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Abstract— The combination of learning by intrinsic moti-
vation and social learning has been shown to improve the
learner’s performance and gain precision over a wider range of
motor skills, with for instance the SGIM-D learning algorithm
[1]. Nevertheless, this bootstrapping a-priori depends on the
demonstrations made by the teacher. We propose in this paper
to examine this dependence: to what extend the quality of the
demonstrations can influence the learning performance, and
which are the characteristics of a good demonstrator. Results on
a fishing experiment highlights the importance of the difficulty
of the demonstrated tasks, as well as the structure of the actions
demonstrated.

I. INTRODUCTION

Developmental robots, similarly to animal or human in-
fants, need to be endowed with exploration mechanisms
which continuously push them toward learning new skills
and new situations [2], [3] in order to adapt to their changing
environment and users’ needs. Exploration strategies devel-
oped in the recent years can be classified into two broad
interacting families: 1) socially guided exploration [4]–[7];
2) internally guided exploration and in particular intrinsically
motivated exploration [2], [8]–[10].

A. Intrinsic Motivation vs Social Guidance

In developmental robotics, intrinsic motivation, which
consist in meta-exploration mechanisms monitoring the evo-
lution of learning performances [11]–[13] with heuristics
defining the notion of interest used in an active learn-
ing framework [14]–[16], is often studied separately from
socially guided learning where the learner can interact
with teaching agents by mimicry, emulation or stimulus
enhancement [17], [18]. While many forms of socially
guided learning can be seen as extrinsically driven learning,
in the daily life of humans, the two strongly interact, and on
the contrary push their respective limits (cf. table I).

Intrinsically Motivated Ex-
ploration

Socially Guided Exploration

Pros Independent from human,
broad task repertoire

transfer knowledge from hu-
man to robot

Cons High-dimensionality,
unboundedness

Teacher’s patience
& ambiguous input,
correspondence problem

TABLE I: Advantages and disadvantages of the two exploration strategies.

Social guidance can drive a learner into new intrinsically
motivating spaces or activities which it may continue to
explore alone and for their own sake. Robots may acquire
new strategies for achieving intrinsically motivated activities
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while observing examples. One might either search in the
neighbourhood of the good example, or eliminate from the
search space the bad example.

Conversely, as learning that depends highly on the teacher
is limited by ambiguous human input or the correspondence
problem [19], and would require too much time from
the teacher, some autonomous learning is needed. While
self-exploration fosters a broader task repertoire of skills,
exploration guided by a human teacher tends to be more
specialised, resulting in fewer tasks that are learnt faster.
Combining both can thus bring out a system that acquires
a wide range of knowledge which is necessary to scaffold
future learning with a human teacher on specifically needed
tasks, as proposed in [20]–[22].

Social learning has been combined with reinforcement
learning [21]–[23]. However, these approaches are restricted
to a single task. We would like a system that learns not
only for a single task, but for a continuous field of tasks.
Such a multi-goal system has been presented in [20], [24],
where unfortunately the representation of the environment
and actions is symbolic and discrete in a limited and preset
world, with few primitive actions possible.

B. SGIM-D Combines Social Guidance and Intrinsic Moti-
vation

In an initial work to address multi-task learning, we pro-
posed the Socially Guided Intrinsic Motivation by Demon-
stration (SGIM-D) algorithm which merges socially guided
exploration and intrinsic motivation based on SAGG-RIAC
algorithm [25], to reach goals in a continuous task space,
in the case of a complex, high-dimensional and continuous
environment [1]. SGIM-D has been shown to efficiently
take advantage of the demonstrations to explore unknown
subspaces, and to focus on interesting subspaces of the
task space. It also takes advantage of the autonomous
exploration of SAGG-RIAC to improve its performance and
gain precision in the absence of the teacher in a wide range
of tasks. The possible tasks to complete are yet of the same
nature, still they belong to multi-tasks problems, because
they are infinite in number and belong to a continuous space.
Two tasks may require very different actions to reach them.

Nevertheless, in that first study, we did not examine how
dependent on the demonstrations the learner’s performance
is. We propose in this paper to study to what extend the
quality of the demonstrations can influence the learning
performance, and which are the characteristics that make a
good demonstrator.
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Fig. 1: Data flow of the SGIM-D learner with its environment and teacher. (a): social learning regime. (b): intrinsic motivation regime.

II. SGIM-D FRAMEWORK

A. Formalisation

In this subsection, we describe the learning problem that
we consider. Following Csibra’s theory of human action [26],
[27], we represent episodes as [context][action][effect] sets.

Let us consider a robotic system which states are described
in both a state/context space C, and an effect/task space Y . In
contexts c ∈ C, actions act ∈ ACT output an effect y ∈ Y
(cf fig. 1). In this work, we only consider episodes without
planning, and thus do not describe the change in context.
For the learning agent, the actions act are parameterised
dynamic motor primitives, i.e. temporally extended macro-
actions controlled by parameters a ∈ A (while the actions of
the teacher are a priori of unknown structure).

Our agent learns a policy through an inverse model M−1 :
(c, y) 7→ a by building local mappings of M : (c, a) 7→ y,
so that from a context c and for any achievable effect y,
the robot can produce y with an action a. The association
(c, a, y) corresponds to a learning exemplar which will be
memorised. We can also describe the learning in terms of
tasks, and consider y as a desired task or goal which the
system reaches through the means a in a given context c. In
the following, both descriptions will be used interchangeably.

B. SGIM-D Overview

SGIM-D learns by episodes during which it learns either
by intrinsically motivated or social learning exploration.

In an episode under intrinsic motivation (fig. 1b), it
actively self-generates a goal yg ∈ Y where its competence
improvement is maximal, then explores which actions a
can achieve the goal yg in context c, following the SAGG-
RIAC algorithm [25]. The exploration of the action space
gives a local forward model M : (c, a) 7→ y and inverse
model M−1 : (c, y) 7→ a, that it can use later on to
reach other goals. SGIM-D explores preferentially goals
easy to reach and where it makes progress the fastest.
It tries different actions to approach the self-determined
goal, re-using the action repertoire of its past autonomous
and imitative explorations. The episode ends after a fixed
duration.

When the learner observes a demonstration by the teacher,
it starts to learn by social guidance. In an episode under
social learning (fig. 1a), our SGIM-D learner observes the
demonstration [cd, actd, yd], memorise this effect yd as a
possible goal, and imitates the demonstrated action actd for
a fixed duration.

Its architecture is detailed in the next section.
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Fig. 2: Time flow chart of SGIM-D, which combines Intrinsic Motivation
and Social Learning into 2 layers that pertain the task space exploration and
the action space exploration respectively.

Algorithm II.1 SGIM-D
Initialization: R ← singleton C × Y , flagInteraction ← false,
Memo← empty episodic memory
loop
flagInteraction← check if the teacher makes a demonstration
if flagInteraction then

Social Learning Regime
repeat

(cd, ad, yd)← Correspondence of the teacher’s demonstration
Emulate Goal: yg ← yd
Memo← Imitate Action (ad, c)

until End of social interaction
else

Intrinsic Motivation Regime
Measure current configuration c
yg ← Decide a goal
repeat
Memo← Goal-Directed Action Optimisation(c, yg)

until Terminate reaching of yg
end if
R ← Update Goal Interest Mapping(R,Memo, c, yg)

end loop

III. SGIM-D ARCHITECTURE

SGIM-D (Socially Guided Intrinsic Motivation by
Demonstration) is an algorithm that merges interactive
learning as social interaction, with the SAGG-RIAC
algorithm of intrinsic motivation [25], to learn local
inverse and forward models in complex, redundant, high-
dimensional and continuous spaces. Its architecture is
separated into two layers (fig. 2) :

• The Task Space Exploration, a level of active learning
which drives the exploration of the task space. With the
autonomous learning regime, it sets goals yg depending
on the interest level of previous goals (Decide a Goal).
With the social learning regime, it retrieves from the
teacher information about demonstrated effects yd (Em-
ulate a Goal). Then, it maps C×Y in terms of interest
level (Goal Interest Mapping).

• The Action Space Exploration, a lower level of learning
that explores the action space A to build an action
repertoire and local models. With the social learning
regime, it imitates the demonstrated actions actd (Imi-
tate an Action), while during self-exploration, the Goal-
Directed Action Optimisation function attempts to reach
the goals yg set by the Task Space Exploration level,
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then, it returns the measure of competence at reaching
yd or yg .

A. Task Space Exploration

1) Goal Interest Mapping: C×Y is partitioned according
to interest levels. For each effect yg explored in context c,
it assigns a competence γc,yg which evaluates how close it
can reach y. A high value of γg (i.e. close to 0) represents a
system that is competent at reaching the goal yg in a context
c.
C×Y is partitioned so as to maximally discriminate areas

according to their competence progress, as described in [25].
For a region Ri ⊂ C × Y , we compute the interest as the
local competence progress, over a sliding time window of
the ζ most recent goals attempted inside Ri:

interesti =

∣∣∣∣∣∣
 |Ri|− ζ2∑
j=|Ri|−ζ

γj

−
 |Ri|∑
j=|Ri|− ζ2

γj

∣∣∣∣∣∣
ζ

(1)

2) Emulate a Goal: This function observes the effect yd
that the teacher demonstrated, and computes its competence
using the learner’s past action repertoire and model it has
built.

3) Decide a Goal: This function uses the interest level
mapping to decide which goal is interesting to focus on.
It stochastically chooses effects in regions for which its
empirical evaluation of learning progress is maximal.

B. Action Space Exploration

1) Imitate an Action: This function tries to imitate the
teacher with movement parameters aimitate = ad + arand
with a random movement parameter variation |arand| < ε.
After a short fixed number of times, SGIM-D computes its
competence at reaching the goal indicated by the teacher yd.

2) Goal-Directed Action Optimisation: This function
searches for actions a that guide the system toward the
goal yg in the given context c by 1) building local models
during exploration that can be re-used for later goals and
2) optimising actions to reach for the current goal. In the
experiments below, the exploration mixes local optimisation
with the Nelder-Mead simplex algorithm [28] and global
random exploration to avoid local minima, in order to
build memory-based local direct and inverse models, using
locally weighted learning with a gaussian kernel such that
presented in [29].

For a detailed description of the architecture, please refer
to [1] for more details. In the following section, we apply
SGIM-D to an illustration experiment.

IV. COMBINING IMITATION AND SAGG-RIAC
IMPROVES THE LEARNING PERFORMANCE

A. Fishing Arm Experiment

We consider a simulated 6 degrees-of-freedom robotic arm
holding a fishing rod (fig. 3). It learns how to reach any point
on the surface of the water with the hook at the tip of the
flexible fishing line.

Example of trajectory
 followed by a joint 

a1 a2

a3
a4 =

duration

hook

Estimated Reachable Area

Effect/Task Space
-1

1

-1
1

Fig. 3: Fishing experimental setup.

Y = [−1, 1]2 is a 2-D space that describes the position of
the hook when it reaches the water. The robot always starts
with the same configuration corg, and performs actions that
are parametrized motor primitives. For each joint are defined
4 positions: u1 at t = 0, u2 at t = τ

3 ,u3 at t = 2τ
3 and u4

t = τ . The trajectory for each joint is generated by Gaussian
distance weighting:

u(t) =

4∑
i=0

wi(t)ui∑4
j=0 wj(t)

with wi(t) = eσ∗|t−
iτ
3 |

2

, σ > 0 (2)

4 parameters determine the trajectory of each of the 6
joints. Another parameter sets τ . Therefore A is a 25-D
space. The robot learns an inverse model in a continuous
space, and deals with high-dimensional and highly redundant
models. Our setup is all the more interesting since a fishing
rod’s and wire’s dynamics are very difficult to model. Thus
learning directly the effect of one’s actions is all the more
advantageous. This simulation environment is analysed in
detail in [1].

B. Experimental Protocol

To assess the efficiency of SGIM-D, we decide to compare
the performance of several exploration algorithms (fig. 4):
• Random exploration : throughout the experiment, the

robot picks actions randomly in the action space A.
• SAGG-RIAC: the robot explores autonomously, without

taking into account any demonstration by the teacher,
and is driven by intrinsic motivation .

• Imitation learning: every time the robot sees a new
demonstration ad of the teacher, it repeats the action
while making small variations: aimitate = ad + arand
with |arand| < ε a small random movement. It keeps
on repeating this demonstration until it sees a new
demonstration every N actions , and then starts imitating
the new demonstration.

• Observation learning: the robot does not make any
action, but only watches the teacher’s demonstrations.

• SGIM-D: the robot’s behaviour is a mixture between
Imitation learning and SAGG-RIAC. When the robot
sees a new demonstration, it imitates the action, but
only for a short while. Then, it resumes its autonomous
exploration, until it sees a new demonstration by the
teacher. Its autonomous exploration phases take into
account all its history from both the autonomous and
imitation phases.
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and SGIM-D. The comparison is made through the same experimental
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Fig. 5: (a): Map in the 2D task space Y of the benchmark points used to
assess the performance of the robot: by measuring how close they can reach
each of these points.
(b): Maps in the 2D task space Y of the teaching sets used in SGIM-D,
by three demonstrators. Demonstrator 1 is a SAGG-RIAC learner, while
demonstrator 2 is an optimised SAGG-RIAC learner, and demonstrator 3 is
a human teacher.

For each experiment, we let the robot perform 5000 actions
in total, and evaluate its performance every 1000 actions,
using the method described below.

C. Evaluation and Demonstration

1) Evaluation: After several runs of Random explo-
rations, SAGG-RIAC and SGIM-D, we determined the ap-
parent reachable space as the set of all the reached points
in the effect/task space, which makes up some 300.000
points. We then tile the reachable space into small tiles, and
generated a random point in each tile. We thus obtained a
set of 358 goal points in the task space, representative of the
reachable space, (fig. 5a), to assess the learning precision.

2) Demonstrations: We use 5 demonstration sets (fig. 5b):
• demo 1: the demonstration set is evenly distributed in

the reachable space, and taken from a pool of data from
several runs of SAGG-RIAC, using the previous SAGG-
RIAC learners as teachers. This demo set is chosen
randomly among the pool but evenly distributed in the
reachable space, as for the evaluation set.

• demo 2: SAGG-RIAC learners who now teach in return
our SGIM-D, as for demo 1. But it carefully chooses
among their memory exemplars (c, a, y) the most re-
liable, minimising the variance of y over several re-
executions of the same action a in the same context c.

• demo 3: a human teacher gives demonstrations
(actd, yd) evenly distributed in the reachable space of
Y by tele-operating a simulated robot through a physical
robot (http://youtu.be/Ll_S-uO0kD0). We
obtained a teaching set from an expert teacher of 127
samples.

Fig. 6: SGIM-D’s performance depends on the demonstrator

• demo 4: in this set, the demonstrator 3 only selects
demonstrations where y1d < 0 (in the bottom part)

• demo 5: the demonstrator 3 only selects demonstrations
where y1d > 0 (in the upper part).

As with the evaluation set, we define a tile of the reachable
space. The teacher observes the exploration of the learner,
and gives a demonstration belonging to a subspace randomly
chosen among those it has explored the least.

We showed in [1] that the combination of intrinsic motiva-
tion and social guidance improves the learner’s performance,
compared to learning by imitation or learning by intrinsic
motivation only.

Nevertheless, like any social learning method, SGIM-D’s
performance depends on the quality of the demonstrations.
In the next sections, we examine further this dependency,

V. TASK SPACE EXPLORATION

A. Dependence of the Performance on the Teacher

Let us examine how the learning of the same SGIM-
D algorithm differs in the case of various teachers. Fig.6
shows that error rates depend on the teachers. The difference
between teachers 1, 2 and 3 will be examined in the following
section. We here examine the more interesting contrast be-
tween demonstrators 3, 4 and 5. All three demonstration sets
come from human teacher teleoperation, with demonstrations
4 and 5 being the subsets of demonstrations 3 for y1d < 0
and y1d > 0 respectively. Nevertheless, the error plot for
demonstrator 4 is similar to that of demonstrator 3, whereas
the error rate for demonstrator 5 is in between the error
plot of a random or a SAGG-RIAC learner. Therefore, the
subspace of Y covered by demonstrations is a main factor
to the learner’s performance.

B. Difference in the Explored Task Spaces

To visualise how the teachers influence the subspaces
explored by each learning algorithm, we plot the histogram
of the positions y in the effect space Y of the hook when
it reaches the water (fig. 7). Each column represents a
different algorithm or teacher. We represent for each 2
example experiment runs. The 1st column shows that a
natural position lies around yc = (0, 0.5) in the case of
an exploration with random movement parameters. Most

http://youtu.be/Ll_S-uO0kD0
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Fig. 7: Histogram of the tasks explored by the fishing rod inside the 2D
effects space. Each algorithm is illustrated by 2 example experiments.

movement parameters map to a position of the hook around
that central position. This is due to the configuration of the
fishing rod which initial state is close to the water surface.
Therefore, most random movements would easily drop the
hook into the water. On the contrary, to reach positions far
from yc, the robot has to make quite specific movements to
lift the rod and make the hook reach farther areas. The second
column shows the histogram in the task space of the explored
points under SAGG-RIAC algorithm. Compared to random
exploration, SAGG-RIAC has increased the explored space,
and most of all, covers more uniformly the explorable space.
Besides, the exploration changes through time as the system
finds new interesting subspaces to focus on and explore.
Intrinsically motivated exploration has resulted in a wider
repertoire for the robot. SGIM-D (demonstrator 3 and 4) even
emphasises this effect: the explored space even increases
further, with a broader range of radius covered: the minimum
and maximum distances to the centre have respectively
decreased and increased. Furthermore, the explored space
is more uniformly explored, around multiple centres. The
examination of the explored parts of Y show that random
exploration only reaches a restricted subspace of Y , while
SGIM-D increases this explored space owing to its task
space exploration and to demonstrations. However, the case
of demonstrator 5 (SGIM-D), demonstrations are given only
in subspaces y1d > 0 of Y that are often reached by random
or SAGG-RIAC exploration. Fig. 7 shows a task space
exploration which is broader than the random learner, but still
more restricted than the SAGG-RIAC learner. Indeed, this
SGIM-D learner only explores around the demonstrated area
and neglects other parts of the task space. Demonstrations for
easy tasks entail poor performance for the learner, whereas
demonstrations for difficult tasks enhance better progress.

Therefore, one of the main bootstrapping factors of SGIM-
D is the task space exploration. The teacher influences
the exploration of difficult tasks, either by encouraging it
with demonstrations of difficult tasks, or by hindering it by
focusing attention too much on the easy tasks.

VI. ACTION SPACE EXPLORATION

Fig.6 also shows that there are differences in the error
plots for the case of teachers 1, 2 and 3, even though
their demonstrations cover the same subspace in Y . Let us
examine the difference between the teachers 1, 2 and 3.

Fig. 8: The performance of the SGIM-D learner depends on the
demonstrator.
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Fig. 9: Plot for the demonstrations of the trajectories for joint 1 (vertical axis:
joint angles, horizontal axis: time). Demonstrator 3 gives demonstrations of
trajectories that have particular structures.

A. Dependence of SGIM-D Performance on the Quality of
Demonstrations

We plot the mean error of the social learning algorithms
for our 3 different demonstrators (fig. 8). First of all, we
notice that for all 3 teachers, SGIM-D performs better than
the other algorithms (t-test with p < 0.05 for the error
(mean distance to the goals) at t=6000). SGIM-D is therefore
robust with respect to the quality of the demonstration as
the teacher only guides the learner towards interesting action
or effect subspaces, and the learner lessens its dependence
on the teacher owing to self-exploration. Still, among the
3 demonstration sets we used, some perform in average
better than others. As expected, the demonstrations 1 that
are chosen randomly bootstrap less than the demonstrations
2 that have smaller variance (t-test with p < 0.05). We also
note that the human demonstrations (3), also bootstrap better
than demonstrations 1 (t-test with p < 0.05). This result
seems at first sight surprising, as the results of learning by
observation seem to indicate the contrary: demonstrator 1 or
2 are more beneficial to the observation learner (t-test with
p < 0.05), since demonstrator 3’s actions can be not easily
reproduced due to correspondence problems.

B. Analysis of the Demonstrated Movements

To understand the reasons of this result, let us examine
the different demonstrations. Fig. 9 plots the trajectories of
the demonstrations. We can see that demonstrations show
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different distribution characteristics in the trajectory profile.
The most noticeable difference is the case of demonstrator
3. Whereas the trajectories of demonstrators 1 and 2 seem
disorganised, the joint value trajectories of demonstrator 3
are all monotonous, and seem to have the same shape, only
scaled to match different final values. Indeed, the comparison
of the demonstrations set 3 to random movements with
ANOVA [30] indicates that we can reject the hypothesis
that demonstration set 3 comes from a random distribution
(p = 4.10−40). The demonstrations set 3 is not randomly
generated but are well structured and regular. Therefore, the
human demonstrator shows a bias through his demonstrations
to the robot, and orients the exploration towards different
subspaces of the action space. Indeed, the ANOVA analy-
sis of the movements parameters a performed during the
learning reveals that they have different distributions with
separate means. Because his demonstrations have the same
shape, they belong to a smaller, denser and more structured
subset of trajectories from which is easier for the learner to
generalise, and build upon further knowledge. Moreover, this
comparative study highlights another advantage of SGIM-D:
its robustness to the quality of demonstrated actions. The
performance varies depending on the teacher, but still is
significantly better than the SAGG-RIAC or imitation learner.

VII. CONCLUSION

The improvement of SGIM-D over SAGG-RIAC is mainly
induced by the teacher’s influence on the exploration of
the task space. He can hinder the exploration of subspaces
difficult to reach by attracting the learner’s attention to
easy subspaces. On the contrary, he can encourage their
exploration by making demonstrations in those subspaces.
Therefore, the choice of the task y of the demonstrations
(a, y) is crucial. The demonstrations also help the action
space exploration. Demonstrations with structured action
sets, similar actions shapes, bias the action space exploration
to interesting subspaces, that allow the robot to interpo-
late to reach the most tasks and map to the task space
continuously. These conclusions do not only apply to the
specific SGIM-D algorithm, but are general to any multi-task
learning algorithm who learns by interaction with a teacher.
The demonstrator needs both to encourage its goal-oriented
exploration to unexplored subspaces of the task space, and to
help it generalise by using structured action demonstrations
to focus on small and more regular action subspaces. This
result underlines the role of social interaction: to bias the
exploration by both emulation and mimicking behaviours.

Although SGIM-D is robust to the quality of demonstra-
tions to some extend, this study highlights the importance
of the demonstrator. Hence, future work should focus on
increasing SGIM-D’s robustness, by extending to a learner
who can choose to imitate or prefer to learn autonomously, or
a learner who can even choose with which teacher to learn.
Besides, this present study shows results on only one human
teacher. It would be interesting to extend the experiment on
several human teachers, especially non-expert robot users.
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