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Abstract

The challenges posed by robots operating in human environments on a daily basis and on the long-term point out the
importance of adaptivity to changes which can be unforeseen at design time. Therefore, the robot must learn contin-
uously in an open-ended, non-stationary and high dimensional space. It can not possibly explore all its environment
to learn about everything within a life-time. We propose to investigate the relationship between two classical learning
modes: imitation learning and intrinsically-motivated autonomous exploration. We buildan algorithmic architecture
where relationships between the two sampling modes intertwine into a hierarchical structure, called Socially Guided
Intrinsic Motivation with Active Choice of Teachers and Strategies (SGIM-ACTS).

Indeed, we have built an intrinsically motivated active learner which learns how its actions can produce varied
consequences or outcomes. For instance, the robot learns to throw a ball at different distances, by associating a distance
(outcome) to a specific movement (action). It actively learns online by sampling data which it chooses by using several
sampling modes. On the meta-level, it actively learns which data collection strategy is most efficient for improving
its competence and generalising from its experience to a wide variety of outcomes. The interactive learner thus learns
multiple tasks in a structured manner, discovering by itself developmental sequences.

We contribute to different fields of machine learning:

e imitation learning : we propose a unified structure to address simulateneously the fundamental questions
of imitation learning: what, how, when and who to imitate. In particular in interactive learning,we identify
advantages of combining autonomous exploration and socially guided exploration, and build an agent which
decides by itself when to interact with teachers.

o multi-task learning : SGIM-ACTS can discover the structure of its environment by a goal-oriented exploration.
We propose a unified architecture to approach goal-oriented imitation learning (to reproduce a demonstrated
goal) and goal-directed autonomous exploration (goals guiding policy exploration).

e active learning : we investigate different levels of active learning : the learner can decide which action to take, or
which goal to aim, or which sampling mode to use. Its decisions are made online, driven by artificial curiosity
based on its monitoring of learning progress.

o hierarchical learning : we propose a hierarchical learning architecture to learn on several levels: policy, outcome,
and mode spaces. The learner relies on hierarchical active decisions of what and how to learn driven by
empirical evaluation of learning progress for each sampling mode on a meta-level.
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1 Strategic Active Learning for Life-Long Acquisition of Multiple Skills

Life-long learning by robots to acquire multiple skills in unstructured environments poses challenges of learning in large
and high-dimensional sensorimotor spaces, while their life-time allows only limited number of collected data.

1.1 Active Learning for Producing Varied Outcomes with Multiple sampling modes

The choice of a sampling mode can be formalised under the notion of strategic learning [?]. One perspective is learning
to achieve varied outcomes and aims at selecting which outcome to spend time on. Another perspective is learning
how to learn, by making explicit the choice and dependence of the learning performance on the method. However
most studies have not addressed the learning of both how to learn and what to learn, to select at the same time which
outcome to spend time on, and which learning method to use. Only [?] studies the framework of these questions. In
initial work to address learning for varied outcomes with multiple methods, we proposed in [?] the Socially Guided
Intrinsic Motivation by Demonstration (SGIM-D) algorithm which uses both 1) socially guided exploration, especially
programming by demonstration [?] and 2) intrinsically motivated exploration, which are active learning algorithms
based on measures of the evolution of the learning performance [?] to reach goals in a continuous outcome space.

In this paper, we extend this work and study how a learning agent can achieve varied outcomes in structured continuous
outcome spaces, and how he can learn which sampling mode to choose among 1) active self-exploration, 2) reproduction
of the demonstrated outcome or emulation of a teacher actively selected among available teachers, 3) reproduction of the
demonstrated policy or mimicry of an actively selected teacher.

1.2 Actively Learning When, Who and What to Imitate

In this paper, we develop our social guidance into interactive learning. The learner actively requests for the information
it needs and when it needs help [?]. For the model and experiments presented below, our agent learns to answer the
four main questions of imitation learning: “what, how, when and who to imitate” [?, ?] at the same time. We address
active learning for varied outcomes with multiple sampling mode, multiple teachers, with a structured continuous
outcome space (embedding sub-spaces with different properties). The sampling modes we consider are autonomous
self-exploration, emulation and mimicking, by interactive learning with several teachers.

1.3 Our Approach

Let us consider an agent learning motor skills, i.e. how to induce any outcome A € A with motor programs 7 € P. We
parameterise the outcome space with parameters a € A. A policy m, is described by motor primitives parameterised
by b € B.The probability of that the policy parameter b produces the outcome of parameter a is p(alb, c), where the
probability density p represents the physics of the environment which the agent estimates. The association (b,a)
corresponds to a learning exemplar that will be memorised.

To solve the problem formalised above, we propose a system, called Socially Guided Intrinsic Motivation with Active
Choice of Teacher and Strategy (SGIM-ACTS) that allows an online interactive learning of inverse models in continuous
high-dimensional robotic sensorimotor spaces with multiple teachers, and sampling mode. SGIM-ACTS learns various
outcomes with different types of outcomes, and generalises from sampled data to continuous sets of outcomes.

Technically, we adopt a method of generalisation of policies for new outcomes similar to [?, ?], except that instead of
using a pool of examples given by the teacher preset from the beginning of the experiment to learn outcomes specified
by the engineer of the robot, the SGIM-ACTS algorithm decides by itself which outcomes it needs to learn more to better
generalise for the whole outcome space, like in [?]. Moreover, SGIM-ACTS actively requests the teacher’s demonstra-
tions online, by choosing online a good sampling mode, similarly to [?], except that we instead of a discrete, we use a
continuous outcome space. SGIM-ACTS also interacts with several teachers and uses several social learning methods.

Our active learning approach is inspired by 1) psychological theories for socially guided learning [?], 2) teleological
learning [?] which considers actions as goal-oriented, and 3) intrinsic motivation in psychology [?] which triggers
spontaneous exploration and curiosity in humans, which recently led to novel robotic and machine active learning
methods which outperform traditional active learning methods [?].

After this definition of the problem addressed in this paper, we describe the design of our SGIM-ACTS (Socially Guided
Intrinsic Motivation with Active Choice of Teacher and Strategy) algorithm. Then we show through an illustration
experiment that SGIM-ACTS efficiently learns to realise different types of outcomes in continuous outcome spaces, and
it coherently selects the right teacher to learn from.
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Algorithm 2.1 SGIM-ACTS
Input: the different modes x o, ... Xx-
Initialization: partition of outcome space R < singleton A
Initialization: episodic memory (collection of produced outcomes) H <— empty memory
Initialization: e <— 1
loop
a;j, x < Select Goal Outcome and Strategy(R)
if x = Mimic teacher ¢ mode then
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end loop

Figure 1: SGIM-ACTS algorithm.

2 Algorithm Description

In this section, we describe the SGIM-ACTS architecture by giving a behavioural outline (Algorithm ?? and fig. ??).

SGIM-ACTS is an architecture that merges intrinsically motivated self-exploration with interactive learning as socially
guided exploration. In the latter case, a teacher performs an observed trajectory ¢ which achieves an observed outcome
bq (intentional or unintentional). SGIM-ACTS learns by episodes during which it actively chooses simultaneously an out-
come b, € T toreach and a sampling mode with a specific teacher. Its choice y is selected among : intrinsically motivated
exploration, mimicry from teacher 1, emulation of teacher 1, mimicry from teacher 2, emulation of teacher 2 .... (fig. ??).

In an episode under a mimicking mode, our SGIM-ACTS learner actively self-generates a goal b, where its competence

improvement is maximal. The SGIM-ACTS learner explores preferentially goal outcomes easy to reach and where it
makes progress the fastest. The selected teacher answers its request with a demonstration [(4, b4] to produce an outcome
by that is closest to b,. The robot mimics the teacher to reproduce (4, for a fixed duration, by performing policies ag
which are small variations of an approximation of (4. In an episode under an emulation mode, our SGIM-ACTS learner
observes from the selected teacher a demonstration [(4, bg]. It tries different policies using goal-directed optimisation
algorithms to approach the observed outcome b4, without taking into account the demonstrated policy (4. It re-uses
and optimises its policy repertoire built through its past autonomous and socially guided explorations. The episode
ends after a fixed duration. In an episode under the intrinsic motivation mode, it explores autonomously following
the SAGG-RIAC algorithm [?]. It actively self-generates a goal b, where its competence improvement is maximal, as
in the mimicking mode. Then, it explores which policy ag can achieve b, best. It tries different policies to approach the
self-determined outcome b, as in the emulation mode. The episode ends after a fixed duration. The intrinsic motivation
and emulation mode differ mainly by the way the goal outcome is chosen. The details of this 3-layered (policy, outcome
and mode space explorations) hierarchical architecture and the different functions and levels can be read in [?, ?].

3 Experiment

3.1 Experimental setup

Figure 2: An arm, described by its angle ¢, is controlled by a motor primitive with 14 continuous parameters
(taking bounded values) that determine the evolution of its acceleration ¢ . Aball is held by the arm and then
released at the end of the motion. The objective of the robot is to learn the mapping between the parameters of

the motor primitive and two types of outcomes he can produce: a ball thrown at distance x and height h, or a ball

placed at the arm tip at angle ¢ with velocity smaller than |vy, 4z |-

obstacle
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(a) Mean error for the different learning algorithms averaged over (b) Mean error for the different learning algorithms for each of the
the two sub outcome spaces (final variance value A is indicated in throwing outcomes and placing outcomes separately. The legend is
the legend) . the same as in fig. ?2.

Figure 3: Error plots.
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Figure 4: sampling modes chosen.

We illustrate in the following section this hierarchical algorithm through a simulation where a robot learns to throw a
ball or to place it at different angles (fig. ??) with 7 sampling modes: intrinsically motivated exploration, mimicry from
3 teachers and emulation from 3 teachers. The 3 teachers considered are respectively an expert in throwing balls, an
expert in placing balls, and an expert in placing balls with correspondence problems. We prepared demonstration sets
for each teacher, so that the demonstrated outcomes are equally distributed in the reachable space. A demonstration is
stored as a pair or policy and outcome parameters. When a teacher is requested a demonstration for emulation, he gives
a random demonstration among its demonstration set. The details of the experimental setup can be read in [?]. In the
next section, we present the results of the experiment.

3.2 Results

We compared SGIM-ACTS with 4 other learning algorithms: random exploration of the policy space, SAGG-RIAC [?],
mimicry and emulation. Fig. ?? shows that SGIM-ACTS decreases its cumulative error for both placing and throwing.
It performs better than autonomous exploration by random search or intrinsic motivation, and better than mimicry
or emulation with any teacher. Fig. ?? shows that SGIM-ACTS error rate for both placing and throwing is low. For
throwing, SGIM-ACTS performs the best in terms of error rate and speed because it could find the right mode. While
mimicking and emulating teacher 1 decreases the error as expected, mimicking and emulating a teacher who is expert in
another kind of outcomes and is bad in that outcome leaves a high error rate. For placing, SGIM-ACTS makes less error
than all other algorithms. Indeed, as we expected, mimicking the teacher 2, and emulating teachers 2 and 3 enhances
low error rates, while mimicking a teacher with correspondence problem (teacher 3) or an expert on another outcome
(teacher 1) gives poor result. We also note that for both outcomes, mimicry does not lead to important learning progress,
and the error curve is almost flat. This is due to the lack of exploration which leads the learner to ask demonstrations for
outcomes only in a small subspace.

Indeed, we see in fig. ?? which illustrates the percentage times each sampling mode is chosen by SGIM-ACTS with
respect to time, that mimicry of teacher 3, which lacks efficiency because of the correspondence problem, is seldom
chosen by SGIM-ACTS. Mimicry and emulation of teacher 1 is also little used because autonomous learning learns
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quickly throwing outcomes. Teachers 2 and 3 are exactly the same with respect to the outcomes they demonstrate, and
are emulated in the same proportion. This figure also shows that the more the learner cumulates knowledge, the more
autonomous he grows : his percentage of autonomous learning increases steadily.

Not only does he choose the right sampling mode, but also the right outcome to concentrate on. Fig. ?? shows that he
concentrates in the end more on placing, which are more difficult.

Finally, fig. ?? shows the percentage of times over all the experiments where he chooses at the same time each outcome
type, a sampling mode and a teacher. We can see that for the placing outcomes, he seldom requests help from the teacher
1, as he learns that teacher 1 does not know how to place the ball. Likewise, because of the correspondence problems,
he does not mimic teacher 3. But he learns that mimicking teacher 2 and emulating teachers 2 and 3 are useful for
placing outcomes. For the throwing outcomes, he uses slightly more the autonomous exploration sampling modes, as
he can learn efficiently by himself. The high percentage for the other sampling mode is due to the fact that the throwing
outcomes are easy to learn, therefore are learned in the beginning when a lot of sampling of all possible sampling modes
is carried out. SGIM-ACTS is therefore consistent in its choice of outcomes , sampling modes and teachers.

4 Conclusion and Discussion

We presented the SGIM-ACTS (Socially Guided Intrinsic Motivation with Active Choice of Teacher and Strategy)
algorithm that efficiently and actively combines autonomous self-exploration and interactive learning, to address the
learning of multiple outcomes, with outcomes of different types, and with different sampling modes. In particular, it
learns actively to decide on the fundamental questions of programming by demonstration: what and how to learn; but
also what, how, when and who to imitate. This interactive learner decides efficiently and coherently whether to use social
guidance. It learns when to ask for demonstration, what kind of demonstrations (action to mimic or outcome to emulate)
and who to ask for demonstrations, among the available teachers. Its hierarchical architecture bears three levels. The
lower level explores the policy parameters space to build skills for determined goal outcomes. The upper level explores
the outcome space to evaluate for which outcomes he makes the best progress. A meta-level actively chooses the outcome
and sampling mode that leads to the best competence progress. We showed that SGIM-ACTS can focus on the outcome
where it learns the most, while choosing the most appropriate associated sampling mode. The active learner can explore
efficiently a composite and continuous outcome space to be able to generalise for new outcomes of the outcome spaces.

Even in the case of correspondence problems, the system still takes advantage of the demonstrations to bias its explo-
ration of the outcome space, as argued in [?]. Future work should test SGIM-ACTS on more complex environments, and
with real physical robots and everyday human users. It would also be interesting to compare the outcomes selected by
our system to developmental behavioural studies, and highlight developmental trajectories.
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