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Introduction

General Context: Big datasets and continual
learning systems demand online algorithms.

In addition, the input data of most embedded
systems are not independent and identically
distributed (iid), but correlated and non-balanced [1].

Problem: Expectation Maximization is a standard
probabilistic method frequently used in the case of
latent variables. It has been adapted for online
learning with the introduction of a stochastic
Integration step on the expectation part. However,
this algorith is slow and, most importantly, the
guarantees of convergence are only valid in the case
of iid samples [2]

Solution: We propose to constrain the online
Expectation-Maximization on the Fisher distance
between the reference parameters and the current
update. The reference parameters are updated either
at each iteration or by the end of a class [3].

Experiment: We tested our proposal with model
data from PPCA, considering iid samples, incremental
samples and, in the last one, two protocols to update
reference parameters: step wise and class wise. We
evaluated our proposal in terms of convergence,
consolidation and interference [4].
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Incremental: Interference

There is a slight negative interference with oEM. This
tendence is similar wtih Nat-oEM step, except class D
that has strong positive interference. Nat-oEM class
iInduces strong negative interference except between
class C and D.
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Incremental: Consolidation

Similarly, the class wise loglikelihood shows that there is
forgetting with oEM, this forgetting is avoided with Nat-oEM:
class and the likelihood is boosted with Nat-oEM: step.
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Conclusions

® Nat-oEM converges faster than oEM.

e Nat-oEM avoids forgetting while oEM does not.

® Overall, Nat-oEM: step performance is better than Nat-oEM
class, but increases the computational load.

® Nat-oEM.: step introduces positive interference,
while Nat-oEM: class introduces negative.
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