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Iid: Convergence

    After few iterations, 
the log-likelihood of 
Nat-oEM was larger 
than the oEM. 
Furthermore it remains 
parallel over time
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Incremental: Consolidation

    Similarly, the class wise loglikelihood shows that there is 
forgetting with oEM, this forgetting is avoided with Nat-oEM: 
class and the likelihood is boosted  with Nat-oEM: step.

Incremental: Interference

    There is a slight negative interference with oEM. This 
tendence is similar wtih Nat-oEM step, except class D 
that has strong positive interference. Nat-oEM class 
induces strong negative interference except between 
class C and D.
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Introduction
   
 
General Context: Big datasets and continual 
learning systems demand online algorithms.
In addition, the input data of most embedded 
systems are not independent and identically 
distributed (iid), but correlated and non-balanced [1].  

    Problem: Expectation Maximization is a standard 
probabilistic method frequently used in the case of 
latent variables. It has been adapted for online 
learning with the introduction of a stochastic 
integration step on the expectation part. However, 
this algorith is slow and, most importantly,  the 
guarantees of convergence are only valid in the case 
of iid samples [2] 

    Solution: We propose to constrain the online 
Expectation-Maximization on the Fisher distance 
between the reference parameters and the current 
update. The reference parameters are updated either 
at each iteration or by the end of a class [3].

    Experiment: We tested our proposal with model 
data from PPCA, considering iid samples, incremental 
samples and, in the last one, two protocols to update 
reference parameters: step wise and class wise.  We 
evaluated our proposal in terms of convergence, 
consolidation and interference [4].
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Conclusions

Nat-oEM converges faster than oEM.
Nat-oEM avoids forgetting while oEM does not.
Overall, Nat-oEM: step performance is better than Nat-oEM
class, but increases the computational load.
Nat-oEM: step introduces positive interference,
while Nat-oEM: class introduces negative.

Incremental: Convergence

    Without any constraint 
the overall likelihood 
decreases over time.
    This outcome is 
avoided with Nat-oEM: 
class.
    With Nat-oEM: step, 
the likelihood is boosted 
and monotonically 
increasing.
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