
7 matched: abcb - Try b again. This time the character at the current

position is ’b’, so it succeeds.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - A step-by-step example

Regular Expressions a[bcd]*b
Matching against abcbd.

Step:
1 matched: a - The a in the RE matches.
2 matched: abcbd - The engine matches [bcd]*, going as far as it can,

which is to the end of the string.
3 matched: Failure - The engine tries to match b, but the current position is

at the end of the string, so it fails.

4 matched: abcb - Back up, so that [bcd]* matches one less character.
5 matched: Failure - Try b again, but the current position is at the last

character, which is a ’d’.
6 matched: abc - Back up again, so that [bcd]* is only matching bc.
7 matched: abcb - Try b again. This time the character at the current

position is ’b’, so it succeeds.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - A step-by-step example

Regular Expressions a[bcd]*b
Matching against abcbd.

Step:
1 matched: a - The a in the RE matches.
2 matched: abcbd - The engine matches [bcd]*, going as far as it can,

which is to the end of the string.
3 matched: Failure - The engine tries to match b, but the current position is

at the end of the string, so it fails.
4 matched: abcb - Back up, so that [bcd]* matches one less character.

5 matched: Failure - Try b again, but the current position is at the last
character, which is a ’d’.

6 matched: abc - Back up again, so that [bcd]* is only matching bc.
7 matched: abcb - Try b again. This time the character at the current

position is ’b’, so it succeeds.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - A step-by-step example

Regular Expressions a[bcd]*b
Matching against abcbd.

Step:
1 matched: a - The a in the RE matches.
2 matched: abcbd - The engine matches [bcd]*, going as far as it can,

which is to the end of the string.
3 matched: Failure - The engine tries to match b, but the current position is

at the end of the string, so it fails.
4 matched: abcb - Back up, so that [bcd]* matches one less character.
5 matched: Failure - Try b again, but the current position is at the last

character, which is a ’d’.

6 matched: abc - Back up again, so that [bcd]* is only matching bc.
7 matched: abcb - Try b again. This time the character at the current

position is ’b’, so it succeeds.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - A step-by-step example

Regular Expressions a[bcd]*b
Matching against abcbd.

Step:
1 matched: a - The a in the RE matches.
2 matched: abcbd - The engine matches [bcd]*, going as far as it can,

which is to the end of the string.
3 matched: Failure - The engine tries to match b, but the current position is

at the end of the string, so it fails.
4 matched: abcb - Back up, so that [bcd]* matches one less character.
5 matched: Failure - Try b again, but the current position is at the last

character, which is a ’d’.
6 matched: abc - Back up again, so that [bcd]* is only matching bc.

7 matched: abcb - Try b again. This time the character at the current
position is ’b’, so it succeeds.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

Regular Expressions - A step-by-step example

Regular Expressions a[bcd]*b
Matching against abcbd.

Step:
1 matched: a - The a in the RE matches.
2 matched: abcbd - The engine matches [bcd]*, going as far as it can,

which is to the end of the string.
3 matched: Failure - The engine tries to match b, but the current position is

at the end of the string, so it fails.
4 matched: abcb - Back up, so that [bcd]* matches one less character.
5 matched: Failure - Try b again, but the current position is at the last

character, which is a ’d’.
6 matched: abc - Back up again, so that [bcd]* is only matching bc.
7 matched: abcb - Try b again. This time the character at the current

position is ’b’, so it succeeds.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

RE - Compiling Regular Expressions

Regular expressions are compiled into pattern objects

>>> import re
>>> p = re.compile(’ab*’)
>>> p
<_sre.SRE_Pattern object at 0x...>

re.compile() also accepts an optional flags argument, used to enable
various special features and syntax variations.

>>> p = re.compile(’ab*’, re.IGNORECASE)

The RE is passed to re.compile() as a string. the re module is simply a C
extension module included with Python, just like the socket or zlib modules.

MO101: Python and Shell Script – Vladimir Paun

Regular Expressions

RE - Performing Matches

Regular expressions are compiled into pattern objects
• match() Determine if the RE matches at the beginning of the string.
• search() Scan through a string, looking for any location where this RE

matches.
• findall() Find all substrings where the RE matches, and returns them as

a list.
• finditer() Find all substrings where the RE matches, and returns them as

an iterator.

>>> import re
>>> p = re.compile(’[a-z]+’)
>>> p #doctest: +ELLIPSIS
<_sre.SRE_Pattern object at 0x...>

Empty string shouldn’t match at all, since + means ‘one or more repetitions’.

>>> p.match("")
>>> print p.match("")
None

MO101: Python and Shell Script – Vladimir Paun

Conclusion

Summary

Building with shell scripts
• is like assembling a computer with off-the-shelf components the way

desktop PCs are.
Building with Python, C++ or most any other language

• is more like building a computer by soldering the chips (libraries) and
other electronic parts together the way smartphones are.

MO101: Python and Shell Script – Vladimir Paun

	Introduction
	To script or not to script
	Writing Python Scripts
	Compressing files

	Regular Expressions
	Conclusion

