
Real-time face swapping based on head
posture using particle filter towards the
understanding of infant self-recognition

22 February 2010

Osaka University
Graduate School of Engineering

Department of Adaptive Machine Systems
Emergent Robotics Laboratory

Asada Laboratory

Nguyen Thi Sao Mai
Asada Laboratory

Abstract
As human beings, we take self-recognition for granted, but this seemingly simple ability

represents one of the most complex mysteries of cognitive science. Indeed, even though
human adults immediately recognise their image in the mirror as themselves’, a dog or a cat
would treat it as another animal to be played with or confronted. Even for humans, self-
recognition is not innate, and studies on self-recognition in infants still need to shed light
on the mechanisms of its developmental process. From this perspective, we designed an
experiment for young infants, to study the preference of children between contingency and
familiarity factors in self-consciousness.

For that purpose we developed a complete system that realises face replacement in videos.
Our system is based on a 3D head posture estimation with a sparse-template based particle
filter. So as not to disturb the behaviour of the subject or change the naturalness of their
appearance for the purpose of our recognition experiment, our solution does not require
any special installation other than a camera, and most of all, does not require any object to
be attached to the subject. Our non-constraint real-time system is a large scale integration
of existing face-tracking, eye direction estimation systems, doubled with an original face-
swapping in video. Our real-time visual tracker combines sparse-template-based particle
filter and parallel processing to obtain a real-time system. Indeed, the use of particle filter
parameters that take into account the velocity increases the robustness of the tracker. More-
over, the design of the instruction pipeline to optimise parallel processing had enabled the
decrease of the total delay of the face tracker to 66ms. The precision and the real-time track-
ing of the system also enables to detect the gaze direction of the subject. The novelty of the
work also lies in the the lightweight of the initialisation phase. The head tracker needs only
a frontal face picture of the subject, and uses as 3D model of the face, a simple ellipsoid.

Keywords: self-consciousness, self-recognition, 3D visual tracker, face replacement in
video, particle filtering, appearance based, real-time system, GPGPU

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Constraints chosen . 3
1.3 General presentation . 4

2 Related work 6
2.1 3D visual tracker . 6
2.2 Eye direction . 8
2.3 Face-swapper . 8

3 3D visual tracker :method overview 10
3.1 Particle filtering . 10
3.2 Sparse Template Condensation Tracking 11
3.3 CUDA Implementation . 13

3.3.1 Introduction to CUDA . 13
3.3.2 Details of the particle filter implementation with CUDA 15

3.4 Multi-processing use . 18
3.4.1 Video capture . 19
3.4.2 Face detection . 19
3.4.3 Tracking . 19
3.4.4 Post-processing . 20
3.4.5 Management of the parallel processing 21

3.5 Eye direction computation . 21

4 Face-swapping 25

5 Discussion on the performance of the 3D head tracker 27
5.1 Comparison with Viola-Jones algorithm for face tracking 27
5.2 Evaluation of the speed of our system . 29
5.3 Choice of the parameters of the particle filter 30
5.4 Evaluation against motion capture . 33

1

CONTENTS CONTENTS

6 Limitations of the face swapper 34
6.1 Occlusion . 34
6.2 Large movements . 34

7 Conclusion 35

8 Appendix 36
8.1 Video capture thread . 36
8.2 Haar face detection thread . 37
8.3 Particle filter tracking thread . 38
8.4 Change face thread . 40
8.5 Show on screen thread . 42

Acknowledgement 46

Nguyen Sao Mai 2 Master Thesis (2010)

List of Figures

1.1 The main developmental stages in self-consciousness until children can pass
the rouge mirror test according to Rochat 2

1.2 Setting of the familiarity-contingency experiment 2
1.3 Set of images used to evaluate the precision needed for a realistic swap-

ping. The images have been obtained by translation of the face by the indi-
cated number of pixels horizontally (Tx) or vertically (Ty). The translations
smaller than 15 pixels still look realistic, whereas the translations of more
than 15 pixels begin to look strange. 4

1.4 The overall system is composed of a face tracker, an eye direction detector,
and a face swapper . 5

3.1 Particle filter algorithm . 11
3.2 Projection from the template to the image captured by the camera 12
3.3 Comparison between the architectures of the CPU and the GPU (courtesy of

Kirk et al.4)) . 14
3.4 Threads organisation with CUDA (courtesy of Kirk et al.4)) 15
3.5 Particle filter’s measure phase is processed by the GPU 16
3.6 Particle filter’s prediction phase is processed by the GPU 16
3.7 Processing of the particle filter by the CPU 17
3.8 Main processing streams used by our face-swapper in parallel processing . 18
3.9 Graph of the serialized processing streams: this configuration would lead to

a longer processing time . 19
3.10 Swap faces with tilted head . 20
3.11 Swap faces with background distractor faces 20
3.12 Swap faces as an example application . 21
3.13 Synchronisation and sharing of data between the different processes 22
3.14 Face tracking enables eye direction computation. (a) input image with 3D

head pose tracked.(b)image of the eyes trough the approximate position of
the eyes. (c) mask for the eyes, computed through threshold on the hue
image. (d) grayscale image of the eye. (e) histogram of intensity that detects
the pupil position . 23

3

LIST OF FIGURES LIST OF FIGURES

3.15 Results of the measures in our estimation of gaze direction. Angles presented
here are average angles, expressed in degrees. Calibration has been done for
θ1 = 18.19 . 24

4.1 Set of replacement faces tagged with head position and orientation of the
person B. Horizontal axis represents the horizontal rotation Ry taking values
-35, -30, -25 ,.... 25, 30. Vertical axis represents the lateral rotation Rz taking
values -20, -15,...15, 20. 25

4.2 Set of replacement faces tagged with head position and orientation of the
person B. Horizontal axis represents the horizontal rotation Ry taking values
-35, -30, -25 ,.... 25, 30. Vertical axis represents the lateral rotation Rz taking
values -20, -15,...15, 20. 26

5.1 Face detected by haar algorithm: on the left side of the face, a pan of the hair
is outside the rectangle . 28

5.2 Face detected by haar algorithm a few frames later: on the left side of the
face, all the hair is has been bordered by the rectangle returned by haar algo-
rithm . 28

5.3 Sparse template tracking can detect a large range of face orientation, contrar-
ily to the haar face detection . 29

5.4 Sparse template tracking is robust to occlusion. The left image shows the
result of the face tracking. The right image is the superimposed image. . . . 30

5.5 Translation measured by a tracking system with 6 parameters, on a video
created by translation of a image at 1 pixel per frame. Vertical axis is Tx in
pixels, Horizontal axis is time . 31

5.6 Translation measured by a tracking system with 6 parameters, on a video
created by translation of a image at 10 pixel per frame. Vertical axis is Tx in
pixels, Horizontal axis is time . 31

5.7 Translation measured by a tracking system with 9 parameters, on a video
created by translation of a image at 1 pixel per frame. Vertical axis is Tx in
pixels, Horizontal axis is time . 32

5.8 Translation measured by a tracking system with 9 parameters, on a video
created by translation of a image at 10 pixel per frame. Vertical axis is Tx in
pixels, Horizontal axis is time . 32

5.9 Translation and rotation measured by our tracking system compared with
the motion capture data. The screenshots of the video correspond to the
extremum of head rotation angle . 33

Nguyen Sao Mai 4 Master Thesis (2010)

Chapter 1

Introduction

1.1 Motivation
I know that I exist. The question is, what is this ’I’ that I know

René Descartes, Meditations on First Philosophy, Second Meditation, 1641

We define ”self-consciousness”, also described as ”self-awareness” as the awareness of
one’s own cognition, or in other words, the recognition by the subject of his own acts or
affections.16) Human infants’ self-consciousness is very different from human adults’. Chil-
dren’s self-awareness builds up during his development through different levels22) (fig 1.1) .
Indeed human neonates can detect contingency between their movements and what they see.
From 2 months to 18 months is the second level of self-exploration, that includes 2 stages.
By 2 months, babies know their body position in relation to other objects and people. And
by 5 months, they can discriminate their own image from the image of another infant. Still,
it is only at around 18 months that they can recognise the image in the mirror as themselvesf,
and pass the rouge mirror test. First set up by Amsterdam,23) this test is widely considered
to assess whether children have acquired an adult-like level of self-consciousness. The ex-
perimenter marks the subject with a dye spot, unbeknown to him, not visible directly but
only through a mirror. Only children above 18 months will touch and remove the mark. The
period from 6 to 18 months of age is therefore a decisive developmental stage.

From a behavioural point of view, self-recognition is based on familiarity and contin-
gency. Sanefuji et al.24) have shown that infants display a preference for familiar faces,
while Bahrick et al.25) have shown that discrimination is also based on contingency of ac-
tions, that children are more sensitive to actions that occur at the same time as their own
movements than delayed actions. Children are sensitive to both familiarity and contingency,
and we propose to investigate which they prefer. For this purpose, we designed an experi-
ment to see whether they would prefer contingent videos or videos with familiar faces. The
subject is placed in front of a screen that shows videos (fig 1.2) :

• video of the subject live

1

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

Fig. 1.1
The main developmental stages in self-consciousness until children can pass the
rouge mirror test according to Rochat

• video of the subject with a delay

• video of the subject live, but with face-swap: his face would be replaced by some one
else’s face. The video is therefore that of someone else imitating live what the subject
does.

• video of the subject with a delay and with face swap. The video is therefore that of
someone else imitating what the subject does with a delay.

Fig. 1.2 Setting of the familiarity-contingency experiment

For the purpose of the experiment, we needed to develop a face-swapper, that does not
require special installation or attachment to the subject that would risk to introduce unnatu-
ralness to the appearance. A non-constraint face-swapper is thus required.

A longer-term motivation for developing a face-swapper in videos is to build an objective
and systematic imitation system based on face changes. Children with Autistic Spectrum
Disorders (ASD) have impaired social interaction from an early stage in their development.15)

Several studies have suggested that imitating children with ASD is effective in facilitating
their social behaviours18).17) These studies have until now been using the caregiver as imitator

Nguyen Sao Mai 2 Master Thesis (2010)

1.2. CONSTRAINTS CHOSEN CHAPTER 1. INTRODUCTION

of the child to imitate his or her movements. Therefore the imitation is not fully accurate and
subject to subjective re interpretation by the caregiver. We would need a more objective and
systematic imitator to evaluate the change of behaviour of children with ASD.

A real-time head tracker where no special material is required to study autistic children’s
attention system and behaviour during social interaction. Indeed, children with Autism Spec-
trum Disorder (ASD) have different attention patterns to non-ASD children in their face
scanning strategy20) and in joint attention.19) This difficulty has been coined as the ”weak
central coherence theory” by U. Frith.15) For that purpose ,tracking children’s head direction
to infer their attention point during social interaction becomes essential. However autistic
people can be obsessively sensitive to particular details and objects.15) The use of traditional
tracking systems like motion capture for observing their natural behaviour and tracking their
movements often turn out to disturb their behaviour and destabilise them. A non-constraint
method is thus needed.

1.2 Constraints chosen
The constraints we impose on this tracker are:

• our system should need no special installation or tracking objects to be attached to the
subject for the reasons mentioned in the previous section

• it must be automatic: we require a face-swapper that automatically replaces the sub-
ject’s face with someone else’s with a minimum amount of data and calibration. As
children, especially autistic children do not easily comply with calibration constraints,
we need to have the face-tracking and face-swapping exploitable with a minimum of
calibration. Our system is very light in that sense, since it only requires the front face
pictures of the subjects to calibrate.

• real-time. To study contingency between his own movements and the video that he is
shown, the delay between reality and the screen output video must be minimised.

• it must be robust against rapid movements: the tracker needs to follow the head move-
ments of the subject, especially the head turning from one side of the screen to the
other. Therefore rotation around the vertical axis needs special attention.

• it must be robust to partial occlusion: children often bring their hands or toys to their
face or mouth. Therefore our face tracking system must resist partial occlusion.

Besides, we evaluated the precision needed of the tracking for a realistic swapping, with
regards with position error. For that, we used a frontal face image where we defined the
face region. The set of images (fig. 1.3 was produced by vertical and horizontal translation,
then blur of the edges, as the face-swapping program does automatically. This set of images

Nguyen Sao Mai 3 Master Thesis (2010)

1.3. GENERAL PRESENTATION CHAPTER 1. INTRODUCTION

show that in the first approximation, translations of less than 10 pixels appear completely
realistic, whereas translations of more than 15 pixels are noticed as strange. Therefore, the
tracker should have a precision of 10 pixels to be used to build a face-swapper. If we related
this value to the size of the face given by the distance between the 2 extremums of the eyes,
measured here as 130 pixels, the error of the tracker should be less than 10%.

Fig. 1.3
Set of images used to evaluate the precision needed for a realistic swapping. The
images have been obtained by translation of the face by the indicated number of
pixels horizontally (Tx) or vertically (Ty). The translations smaller than 15 pixels
still look realistic, whereas the translations of more than 15 pixels begin to look
strange.

1.3 General presentation
The overall system we aim for therefore includes a face tracker, an eye direction detector,
and a face swapper. The whole system is built around the 3D face tracker, and needs only

Nguyen Sao Mai 4 Master Thesis (2010)

1.3. GENERAL PRESENTATION CHAPTER 1. INTRODUCTION

a frontal face picture of the subject (fig. 1.4). Once the face position and orientation is
detected, the eye image can be extracted and the eye position estimated. Likewise, once the
face posture is known, we can superimpose a replacement face of a subject B on the face of
the current subject A. The replacement faces are prepared beforehand and are tagged images
of the face of another subject B, but have been obtained automatically from the same face
tracker. Therefore our whole system is per se a very lightweight ensemble that needs for first
input only front face pictures of two subjects.

Fig. 1.4
The overall system is composed of a face tracker, an eye direction detector, and a
face swapper

Nguyen Sao Mai 5 Master Thesis (2010)

Chapter 2

Related work

Face replacement requires first the detection of the position and orientation of the face in the
input image. Gaze movement means shift of the gaze direction but is always preceded by a
head movement. The estimation of the head posture is therefore also a first estimation of the
gaze direction.

2.1 3D visual tracker
Several kinds of commercial products exist to detect a person’s had position and orientation,
such as magnetic sensors and link mechanisms. Unfortunately such devices constraint the
user’s movements, and reduce the naturalness of his or her behaviour because of their dis-
comfort. Likewise, as we said before, motion capture systems can be disturbing for children
with ASD, or else give a strange appearance to the subject in the mirrored video. We there-
fore have to opt for a non intrusive method. FaceAPi2) is a non-invasive commercial product
for face tracking. It tracks efficiently with head rotations covering a wide range, and respects
the real-time constraint. Nevertheless, as a commercial product, there are some limitations
due to needed information being inaccessible, in order to adapt our system to our use for
children and extend it to a face-swapper. Particularly, faceAPI tracks 3 points on each eye-
brow and 8 points around the lips. While the adults’ eyebrows are distinct, those of babies
under 18 months are less distinctive, and could lead to poor tracking. Besides, we intend to
extend our system to track heads of infants during social interaction. Our proposed system
is not limited to tracking frontal face only, but is easily extended to track the side of the head
too.

Many researchers have proposed methods for real-time tracking. Matsubara et al? have
reported a study on sparse template matching for object tracking, The key idea of the method
is to reduce the calculation cost by introducing sparse templates, and choosing feature points
matching both the parallel and the condensation algorithm. This method proved efficient in
tracking faces for several image sequences. More complex algorithms involving a robust
non-parametric technique for climbing density gradient to find the mode (peak) of proba-

6

2.1. 3D VISUAL TRACKER CHAPTER 2. RELATED WORK

bility distribution called the mean shift algorithm. Bradski et al6) applied the mean shift
algorithm to find the mode of a colour distribution with a video sequence. The modified al-
gorithm called CAMSHIFT, was developed into a 4 degree of freedom colour object tracker
and applied to flesh-tone-based face tracking. CAMSHIFT was shown to handle irregular
object motion, image noise distractors and occlusion. However, the distance to the camera
estimation is subject to noise and spurious values. Besides, CAMSHIFT only detects four
(position and roll) of the six of freedom, and roll is the least useful control variable since it is
the least ”natural” head movement. Matsumoto et al.1) proposes an estimation method of the
6-DOF motion of the face by means of a single camera and a 3D facial model.The method
relies on the decomposition of 2D motion field of facial features into the linear combina-
tion of predicted unit motion vector fields generated from the 3D facial model to achieve a
real-time estimation of the facial position and orientation The use of a single camera instead
of a stereo camera enables a larger freedom for camera placement, and especially avoids
difficult calibration of the stereo camera pair. But the technique proposed here requires a
heavy 3D model of a head that is difficult to generate and might limit the tracking to rigid
objects. Thus, only unexpressive and rigid faces are efficiently tracked. However, the most
important issue is to generate the 3D model, which requires a stereo camera or a 3D scanner
for building the 3D facial model.

To help with costly computation, there has recently strong interest from researchers
and developers in exploiting the power of graphics hardware for general purpose comput-
ing (GPGPU). Computer Vision, the inverse of computer graphics, has been pointed out
as well suited for GPGPU, and some have even studied the application of pure GPGPU
techniques to particle filtering tracking algorithms.5) Mateo Lozano et al.8) presents a real-
time visual tracker by stream processing that targets the position and 3D pose of faces in
video sequences. The technique is based on stream processors for computations and sparse-
template-based particle filtering. The real-time constraint has been obtained thanks to the use
of a GPU and the NVIDIA CUDA technology. The advantage of this method is that though
it can track the 3D pose of the face, it only requires a generic 3D model of the human face,
that it personalises to each detected face through the proportions of the head and through
rendering.

Our 3D head tracker also adopts this approach and uses an even simpler model for the
face, namely it considers the head as a simple ellipsoid. Our tracker also relies on multi-
processing and template-based particle filtering. Though, for our face model, we did not
use a 3D model of human face, but a simple ellipsoid model. To increase the robustness of
our tracker to movements, we redefine the parameters of the particle filters and increase its
number.

However, the early assumptions that the head direction was a reasonable estimation of
the direction of the child’s focus of attention proved unsatisfying, so we needed to add the
detection of the gaze attention to the system.

Nguyen Sao Mai 7 Master Thesis (2010)

2.2. EYE DIRECTION CHAPTER 2. RELATED WORK

2.2 Eye direction
In order to determine more efficiently children’s attention point during infant-parent interac-
tion, our head tracker also enables to compute the eye direction. Several devices exist such as
goggles or other head mounted devices. Non intrusive systems for eye direction estimation
usually use an external camera filming the user and detecting the direction of the eyes with
respect to a known position. Several modern systems use infra-red lighting to extract the eye
orientation by geometric calculation of the infra-red reflections. But to avoid distracting the
infant, neither goggles nor IR leds should be used. More specifically for young children as
we target, Noris et al.10) developed a solution for eye gaze direction from a head mounted
camera designed for children between 6 and 18 months. The solution is a wearable gaze
direction detection system based on image appearance. The method has the advantage of not
requiring any calibration from the wearer, and has been designed for use in a free play envi-
ronment. Unfortunately, it still requires the child to wear the head mounted device, and a hat
to support it, which would alter the child’s appearance and his self-recognition. Matsumoto
et al? proposes a non intrusive method for gaze direction measurement. The algorithm tracks
the face and detects the gaze simultaneously and in real-time. Unfortunately, the key aspect
of the system is the use of real-time stereo vision, which we ruled out because of its nu-
merous disadvantages and restrictions. We propose a non intrusive method of gaze direction
estimation based on the 3D visual tracker, that does not require the child to wear any device,
and would not distract him.

2.3 Face-swapper
While there exists a rich body of work on replacing parts of images with new data, the re-
placement of faces in images has only developed recently. Zhu et al14) proposed an approach
to unsupervised facial image alignment, that is finding a transformation between two facial
images so that they can be matched as well as possible.Their approach involves the extrac-
tion of a non-rigid mapping between facial images. Based on regularised face model, they
use the Lucas-Kanade image registration approach to align faces without supervision. The
proposed deformable Lucas-Kanade algorithm has been successfully applied to swap faces.
LHowever, this method has only been tested on face images that have similar appearance,
and most of all, has been designed only for still images and not video sequences.Indeed, the
processing speed obtained, 6 images per second, is far below the 30 frames per second of
a video. Bitouk et al13) build an automatic face replacement system in images. It builds up
a large library of faces from a maximum of people in different postures and under different
light conditions. Given an input image, it detects all the faces present, select the candidate
face images that are similar to the input face in appearance and pose. Then, it adjust the pose,
lighting and colour, to finally blend the candidate face replacements to the input image. The
method does not require 3D model and is automatic. This means that the approach is com-

Nguyen Sao Mai 8 Master Thesis (2010)

2.3. FACE-SWAPPER CHAPTER 2. RELATED WORK

patible with our 3D visual tracker. Our face-swapper targets videos and not only images.
Therefore, the continuity and movement factors are as important as the appearance, and add
further constraints to our face-swapper. For that purpose we will use the construction of our
3D visual tracker to blend the candidate face image to the head pose detected.

Nguyen Sao Mai 9 Master Thesis (2010)

Chapter 3

3D visual tracker :method overview

3.1 Particle filtering
Particle filtering is a model estimation technique based on Monte Carlo simulations within a
Bayesian framework, and has been developed for tracking curves in dense visual clutter.9)

The particle filter’s goal is to estimate the sequence of hidden parameters x = (x1, ..xk),
based on the observed data y = (y1, ..yl), the observation model y = f(x) and the posterior
distribution p(x|y). Random particles of the state-space variable x are generated, and checked
against the current measured data to estimate the likeliness of that particle describing the
real current state of the system. Namely, the particle filter calculates the probability function
p(x|y).

The particle filtering algorithm is designed to apply iteratively to successive images in
a sequence. The output of each iteration at time step t will be a weighted, time-stamped
sample-set, denoted {s(n)

t , n = 1, . . . ,N} with weights π(n)
t ∼ p(yt|s(n)

t), representing approx-
imately the conditional state-density p(xt|y1, . . . , yt) at time t. For each time step, the first
operation is to sample N times from the set {s(n)

t−1} choosing a given element with probability
π(n)

t−1. Each element chosen from the new set is now subjected to the predictive steps, that
is, first, a deterministic drift where identical elements in the new set undergo the same drift,
then, a Brownian diffusion. The sample set {s(n)

t } is thus generated but, as yet, without its
weights. Finally the observation step generates weights from the observation density p(yt|xt)
to obtain the weighted sample-set { (s(n)

t , π
(n)
t)}

The particle filter therefore differs from the Kalman filter in that it can represent multiple
hypotheses simultaneously. Particle filter uses learned dynamical models, together with vi-
sual observations, to propagate the random set over time. The result is a robust tracker that,
despite the use of stochastic methods, runs in real-time.

10

3.2. SPARSE TEMPLATE CONDENSATION TRACKINGCHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

Particle filter algorithm
for each step at time-stamp t

1. Select: For n=1,. . . ,N, draw samples s�(L)
t from the estimated distribution

s’(n)
t ∼ π(n)

t−1 =
p(y1, . . . yt−1|s�(n)

t)
�N

j=1 p(y1, . . . yt−1|s�(j)
t)

2. Predict: drift and diffusion according to the dynamical model. The sample set {s(n)
t } is

generated.

3. Measure: For n = 1, ..., N update the weights of each particle based on the observed
data yk

π(n)
t ∼ p(yt|s(n)

t)
Fig. 3.1 Particle filter algorithm

3.2 Sparse Template Condensation Tracking
For our head tracking system, we define the state parameters as

x = (Tx,Ty,Txdot ,Tydot, S ,Rx,Ry,Rz,Rydot ,α) (3.1)

where Tx,Ty are the translation coordinates of the target object Txdot ,Tydot are the velocity
along the x and y axes S is the scale, Rx,Ry,Rz are the rotations along each axis Rydot is the
velocity of the rotation along axis y and α is a global illumination variable.

For our visual tracking system, the observation data y = (y1, ..yl) is based on sparse tem-
plate matching, i.e. based on the difference error between the template and the input image at
each time step. The matching error � is calculated based on the difference in intensity values
between selected pixels in the template (feature points) and the corresponding pixels in the
image at time t (fig. 3.2).

A feature point M template in the template is tracked in the image plane as point M image
based on the state estimate x(L) = (Tx,Ty, S ,Rx,Ry,Rz,α) of a particle L=1,. . . ,P and accord-
ing to an ellipsoid model of the face. M template is first considered to be the projection of a
point M ellipsoid of a 3D ellipsoid so that

M template x =M ellipsoid x
M template y =M ellipsoid y
M ellipsoid x2

a2 + M ellipsoid y2

b2 + M ellipsoid z2

c2 = 1;

The point projected on the image can be written

M image(L) =S · R(L)
x R(L)

y R(L)
z M ellipse(L) + T(L)

Nguyen Sao Mai 11 Master Thesis (2010)

3.2. SPARSE TEMPLATE CONDENSATION TRACKINGCHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

Fig. 3.2 Projection from the template to the image captured by the camera

Nguyen Sao Mai 12 Master Thesis (2010)

3.3. CUDA IMPLEMENTATIONCHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

where

R(L)
x R(L)

y R(L)
z are the rotations matrices along each axis of the particle L

and T(L) is the translation vector of the particle L

The average matching error is thus the difference in intensity between the two points
M template and M image. If the intensity in the template image for a feature point m is
I(M template) and in the current image is I(M image),

�(L) =
1
l

N�

m=1

(I(M templatem) − I(M image(L)
m)) (3.2)

and the probability that the particle represents the real current state is

p(L) ∝ 1
�(L) (3.3)

Finally, if we can estimate the current state as the average of the particles by

xestimated =

�N
L=1 p(L)x(L)

�N
L=1 p(L)

(3.4)

3.3 CUDA Implementation

3.3.1 Introduction to CUDA
CUDA (Compute Unified Device Architecture) is a parallel computing architecture devel-
oped by NVIDIA.3) CUDA is the computing engine in NVIDIA graphics processing units
(GPUs) that is accessible to software developers through industry standard programming
languages. Until the recent years, the use of GPUs has been mostly limited to graphics
processing. However, with the development of General-Purpose Computing on Graphics
Processing Units (GPGPU), it has become possible to use a GPU for more common tasks
such as mathematical calculations. The use of GPUs parallel computing architecture enables
dramatic increases in computing performance by harnessing the power of the GPU that can
be viewed as a data-parallel computing device that operates in collaboration with the Central
Processing Unit (CPU). The CPU would play the role of host, and send data to the GPU
(device) to compute. The use of GPU is therefore best for independent calculations that can
be carried in parallel, like the calculations in our particle filter of the independent particles.
More precisely, we use the GPU in our particle filter algorithm for each time step for the
prediction phase and the measure phases. For our implementation, we chose from amongst
the various programming libraries, Nvidia’s GPGPU technology for Nvidia GeForce-based
GPUs CUDA.

Nguyen Sao Mai 13 Master Thesis (2010)

3.3. CUDA IMPLEMENTATIONCHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

Fig. 3.3
Comparison between the architectures of the CPU and the GPU (courtesy of Kirk
et al.4))

A CUDA program consists of one or more phases that are executed on either the host
(CPU) or a device (GPU). The major difference in architecture between a CPU and a GPU,
as illustrated in figure 3.3 is that while a CPU devotes a lot of space to memory and cache,
a GPU is almost entirely dedicated to data processing with over 200 cores in current day
devices. This has led to a overall number of GFLOPS in a GPU to be more than 10 times
more important than a current day CPU. Nevertheless, in CUDA, host and devices have
separate memory spaces. This reflects the reality that devices are typically hardware cards
that come with their own Dynamic Random Access Memory (DRAM). In order to execute a
kernel on a device, the programmer needs to allocate memory on the device and transfer the
pertinent data from the host (CPU) memory to the device(GPU). Similarly, after the device
execution, the programmer needs to transfer result data from device back to the host. Thus,
while a CUDA program can be speeded up by parallel processing power of the GPU, it can
also be considerably slowed down by the data transfer. Therefore, from a GPU to another, the
program execution speed can vary considerably depending on the transfer bandwidth from
host to device, device to host and device to device.

In more detail, the way CUDA allows the user to access the GPU is through sections of
code called kernelsB The code blocks are signalled by the CPU and then executed entirely
within the GPU. When a kernel is invoked or ”launched” (fig. 3.4), it is executed as grid
of parallel threads. Each CUDA thread grid typically comprises thousands to millions of
lightweight GPU threads per kernel invocationB Threads in a grid are organised into a two-
level hierarchy. At the top level, each grid consists of M thread blocks. Each block is in
turn organised as a 3 dimensional array of N threads. The GPU is implemented as a set of
MxN multi-processors, each composed of many multi processing units. Each of these units
computes at every time step the matching error of the feature points and updates the particles.

Nguyen Sao Mai 14 Master Thesis (2010)

3.3. CUDA IMPLEMENTATIONCHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

Fig. 3.4 Threads organisation with CUDA (courtesy of Kirk et al.4))

3.3.2 Details of the particle filter implementation with CUDA
In the initialisation phase, both the host and the device initialise twin particles, and the host
gives the device the information on the feature points to track. These points do not change
during the execution of the program, so will be kept in the GPU memory to be used for the
measure phase of the particle filter algorithm.

Then, at each time step (fig 3.7):

• the host sends the current video frame to the device

• measure phase: the device calculates the likelihood of each particle based on the in-
tensity of the feature points in the current video frame (Listing 3.5)

• the device sends back to the host the information about the each particle and their
likelihood

• the host can estimate then the current state xestimated as the average of the particles.

• prediction phase: the drift and diffusion of the particles are realised by the device
(Listing 3.6).

Nguyen Sao Mai 15 Master Thesis (2010)

3.3. CUDA IMPLEMENTATIONCHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

void cudaLikelihood(unsigned char *imgGray):
1: arrayFeature← featureData
2: arrayImageGray← imgGray
3: texFeature← arrayFeature
4: texImageGray← arrayImageGray
5: calculateLIkelihoodByKernel
6: likelihoodDataHost← likelihoodDataDevice
7: particleDataHost← particleDataDevice

likelihoodKernel(float* particleDataD, float* liData) :
1: calculateTransformationParameters
2: for all feature points k do
3: (x, y, z)← the coordinates of k;
4: (r, g, b)← the intensity of the template image at point (x, y, b) ;
5: (px, py, pz)← the transformed coordinates;
6: (pr, pg, pb)← the intensity of the current image at point (px, py, pb) ;
7: error ← error + (pb − b) ∗ (pb − b) + (pg − g) ∗ (pg − g) + (pr − r) ∗ (pr − r)
8: end for

Fig. 3.5 Particle filter’s measure phase is processed by the GPU

void cudaUpdate(void)
1: particleDataDevice← particleDataNew
2: updateLikelihoodByKernel

updateKernel(float *particleDataD, float *randRangeD) :
1: particleDataD← particleDataD + random*randRangeD;

Fig. 3.6 Particle filter’s prediction phase is processed by the GPU

Nguyen Sao Mai 16 Master Thesis (2010)

3.3. CUDA IMPLEMENTATIONCHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

CUDA initialisation
1: system noise setting
2: initialisation of the particles of the GPU.
3: initialisation of the particles of the CPU
4: get data of template
5: loop
6: imgGray← grayscale of current camera frame
7: cudaLikelihood(unsigned char *imgGray)
8: maxLikelihood← max (likelihood of all particles)
9: if maxLikelihood ¡ threshold1 then

10: particleDataH← the position detected by haar detection
11: end if
12: if maxLikelihood ¿ threshold2 then
13: global position and orientation← average of particleDataH
14: end if
15: draw the results
16: particleDataNew← particleDataH
17: cudaUpdate();
18: if maxLikelihood inf threshold3 then
19: system noise setting
20: initialisation of the particles
21: end if
22: end loop

Fig. 3.7 Processing of the particle filter by the CPU

Nguyen Sao Mai 17 Master Thesis (2010)

3.4. MULTI-PROCESSING USECHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

3.4 Multi-processing use
Our tracker used 4 main processing threads to track the head position:

• video capture from the camera

• face detection using Viola-Jones algorithm

• tracking

• post-processing, which is for our experiment face swapping

• show on screen

The scheme of how these processes are related, and how a captured camera is dealt
processed by the different threads is shown in fig. 3.8. The relationship shown here is data-
wise, for the same captured camera, how it is going to be handled by each of the threads.
The graph does not show the time-wise synchronisation of the threads. Fig. 3.9 show the
organisation of the same threads in the system if parallel processing were not used.

Fig. 3.8 Main processing streams used by our face-swapper in parallel processing

Nguyen Sao Mai 18 Master Thesis (2010)

3.4. MULTI-PROCESSING USECHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

Fig. 3.9
Graph of the serialized processing streams: this configuration would lead to a longer
processing time

3.4.1 Video capture
The video capture from the camera was revealed to be one of the slowest nodes of the tracker,
as our firewire camera captures only 30 frames per second, which means a delay of at least
33ms. For this reason, we isolated the video capture task into a separate thread, so that the
tracking calculation can take place simultaneously.

3.4.2 Face detection
The captured image is scanned to look for new faces, using the haar classifier first developed
by Viola and Jones.21) It is classifier based on the value of rectangle features in a cascade
structure. It organises the classification as a rejection cascade of nodes, where each node is a
multitree Adaboost classifier. True face detection is declared only if the computation makes
it through the entire cascade

This face detection is essential for the initialisation, and to give an estimation of the head
position to the tracking system when the estimated states have a too low probability.

3.4.3 Tracking
This is the actual particle filtering that is performed. When the particle filter’s probability
function p(xt|y1, . . . , yt) is above a threshold, position and orientation of the head is obtained
as the average of the particles, and passed to the display thread (fig. 3.7). When the particle

Nguyen Sao Mai 19 Master Thesis (2010)

3.4. MULTI-PROCESSING USECHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

filter’s probability function p(xt|y1, . . . , yt) is below this threshold, the particles will be re-
generated around the latest position found by the haar classifier. Our tracker is successful for
different rotation angles of the head (fig. 3.10 and fig 5.3, as well as at tracking a face with
background distractor faces (fig 3.11).

Fig. 3.10 Swap faces with tilted head

Fig. 3.11 Swap faces with background distractor faces

3.4.4 Post-processing
The post-processing thread takes the head position and orientation output by the tracking
thread to process the required task specific to the application developed. The simplest post-
processing is to simply display the results of the tracking. In our case, we chose to build a
face-swapper over the tracker, that is automatically replacing the subject’s face by someone

Nguyen Sao Mai 20 Master Thesis (2010)

3.5. EYE DIRECTION COMPUTATIONCHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

else’s, as illustrated in fig.3.12. We can superimpose the face of another person over the face
detected, so that the video displayed is that of a person exactly mirroring oneself and with
the same motions but with another face.

Fig. 3.12 Swap faces as an example application

3.4.5 Management of the parallel processing
The management of multiple threads running in parallel implies not only management of
the data sharing, how to protect against multiple writes, but also thread synchronisation.
Different threads run at different speed depending on their computing load, but to make
the parallel processing meaningful, to maximise the overall speed of the system, we made
the threads have equivalent computing loads(cf. Annex). And so as not to overload the
processor with useless runs of fast threads on the same already processed data, we used
condition variables to synchronise threads and make the fast threads like the show-on-screen
thread wait until arrival of new data. Fig. 3.13 indicates how the different processes run
parallel and synchronise with each other, and how they share data.

3.5 Eye direction computation
Our efficient face tracking enables us to track the eyes efficiently and therefore to infer the eye
direction (fig.3.14). From the 3D posture of the head (a), we have access to the approximate
position of the eyes and we can extract the image of the eyes(b). A hue-image and a threshold
filter singles out the eye from the rest of the skin (c), and enables to locate more precisely
the eye itself (d). From this image, we can simply detect the position of the pupil in the eye
to get the position of the pupil and the lateral eye direction (e).

Nguyen Sao Mai 21 Master Thesis (2010)

3.5. EYE DIRECTION COMPUTATIONCHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

Fig. 3.13 Synchronisation and sharing of data between the different processes
Nguyen Sao Mai 22 Master Thesis (2010)

3.5. EYE DIRECTION COMPUTATIONCHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

Fig. 3.14
Face tracking enables eye direction computation. (a) input image with 3D head pose
tracked.(b)image of the eyes trough the approximate position of the eyes. (c) mask
for the eyes, computed through threshold on the hue image. (d) grayscale image of
the eye. (e) histogram of intensity that detects the pupil position

In order to evaluate the eye direction estimation, we set up a measure in a controlled en-
vironment where the subject’s attention is attracted by a flashing figure on a screen. To better
evaluate the gaze direction (and not the head direction) estimation, we tried to constraint the
head movement of the subject to a minimum, but could not totally get rid of them. The flash-
ing object appears at given angles as presented on fig. 3.15. For these measures, we needed
two calibration measures: the measures for when the subject looks straight forward (angle
0 degree) and another angle θ1 non null. During the estimation phase, the head rotation Ry
and the relative eye direction θ are both computed. The (global) eye direction is the sum of
the head rotation and the eye direction compared to the calibration measures, i.e.

eyedirection = θ − θstraight f orward − (Ry − Ryθ1) (3.5)

The measures show that errors on the estimation of the global eye direction is smaller
than 3 degrees, with an average of 2 degrees. The accuracy obtained by this method is
inferior to the existing eye trackers. However our system is a non invasive method, designed
to be used in a free play environment, with no constraint on the subject. Moreover, due to the
constraint of working with young children, especially children with ASD, the system does
not seek to be as accurate as other state-of-the-art eye trackers, but rather focuses on how to
enhance natural behaviour, and not disturb the subject.

Nguyen Sao Mai 23 Master Thesis (2010)

3.5. EYE DIRECTION COMPUTATIONCHAPTER 3. 3D VISUAL TRACKER :METHOD OVERVIEW

angle of flashing object (degree) 18.2 9.3 0 -9.3 -18.2 global
relative eye direction 18.2 10.5 0.7 -4.9 -11.1

head rotation 9.0 7.4 8.3 9.9 10.9
eye direction 18.2 11.3 0.7 -6.6 -13.7

standard deviation of eye direction 2.1 2.6 2.3 1.1 1.4 1.9
error (calibration). 2.0@ 0.7 2.7 4.4 1.9

Fig. 3.15
Results of the measures in our estimation of gaze direction. Angles presented here
are average angles, expressed in degrees. Calibration has been done for θ1 = 18.19

Nguyen Sao Mai 24 Master Thesis (2010)

Chapter 4

Face-swapping

In order to superimpose the face of another person B on the detected face of the subject A,
we prepare a set of replacement faces tagged with the head position and orientation x of the
person B in advance (fig 4.1) , using the simple tracking system to save the template images
and tag them with the head position and orientation. We therefore automatically generate,
using only a frontal picture of a person B, a set of replacement faces.

Fig. 4.1
Set of replacement faces tagged with head position and orientation of the person B.
Horizontal axis represents the horizontal rotation Ry taking values -35, -30, -25 ,....
25, 30. Vertical axis represents the lateral rotation Rz taking values -20, -15,...15,
20.

During the execution of the program, the post-processing thread will compare the state
parameters xA computed on A’s face with the state parameters of the template images exist-
ing of B (fig 4.2). It will select the closest face replacement xClosest to superimpose it on A’s

25

CHAPTER 4. FACE-SWAPPING

face. In order to render the movement and the temporal continuity of the displayed video, the
replacement faces are first interpolated before the superimposition. Once the closest replace-
ment face has been selected, a point Mclosest of the replacement image will be interpolated
into the point M image according to the equation:

Fig. 4.2
Set of replacement faces tagged with head position and orientation of the person B.
Horizontal axis represents the horizontal rotation Ry taking values -35, -30, -25 ,....
25, 30. Vertical axis represents the lateral rotation Rz taking values -20, -15,...15,
20.

M image = S · (R(A)
x − R(Closest)

x)(R(A)
y − R(Closest)

y) (4.1)

(R(A)
z − R(Closest)

z)Mclosest + (T(A) − T(Closest))

This interpolation allows the replacement face to look dynamic, not only a static image
stuck on the video, but moving with the face of the original video. We therefore have a
comprehensive system for automatically replacing faces in videos, that renders the dynamic
of the movements of the head.

Nguyen Sao Mai 26 Master Thesis (2010)

Chapter 5

Discussion on the performance of the 3D
head tracker

Our choices to use particle filter and multi-processing has been made based on precision and
speed criteria.

5.1 Comparison with Viola-Jones algorithm for face track-
ing

The haar classifier is not sufficient in estimating the head position and orientation for three
reasons.

One reason is that the haar classifier is slow and lacks stability from one frame to the
other. The classifier takes more time to scan the image and find the face position on the
image than a condensation algorithm that already has hypotheses about the probable posi-
tion. Moreover, the faces detected by the haar algorithm from one frame to the other are
independent of each other, therefore unstable temporally. The size of the face is especially
subject to great variations from a frame to the other. Fig 5.1 and 5.2 show two screenshots of
temporally near frames. The image is almost the same, however the rectangles returned by
the haar face detection are notably different. Although the difference between the rectangles
are not significant in terms of pixels, the rapid variations make it very unstable. Superimpos-
ing a replacement face on the face position and size returned by haar would cause too much
instability and make the image flicker.

The second reason is that a haar classifier can only detect an object at a certain orientation
only, and not at any orientation as we are aiming at. Our goal would require using several
haar classifiers, one for each orientation of the face. It would then require the use several
haar classifiers, meaning more processing needed. This solution is not acceptable for a real-
time tracker. On the other hand, the sparse template tracker can detect a large range of face
orientations, as show fig.5.3 with a rotation angle of more than 70 degrees.

27

5.1. COMPARISON WITH VIOLA-JONES ALGORITHM FOR FACE TRACKINGCHAPTER 5. DISCUSSION ON THE PERFORMANCE OF THE 3D HEAD TRACKER

Fig. 5.1
Face detected by haar algorithm: on the left side of the face, a pan of the hair is
outside the rectangle

Fig. 5.2
Face detected by haar algorithm a few frames later: on the left side of the face, all
the hair is has been bordered by the rectangle returned by haar algorithm

Nguyen Sao Mai 28 Master Thesis (2010)

5.2. EVALUATION OF THE SPEED OF OUR SYSTEMCHAPTER 5. DISCUSSION ON THE PERFORMANCE OF THE 3D HEAD TRACKER

Fig. 5.3
Sparse template tracking can detect a large range of face orientation, contrarily to
the haar face detection

The third reason is that haar face detection is very weak to partial occlusion such as hands
or toys brought to the mouth or other parts of the face when children are playing. On the
contrary, as fig. ??occlusion shows, our tracker is robust to occlusion.

The face haar detection is therefore not a solution for our system. We are aware that a
comparison between face detecter and a tracker would underline huge differences between
the two methods, and it would be more interesting to compare our tracking algorithm with
another face tracking algorithm such as the one developed by Matsumoto et al.1)

5.2 Evaluation of the speed of our system
The speed of the tracker benefits greatly from multi-processing that enables the camera cap-
ture and the haar face detection to run at the same time as the particle filter tracking.

In the example of the face swapping program that uses only haar face detection without
particle filter tracking, the single-processing program would have a delay of 400 ms while
the multi-processing program has a delay of 60 ms. The use of sparse template particle filter
enables to reduce even more this delay. With regard to the processing time of the particle
filter only, when the number of particles is 5120, the measure phase takes 5 ms and the
prediction phase takes 5 ms, which add up to a total processing time for the particle filter of
approximately 10 ms. For the whole tracker system, the total delay of the tracker plus face-
swapper measured was 200 ms without the processing power of the GPU, and it decreased

Nguyen Sao Mai 29 Master Thesis (2010)

5.3. CHOICE OF THE PARAMETERS OF THE PARTICLE FILTERCHAPTER 5. DISCUSSION ON THE PERFORMANCE OF THE 3D HEAD TRACKER

Fig. 5.4
Sparse template tracking is robust to occlusion. The left image shows the result of
the face tracking. The right image is the superimposed image.

to 66 ms. The hardware used for these measures are:

• host: a 2*2.8 GHz Quad-Core Intel Xeon running with Mac Os X 10.5.8

• GPU : a NVIDIA GeForce GT120 with 515MB. The transfer bandwidth are: from
host to device: 189 MB/s, from device to host : 1678 MB/s, from device to device:
47624 MB/s.

5.3 Choice of the parameters of the particle filter
We chose to increase the number of parameters of our tracker. Mateo Lozano et al.8) uses
6 cinematic variables, we added Txdot ,Tydot and Rydot to gain robustness to quick movements.
To assess this gain in robustness, we prepared sample videos consisting of the translation of
a still image at different speed, ranging from 1 pixel per frame to 10 pixels per frame. The
result is that:

• for low speed translations, both systems with either 6 (fig.5.5) or 9 parameters (fig.5.7)
perform well. The figures show the measurement of the face position along the hori-
zontal axis Tx as a function of time. At both translation speeds, we can see the that the
slope of the curve Tx is a straight line, showing a detection of the translation.

• for high speed translations, the system with 9 parameters (fig. 5.8) outperforms the
system with only 6 parameters. (fig.5.6). Although irregular, the 9 parameters system
still measures the face position Tx with a regular slope, thus detecting a translation;
whereas the 6 parameters system would measure very irregular Tx, and the slope of
the curve is not always observed.

Nguyen Sao Mai 30 Master Thesis (2010)

5.3. CHOICE OF THE PARAMETERS OF THE PARTICLE FILTERCHAPTER 5. DISCUSSION ON THE PERFORMANCE OF THE 3D HEAD TRACKER

Fig. 5.5
Translation measured by a tracking system with 6 parameters, on a video created by
translation of a image at 1 pixel per frame. Vertical axis is Tx in pixels, Horizontal
axis is time

Fig. 5.6
Translation measured by a tracking system with 6 parameters, on a video created by
translation of a image at 10 pixel per frame. Vertical axis is Tx in pixels, Horizontal
axis is time

Nguyen Sao Mai 31 Master Thesis (2010)

5.3. CHOICE OF THE PARAMETERS OF THE PARTICLE FILTERCHAPTER 5. DISCUSSION ON THE PERFORMANCE OF THE 3D HEAD TRACKER

Fig. 5.7
Translation measured by a tracking system with 9 parameters, on a video created by
translation of a image at 1 pixel per frame. Vertical axis is Tx in pixels, Horizontal
axis is time

Fig. 5.8
Translation measured by a tracking system with 9 parameters, on a video created by
translation of a image at 10 pixel per frame. Vertical axis is Tx in pixels, Horizontal
axis is time

Nguyen Sao Mai 32 Master Thesis (2010)

5.4. EVALUATION AGAINST MOTION CAPTURECHAPTER 5. DISCUSSION ON THE PERFORMANCE OF THE 3D HEAD TRACKER

This choice to add velocity to the state parameters originate from the idea that we should
take into account the variation of the dynamic of the head, the change in velocity of the
movement of the head. Under such considerations, a natural choice would be to use 12
parameters (6 for pose and 6 for motion). But given the ”natural” movement of the head,
rotations around the vertical axis would occur more often than other axis, especially in our
experiment to watch the left or right side of the screen. Therefore Rydot will have a major
impact whereas Rxdot and Rzdot have lower importance. Given that each each new parameter
introduced has a calculation cost proportional to the number of particles used, we decided to
discard Rxdot and Rzdot to gain in processing speed. A further comparison between 9 and 12
parameters in terms of precision and processing time should be carried out.

5.4 Evaluation against motion capture
The system is under evaluation against motion capture system. We captured movements both
with cameras and motion capture to assess the accuracy of our tracking program.

The evaluation has been conducted first on an adult subject for movements in normal
speed, with head pitch ranging from -40 to 40 degrees. Fig 5.9 show a comparison between
measures by a motion capture system and our tracker. Although timing calibration still needs
to be improved, the comparison gives encouraging results, with an average error of 9 degrees.

Fig. 5.9
Translation and rotation measured by our tracking system compared with the motion
capture data. The screenshots of the video correspond to the extremum of head
rotation angle

Nguyen Sao Mai 33 Master Thesis (2010)

Chapter 6

Limitations of the face swapper

6.1 Occlusion
Although the tracking is robust in this regard, the face-swapping unfortunately is sensitive
to occlusion, such as eyeglasses or hands or toys brought to the face (fig 5.4). This prob-
lem could be solved using the advantage of processing a video to build up a model of the
face. By gathering information on the face through successive frames of the video, we can
build a model of the face to use to detect any occlusion. The drawback would then be the
computation time that increases on building a complex face model.

6.2 Large movements
Even though our tracker performs well on large movements, our face-swapper in videos is
sensitive to large movements. We use for superimposition a replacement face of person B that
we interpolate to fit the current face posture of subject A. This interpolation, realistic if face
postures of A and B are close, performs less well as the distance between the face postures
increases. To solve this problem of appearance realism, we opted for the use of a set of
replacement faces to obtain a more realistic appearance. The drawback of this method is that
on large movements of the head, the program will automatically select the replacement faces
whose 3D pose is nearest that detected by the tracker, which means that the program will
switch from one replacement face to another, and create a temporal discontinuity. Therefore,
the more replacement faces we use, the more often temporal discontinuity occur in the video.
There is thus a tradeoff between static realism and dynamic realism.

34

Chapter 7

Conclusion

Fast and robust object tracking is required by many applications in fields such as automated
surveillance systems, man-machine interaction or augmented reality systems.

We have presented a system for 3D visual tracking capable of achieving real-time per-
formance thanks to the use of a parallel computation. The tracker is a non-constraint system
that needs only a single camera for determining both the position and orientation of the
head. We plan to evaluate the system applied to infants and use this face-swapper system
in experiments with children to investigate self-recognition, notably the importance of the
contingency or familiarity factors in self-recognition. These behavioural experiments could
be completed by neuro-scientific data such as the activation in the frontal lobe of the right
hemisphere during self-recognition task26) or the singular activity of the default network
during goal-directed task and self-introspection tasks,27) to model the development of self-
consciousness in infants.

In conclusion, we have developed a real-time 3D head tracker, using sparse template
matching and parallel processing. The tracker can be used to analyse the subject’s attention
through the head position and orientation in experiments, or it can be used in a wide range
of applications for human-machine interaction or augmented reality systems.

35

Chapter 8

Appendix

8.1 Video capture thread

void ∗ v i d e o c a p t u r e t h r e a d (void ∗ a r g)
{

s t r u c t argument ∗ a r g t h ;
a r g t h = (a rgument ∗) a r g ;

t a k e = 0 ;

whi le (1)
{

camera f r ame (a r g t h −> f r a m e C a p t u r e) ;
/ / f l i p

p t h r e a d m u t e x l o c k (&mutexFrame) ;
c v F l i p (a r g t h −> f r ameCap tu re , a r g t h −>frame , 1) ;
p t h r e a d c o n d s i g n a l (& cond f r ame) ;
p t h r e a d m u t e x u n l o c k (&mutexFrame) ;
i f (a r g t h −> s t o p == 1) p t h r e a d e x i t (NULL) ;

}

p t h r e a d e x i t (NULL) ;
re turn NULL;

}

36

8.2. HAAR FACE DETECTION THREAD CHAPTER 8. APPENDIX

8.2 Haar face detection thread

void ∗ h a a r f a c e (void ∗ a r g)
{

s t r u c t argument ∗ a r g t h ;
a r g t h = (a rgument ∗) a r g ;
I p l I m a g e ∗ img = cvCrea t e Image (c v S i z e (mediumWidth , mediumHeight) ,

IPL DEPTH 8U , 3) ;
i n t num faces = 0 ;

a r g t h −> f a c e d e t e c t = new V i o l a J o n e s (mediumWidth , mediumHeight) ;
a r g t h −> f a c e d e t e c t −> i n i t () ;

whi le (1)
{

/ / d e t e c t f a c e on t h e s m a l l e r s i z e image
p t h r e a d m u t e x l o c k (&mutexFrame) ;
c v R e s i z e (a r g t h −>frame , img) ;
p t h r e a d m u t e x u n l o c k (&mutexFrame) ;
num faces = a r g t h −> f a c e d e t e c t −> d e t e c t f a c e (img) ;

i f (num faces >0)
{

a r g t h −>h a a r F a c e . x = mediumScale ∗ a r g t h −>
f a c e d e t e c t −> f a c e . x ;

a r g t h −>h a a r F a c e . y = mediumScale ∗ (a r g t h
−> f a c e d e t e c t −> f a c e . y) ;

a r g t h −>h a a r F a c e . wid th = mediumScale ∗ (a r g t h −>
f a c e d e t e c t −> f a c e . wid th) ;

a r g t h −>h a a r F a c e . h e i g h t = mediumScale ∗ (a r g t h −>
f a c e d e t e c t −> f a c e . h e i g h t) ;

}

p t h r e a d t e s t c a n c e l () ;
i f (a r g t h −> s t o p == 1) p t h r e a d e x i t (NULL) ;

}
p t h r e a d e x i t (NULL) ;
re turn NULL;

}

Nguyen Sao Mai 37 Master Thesis (2010)

8.3. PARTICLE FILTER TRACKING THREAD CHAPTER 8. APPENDIX

8.3 Particle filter tracking thread

void p a r t i c l e f i l t e r t r a c k i n g t h r e a d (void ∗ a r g)
{

s t r u c t argument ∗ a r g t h ;
a r g t h = (a rgument ∗) a r g ;

/ / CUDA i n i t i a l i s a t i o n
/ / s y s t e m n o i s e s e t t i n g
/ / i n i t i a l i s a t i o n o f t h e p a r t i c l e s o f t h e GPU
/ / i n i t i a l i s a t i o n o f t h e p a r t i c l e s o f t h e CPU
/ / g e t da ta o f t e m p l a t e

whi le (1)
{

p t h r e a d m u t e x l o c k (&mutexFrame) ;
cvCopy (a r g t h −>frame , image2) ;
p t h r e a d m u t e x u n l o c k (&mutexFrame) ;

@ @ c v C v t C o l o r (image2 , gray , CV BGR2GRAY) ;
@ @ c u d a L i k e l i h o o d ((unsigned char ∗) (gray−> imageData)) ;

/ ∗
m a x L i k e l i h o o d max (l i k e l i h o o d o f a l l p a r t i c l e s)
i f m a x L i k e l i h o o d < t h r e s h o l d 1 t h e n

p a r t i c l e D a t a H a r g t h −>haarFace
end i f
∗ /

i f (maxLike l ihood > t h r e s h o l d 1)
{

p t h r e a d m u t e x l o c k (& mut exTrans f) ;
/ / average o f p a r t i c l e D a t H
a r g t h −>Tx = (ave Tx + ave Tvx) ;
a r g t h −>Ty = ave Ty ;
a r g t h −>S = ave S ;
a r g t h −>Rx = ave Rx ;
a r g t h −>Ry = ave Ry ;
a r g t h −>Rz = ave Rz ;
a r g t h −>a l p h a = a v e a l p h a ;
p t h r e a d m u t e x u n l o c k (& mutexTrans f) ;

}
/ ∗
draw t h e r e s u l t s p a r t i c l e D a t a N e w p a r t i c l e D a t a H
cudaUpdate () ;
i f m a x L i k e l i h o o d i n f t h r e s h o l d 3 t h e n

s y s t e m n o i s e s e t t i n g
i n i t i a l i s a t i o n o f t h e p a r t i c l e s

end i f
∗ /

}

Nguyen Sao Mai 38 Master Thesis (2010)

8.3. PARTICLE FILTER TRACKING THREAD CHAPTER 8. APPENDIX

p t h r e a d e x i t (NULL) ;
re turn NULL;

}

Nguyen Sao Mai 39 Master Thesis (2010)

8.4. CHANGE FACE THREAD CHAPTER 8. APPENDIX

8.4 Change face thread

/ / o t h e r ’ s f a c e t h r e a d
void ∗ c h a n g e f a c e 1 (void ∗ a r g)
{

s t r u c t argument ∗ a r g t h ;
a r g t h = (a rgument ∗) a r g ;

whi le (t rue)
{

p t h r e a d m u t e x l o c k (&mutexFrame) ;
cvCopy (a r g t h −>frame , r e s u l t I m a g e 1) ;
p t h r e a d m u t e x u n l o c k (&mutexFrame) ;

/ / f a c e i n f a c e
p t h r e a d m u t e x l o c k (& mutexTrans f) ;
/ / g e t t h e f a c e p o s t u r e Tx , Ty , S , Rx , Ry , Rz
p t h r e a d m u t e x u n l o c k (& mutexTrans f) ;

/ / d e t e r m i n e c l o s e s t r e p l a c e m e n t f a c e
/ / s u p e r p o s e images

p t h r e a d m u t e x l o c k (& m u t e x R e s u l t 1) ;
cvCopy (r e s u l t I m a g e 1 , a r g t h −> r e s u l t 1 [t a k e]) ;
p t h r e a d c o n d w a i t (& c o n d r e s u l t ,& m u t e x R e s u l t 2) ;

show = t a k e ;
t a k e=n e x t f r a m e (t a k e) ;
p t h r e a d m u t e x u n l o c k (& m u t e x R e s u l t 1) ;
p t h r e a d t e s t c a n c e l () ;
i f (a r g t h −> s t o p == 1) p t h r e a d e x i t (NULL) ;

}

p t h r e a d e x i t (NULL) ;
re turn NULL;

}

/ / s e l f f a c e (t i m i n g management)
void ∗ c h a n g e f a c e 2 (void ∗ a r g)
{

s t r u c t argument ∗ a r g t h ;
a r g t h = (a rgument ∗) a r g ;
i n t x , y , width , h e i g h t ;

whi le (t rue)
{

p t h r e a d m u t e x l o c k (&mutexFrame) ;

Nguyen Sao Mai 40 Master Thesis (2010)

8.4. CHANGE FACE THREAD CHAPTER 8. APPENDIX

cvCopy (a r g t h −>frame , a r g t h −> r e s u l t 2 [t a k e]) ;
p t h r e a d c o n d s i g n a l (& c o n d r e s u l t) ;
p t h r e a d m u t e x u n l o c k (&mutexFrame) ;

p t h r e a d m u t e x l o c k (& m u t e x R e s u l t 2) ;
p t h r e a d c o n d s i g n a l (& c o n d r e s u l t) ;
p t h r e a d m u t e x u n l o c k (& m u t e x R e s u l t 2) ;

p t h r e a d t e s t c a n c e l () ;
i f (a r g t h −> s t o p == 1) p t h r e a d e x i t (NULL) ;

}

p t h r e a d e x i t (NULL) ;
re turn NULL;

}

Nguyen Sao Mai 41 Master Thesis (2010)

8.5. SHOW ON SCREEN THREAD CHAPTER 8. APPENDIX

8.5 Show on screen thread

void ∗ s h o w t h r e a d (void ∗ a r g)
{

s t r u c t argument ∗ a r g t h ;
a r g t h = (a rgument ∗) a r g ;
i n t bigWidth =2∗windowWidth ;
i n t b i g H e i g h t = windowHeight ;
I p l I m a g e ∗ b i g = cvCrea t e Image (c v S i z e (bigWidth , b i g H e i g h t) ,

IPL DEPTH 8U , 3) ;
cvZero (b i g) ;

whi le (1)
{

p t h r e a d c o n d w a i t (& cond f rame , &mutexFrame) ;

/ / show on l e f t s i d e , f rame
p t h r e a d m u t e x l o c k (& m u t e x R e s u l t 2) ;

c v R e s i z e (a r g t h −> r e s u l t 2 [show] , b i g) ;
p t h r e a d m u t e x u n l o c k (& m u t e x R e s u l t 2) ;
cvResetImageROI (b i g) ;

/ / show on r i g h t s i d e , r e s u l t
cvSetImageROI (big , cvRec t (windowWidth , 0 , windowWidth ,

windowHeight)) ;
p t h r e a d m u t e x l o c k (& m u t e x R e s u l t 1) ;
c v R e s i z e (a r g t h −> r e s u l t 1 [show] , b i g) ;
p t h r e a d m u t e x u n l o c k (& m u t e x R e s u l t 1) ;
cvResetImageROI (b i g) ;

p t h r e a d m u t e x l o c k (&mutexWin) ;
cvCopy (big , a r g t h −> a f f i c h e) ;
p t h r e a d c o n d s i g n a l (& cond win) ;
p t h r e a d m u t e x u n l o c k (&mutexWin) ;

i f (a r g t h −> s t o p == 1) p t h r e a d e x i t (NULL) ;
}

}

Nguyen Sao Mai 42 Master Thesis (2010)

References

1) Y. Matsumoto, N. Sasao, T. Suenaga, T. Ogasawara, ”3D Model-based 6-DOF Head
Tracking by a Single Camera for Human-Robot Interaction”, IEEE International Con-
ference on Robotics and Automation, 2009

2) FaceAPI Library commercialised by SeeingMachines, 2010.
http://www.seeingmachines.com/product/faceapi

3) CUDA Homepage on NVIDIA website, 2010.
http://www.nvidia.com/object/cuda home new.html

4) University of Illinois Nvidia CUDA Course taught by Wen-mei Hwu and David Kirk,
Spring 2009

5) A. S. Montemayor, J.J. Pantrigo, R. Cabido, B. Payne. ”Bandwidth improved GPU
particle filter for visual tracking”, Ibero-American symposyum on computer graphics
SIACG, 2006.

6) G. R. Bradski. ”Computer vision face tracking for use in a perceptual user interface”,
Intel Technology Journal Q2 f98, 1998.

7) Y. Matsubara, T. Shakunaga, ”Real-time Object Tracking by Sparse Template Match-
ing”, IPSJ SIG Technical Report, March 2004

8) O. Mateo Lozano, K. Otsuka, ”Real-time Visual Tracker by Stream Processing”, Journal
of Signal Processing Systems, vol. 57(2), November 2009

9) M. Isard, A. Blake, ”Condensation - Conditional Density Propagation for Visual Track-
ing”, International Journal of Computer Vision, vol. 29(1), 5-28, 1998

10) B. Noris, K. Benmachiche, A.G. Billard, , ” Calibration-Free Eye Gaze Direction Detec-
tion with Gaussian Processes”, Proceedings of the International Conference on Com-
puter Vision Theory and Applications, 2008

11) Y. Matsumoto, A. Zelinsky, ”An Algorithm for Real-Time Stereo Vision Implemen-
tation of Head Pose and Gaze Direction Measurement,” Fourth IEEE International
Conference on Automatic Face and Gesture Recognition (FG’00), 2000

43

REFERENCES REFERENCES

12) S.I Kawamoto, H. Shimodaira, T. Nitta, T. Nishimoto, S. Nakamura, K. Itou, S. Mor-
ishima, T. Yotsukura , A. Kai , A. Lee , Y. Yamashita , T. Kobayashi , K. Tokuda , K.i
Hirose , N.i Minematsu , A. Yamada , Y. Den , T. Utsuro , S.i Sagayama, “Open-source
software for developing anthropomorphic spoken dialog agent,” Proc. of PRICAI-02,
International Workshop on Lifelike Animated Agents, pp.64-69, Aug 2002

13) D. Bitouk, N. Kumar, S. Dhillon, S.K. Nayar, ”Face Swapping: Automatically Replac-
ing Faces in Photographs”, ACM Transactions on Graphics (SIGGRAPH 2008), vol.
27(3)

14) J. Zhu, L. Van Gool, S. C.H. Hoi, ”Unsupervised Face Alignment by Nonrigid Map-
ping”, ICCV, 2009

15) U.Frith, Autism: Explaining the Enigma. Malden(MA): Blackwell Publishing, 2003, ch.
5,12

16) J. Keenan , 2004, The Face in the Mirror, Harper Collins Publishers

17) L. E. Bahrick, L. Moss , C. Fadil, 1996. ”Development of visual self-recognition in
infancy” Ecological Psychology, 8(3):189-208

18) W. Sanefuji , H. Yamashita, H. Ohgami, ”Shared minds: Effects of a mother’s imita-
tion of her child on the mother-child interaction”, Infant Mental Health Journal, vol
30(2):145-157, March 2009

19) A.L. Lewy, G. Dawson, ”Social Stimulation and Joint Attention in Young Autistic Chil-
dren”, Journal of Abnormal Child Psychology, vol 20(6), 1992

20) T.C.J. de Wit, T. Falck-Ytter, C. von Hosfsten, ”Young children with Autism Spectrum
Disorder look differently at positive versus negative emotional faces”, Res in Autism
Spectr Disord (2008)

21) P. Viola and M. J. Jones, ”Robust real-time face detection”, International Journal of
Computer Vision, 57 : 137-154, 2004.

22) P. Rochat, Ch5, Others in Mind, Cambridge, 2009

23) B. Amsterdam. ”Mirror self-image reactions before the age two”. Developmental Psy-
chology, 257-305, 1972

24) W. Sanefuji, H. Ohgamu, K. Hashiya, ”Preference for peers in infancy”, Infant Be-
haviour and Development, Volume 29, Issue 4, 584-593, December 2006

25) L.E. Bahrick, J.S. Watson, ”Detection of intermodal proprioceptive-visual contingency
as a potential basis of self-perception in infancy”. Developmental Psychology, 21 , 963-
973, 1985

Nguyen Sao Mai 44 Master Thesis (2010)

REFERENCES REFERENCES

26) L. Uddin, J. Kaplan, I. Szakcs, E. Zaidel , M. Iacaboni, ”Self face recognition activates a
fronto parietal gmirrorh network in the right hemisphere: an event-related fMRI study”,
NeuroImage, 25(3), 926-935, 2005

27) Z. Goa, K. Giovanello, K. Smith, D. Shen, L. Gilmore, ”Evidence on the emergence of
the brainfs default network from 2-week-old to 2-year-old healthy pediatric subjects”,
Proceedings of the National Academy of Sciences, 106(19), 6790-6795, 2009

Nguyen Sao Mai 45 Master Thesis (2010)

Acknowledgement

This thesis was prepared in collaboration with Professor Minoru Asada, Associate Professor
Hideyuki Nakanishi and Doctor Yoshio Matsumoto. I would like to thank them for reviewing
my thesis and giving me constructive criticisms to improve my thesis. Professor Asada
provided me a chance to step in this exiting and multi-disciplinary research area. I am very
impressed by him and have great respect for his insight and leadership. Associate Professor
Hideyuki Nakanishi and Doctor Yoshio Matsumoto pointed out insufficient contents in my
drafts. I would like to thank them for their dedicate perusal.

I am also grateful to Assistant Professor Masaki Ogino for his continuous supervision.
Not only did he advise me throughout this project, attentive to my interests, but he also
provided me support and help me in the improvement of this system, notably with the use of
the graphic card computation.

Thanks to Fabio Dalla Libera and Shuhei Ikemoto for teaching me and helping me use
the motion capture system.

46

	1 Introduction
	1.1 Motivation
	1.2 Constraints chosen
	1.3 General presentation

	2 Related work
	2.1 3D visual tracker
	2.2 Eye direction
	2.3 Face-swapper

	3 3D visual tracker :method overview
	3.1 Particle filtering
	3.2 Sparse Template Condensation Tracking
	3.3 CUDA Implementation
	3.3.1 Introduction to CUDA
	3.3.2 Details of the particle filter implementation with CUDA

	3.4 Multi-processing use
	3.4.1 Video capture
	3.4.2 Face detection
	3.4.3 Tracking
	3.4.4 Post-processing
	3.4.5 Management of the parallel processing

	3.5 Eye direction computation

	4 Face-swapping
	5 Discussion on the performance of the 3D head tracker
	5.1 Comparison with Viola-Jones algorithm for face tracking
	5.2 Evaluation of the speed of our system
	5.3 Choice of the parameters of the particle filter
	5.4 Evaluation against motion capture

	6 Limitations of the face swapper
	6.1 Occlusion
	6.2 Large movements

	7 Conclusion
	8 Appendix
	8.1 Video capture thread
	8.2 Haar face detection thread
	8.3 Particle filter tracking thread
	8.4 Change face thread
	8.5 Show on screen thread

	Acknowledgement

