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Abstract— Our goal is to propose an algorithm for robots
to learn sequences of actions, also called policies, in order to
achieve complex tasks. We consider in this paper multiple and
hierarchical tasks of various difficulties. To tackle this highly
dimensional learning we propose a new algorithm, named
Socially Guided Intrinsic Motivation for Sequence of Actions
through Hierarchical Tasks (SGIM-SAHT), based on intrinsic
motivation and using different learning strategies. We then
present two implementations of this algorithm designed to
address this challenge in different ways: through a ”proce-
dures” framework for Socially Guided Intrinsic Motivation with
Procedure Babbling (SGIM-PB) and owing to planning and
a dynamic environment representation learning for Continual
Hierarchical Intrinsically Motivated Exploration (CHIME).

We compare the two implementations and show, through two
experiments, how efficiently they learn sequences of actions and
dynamically adapt to their environment. We also discuss the
benefits of implementing a full unified version of SGIM-SAHT
using all the mentioned features of both implementations.

I. INTRODUCTION

Using the developmental robotic approach [1], we present
a generic algorithmic architecture combining active motor
skill learning based on goal-oriented exploration with strate-
gical learning to learn a set of multiple hierarchical and
interrelated tasks. This architecture enables a robot to learn a
mapping between a continuous space of parametrized tasks
(referred to here as outcomes) and a space of parametrized
policies (also referred to as actions).

A. Active motor skill learning of multiple tasks

Learning multiple tasks is difficult in classical Rein-
forcement Learning techniques [2] [3] as they still need a
manually designed reward function for each task. The recent
introduction of Intrinsic Motivation (IM), which triggers
curiosity in humans according to developmental psychology
[4], enabled highly-redundant robots to learn a wide range
of tasks, using goal-babbling [5] [6].

However, in these studies, the policies were policy primi-
tives of predefined complexity. We would like to consider
multiple tasks of various complexity requiring actions of
different complexity/duration/length.
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B. Learning sequences of motor policies

In this article, we consider the learning of sequences of
motor policies (also called complex motor policies).

We wanted to enable the learner to decide autonomously
the complexity of the policy necessary to solve a task, so
we discarded via-points which often require the setting of
a number of via points such as in [3]. Options [7] are
temporally abstract policies built to solve one particular task.
They have only been proven efficient in the case of a small
number of discrete tasks and policies. We get inspired by
them and extend the idea for an unlimited number of complex
policies and in continuous spaces.

C. Tasks hierarchy

[8] showed that building complex policies made of lower-
level policies according to the task hierarchy bootstrap explo-
ration by reaching interesting outcomes more rapidly. Task
hierarchy was used in combination with intrinsic motivation
in [9] to reuse previously acquired skills to build more
complex ones for tool use. We adopted a similar approach,
but we do not only use primitive actions and the hierarchy
of tasks is not given in advance but learned online.

Our requirements of learning different tasks, potentially
infinite sequences of actions, and the task hierarchy, entail an
even more high-dimensional space to explore. Unfortunately,
the curse of dimensionality makes the efficiency of learning
algorithms, even those using IM, plummet when facing
higher outcome space dimensionalities [10].

D. Strategic learning

The curse of dimensionality has been tackled by ap-
proaches based on strategic learning [11]. They enable a
learner to self-organize its learning process by choosing both
what [5] (which outcome to focus on) and how [12] (which
strategy to use) to learn. A strategic learner was implemented
for an infinite set of outcomes and policies in continuous
spaces by the SGIM-ACTS (Socially Guided Intrinsically
Motivation with Active Choice of Teacher and Strategy)
algorithm [13]. It relies on the empirical evaluation of its
learning process to actively decide both which strategy to
use and which outcome to target. As it showed its potential
on a high dimensional robot learning a set of hierarchically
organized tasks [14], we extend it for our learner to infer
online its learning curriculum when exploring the actions,
the task and the hierarchy of tasks spaces.

We adapted SGIM-ACTS to learn complex motor policies
of unlimited size by leveraging task hierarchy, and propose
a generic algorithmic architecture called SGIM-SAHT, to
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Fig. 1: The SGIM-SAHT algorithmic architecture

actively decide which outcome to focus on, which strategy
to use, and how to use the task hierarchy. We describe the
approach leading to it and the algorithm. Then we present
two different implementations and compare them to finally
discuss how they could further be merged together to fully
implement SGIM-SAHT.

II. APPROACH

A. Formalization

Let us consider a robot performing motions described
as primitive policies πθ ∈ Π ⊂ RN. It can also perform
sequences of primitive policies of any length i, π ∈ Πi ⊂
ΠN. The policies performed by the robot, have consequences
on its environment, which we call outcomes ω ∈ Ω. Those
outcomes can be of various types and dimensionalities, and
are therefore split in outcome subspaces Ωi ⊂ Ω. The robot
has to learn the mapping between the policy space ΠN and
the outcome space Ω: it learns to predict the outcome ω of
each policy π (the forward model L), but it also learns which
policy can reach any given outcome (the inverse model L−1).

The policies and outcomes are grouped in the features
ensemble F = Π∪Ω. We call feature sequences lf : complex
policies if lf ∈ ΠN, or procedures if lf ∈ ΩN. However
procedures or other sequences composed of outcomes are
internally used by the learning agent. Only complex policies
can be executed on the environment.

We define a model M(Ωi → Fj) : ω 7→ lf the mapping
between an outcome subspace Ωi and a sequence of features
space Fj ⊂ FN. These models enable a hierarchical repre-
sentation of the robot environment. We call simple models
those which map to a singular feature space Fj ⊂ F . We
note H the set of all models. We define a strategy σ any
process enabling the building of a sequence of features lf .

B. Algorithmic Architecture

The SGIM-SAHT algorithm learns by episodes in which
a model M ∈ H to work on, a goal outcome ωg ∈ Ω and a
strategy σ have been selected.

The selected strategy σ applied to the chosen goal outcome
ωg builds a feature sequence lf to try reaching the goal, under
the constraints of the chosen model (details in III-D).

This feature sequence lf is broken down in a complex
motor policy π ∈ ΠN, to be executed by the robot (sec-
tion III-E). The outcomes on the environment ωr are then
recorded, along with the policies and built features sequence.
This breakdown process is potentially recursive, based on the
learned hierarchy between tasks or models (section III-B).

After each episode, the learner stores the executed poli-
cies π and feature sequences lf , along with their reached
outcomes in its episodic memory. Then, it computes its
competence competence(ωg) at reaching the goal ωg , which
depends on the euclidean distance between ωg and the
reached outcome ωr. Its exact definition depends on the
implementation (see section III-C). More importantly, the
learner updates its interest map, by computing the interest
of the goal outcome for the used strategy interest(ωg, σ).
This interest depends on the progress measure p(ωg) which
is the derivative of the competence.

The learner then uses these interest measures to partition
the outcome space Ω in regions Ri of high and low progress.
This process is described in detail in [13]. In the beginning of
the next episode, the learner chooses the strategy, model and
goal outcome that could bring the most progress, according
to the updated interest map.

Algorithm 1 Algorithm

Input: the different strategies σ1, ..., σn
Input: the initial model hierarchy H
Initialization: partition of outcome spaces R←

⊔
i{Ωi}

Initialization: episodic memory Memory ← ∅
loop
ωg, σ,M ← Select Goal Outcome, Strategy and
Model(R,H)
lf ← Execute Strategy(σ, ωg)
Memory ← Execute Sequence(lf )
Update M with collected data Memory
R ← Update Outcome and Strategy Interest
Mapping(R,Memory,ωg)
Update models H with Memory

end loop

III. IMPLEMENTATIONS

In this section, we present two different implementations
of the algorithmic architecture. Both approaches use a hier-
archical representation to help the learning process of an
intrinsically motivated learner tackling multiple tasks, but
they differ in the specific methods employed, which are the
reflection of the different kinds of experimental setups they
were built for. The first implementation is Socially-Guided
Intrinsic Motivation with Procedure Babbling (SGIM-PB)
from [15], the second is Continual Hierarchical Intrinsically
Motivated Exploration (CHIME). Both implementations have
been tested on their respective setups built to emphasize its
specificities and qualities.

A. Setups

SGIM-PB was applied to a Yumi industrial robot arm to
interact with a RFID tangible interactive table (Fig. 2) that
can sense the position of the robot over the table and play
sounds according to the virtual object positions. The overall
evaluation of SGIM-PB for the simulation setup are shown
on Fig. 6. More details are reported in [15]. The algorithm
is being tested on a real version of the setup.
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Fig. 2: Representation of the Yumi experimental setup, with the first object in blue, the
second in green, and the produced sound represented in the top left corner. It could
perform sequences of DMP and produce 5 hierarchically organized types of outcomes.

Fig. 3: CHIME experimental setup, (wr, wl) are the primitive policy spaces, the
outcome spaces are indicated inside parenthesis and a reward outcome value v,
depending on whether an object is on a spot or not, is also present.

As CHIME uses planning algorithms, we chose simulated
2D environment to control a mobile robot learning to move
itself and other objects while avoiding obstacles (see Fig. 3).

B. Hierarchy representation

The idea of SGIM-PB and CHIME is to use a hierar-
chical representation of the outcome spaces, to outline the
dependencies between tasks to help the reuse of previous
knowledge from easy tasks for more complex tasks.

For example in the Yumi setup, the learner can move the
first object, then the second object to generate a sound. The
hierarchical representation for SGIM-PB is based on a static
set of outcome spaces. It corresponds to procedural spaces,
which are subsets of ΩN. Those spaces are used to generate
and exploit procedures, which are sequences of previously
learned outcomes. They represent combinations of learned
skills which are used to learn new, more complex ones.
Although this framework theoretically allows the creation
of procedures of any length, they have been limited to com-
binations of two outcomes so as to limit their potential new
complexity. This method enabled the learner to effectively
discover the outcome hierarchy/dependency [15].

In comparison, for the CHIME algorithm, the hierarchical
representation is based on a dynamic set of outcome spaces.
It is constructed using simple models M(Ωi → Oj) which
can rely on others: lower models map outcomes to policies
while higher models map them to other outcomes that should
be reached. For instance in our CHIME setup, the robot
can move itself (x0, y0 ∈ Ω0) in order to move an object
(x1, y1 ∈ Ω1) onto a spot to control a reward value (v ∈ Ω5).
Moreover, Oj ⊂ O instead of ON as in SGIM-PB, thus only
primitive policies are learned and not sequences of them. The

idea is to then use planning to construct sequences of policies
from these learned primitives. The dynamic aspect lets the
robot discover and adapt itself the models, considering the
environment feedbacks. This dynamic update was inspired
by a self adapting SVM, changing its inputs to match the
environment, as presented in [16]. At the beginning H = ∅,
no model is present, and the robot chooses itself what model
to create or modify: if Ωi seems to be highly correlated to Oj
it may create the model M(Ωi → Oj). CHIME efficiently
discovers the environment hierarchy and constructs adapted
models accordingly: on Fig. 4 the 3 models are successively
constructed by the robot and corresponds to what a human
could interpret from the setup.

C. Goal, strategy and model selection

SGIM-PB uses a static representation of the features and
thus only uses one model M(Ω→ O), to infer the hierarchy
between tasks. Therefore it does not contain a model se-
lection step. The competence measure Competence(ωg, ω)
used by SGIM-PB corresponds to the euclidean distance
between the reached outcome ω and the goal ωg , multiplied
by a factor γn representing the cost of the n-size policy used,
so as to limit the size of used policies.

The interest measure interest(ωg, σ) corresponds to that
of the SGIM-ACTS algorithm in [13] divided by the size of
the policies built during the episode to guide the learning
process towards the less complex outcome spaces first.
Strategy σ and goal outcome ωg are chosen according to the
updated interest map. The Yumi experiment showed SGIM-
PB could adapt the strategy to each outcome subspace.

In comparison the CHIME algorithm uses a dynamic set
of features, via multiple models. Each model has its own
interest map. The competence measure used by the main
algorithm Competence(ωg,M) evaluates the correlation be-
tween spaces of M around ωg . The competence is 1 if the
relation is linear, ' 0 if lowly related and < 1 if noised.

A model M and its interest map are chosen accordingly
to the mean interest of each map. The strategy and goal are
then chosen as in SGIM-PB among the interest map of M .

In our setup, CHIME manages well the time spent on
each model and focuses on newly created and interesting
models instead of already known ones. As seen in Fig. 4, the
robot selects first simple models: moving itself, then more
complicated: moving objects and placing them on spots.

Fig. 4: Mean model selection during
episodes all along learning, based on in-
terest

Fig. 5: Learning a hierarchical task: plac-
ing objects on the spots, i.e. controlling the
observable v

D. Strategies

SGIM-PB uses a combination of autonomous exploration
strategies and interactive ones using the expertise from
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human teachers to bootstrap the learning process. These
types of strategies are used to explore either the policy space
ΠN or the procedural space ΩN.

CHIME only uses two strategies: a random policy explo-
ration one, selecting a single primitive policy to execute (this
helps the construction of new models), and an autonomous
exploration strategy trying to produce wg using an observable
o ∈ O. This strategy is almost identical to SGIM-PB but it
can also use planning to create a sequence of observables to
be executed in order to reach distant goals or avoid obstacles:
lf = [o1, . . . , on], each oi corresponds to a planning step.

E. Sequence execution

In SGIM-PB, although the procedures framework theoret-
ically enables a recursive process to replace each outcome
of a complex procedure by simpler ones, we limited it to
a one-step process. Complex policies are directly executed
and procedures (ωi, ωj) are replaced, by the closest ones
feasible by the learner according to its current skill set.
Then this procedure is broken down to a succession of two
policies, possibly complex, which is then executed. During
the execution, each step starting from the initial configuration
is stored in the learner dataset. Fig 7 shows SGIM-PB could
adapt the complexity of its policies to the task at hand.

Fig. 6: Mean evaluation of SGIM-PB
across learning process

Fig. 7: Size of policies chosen by SGIM-
PB for 3 increasingly more complex tasks

In CHIME, the sequence lf in converted to a sequence
of primitive policies thanks to models and planning. For
each element oi of lf : if oi is a primitive policy it is then
executed by the robot, else a model is found to compute a
lower level observable o′i to reach in order to approach oi.
A planning step is then applied on o′i to obtain a sequence
l′g and the process continues recursively on each element
of l′g . This hierarchical and planning combination performs
well in this experimental environment: indeed, goals blocked
by obstacles or distant are reachable. On Fig. 5, we can
see a comparison of learning a hierarchical task: placing
objects on spots. CHIME manages to reach goals too difficult
for SAGG-RIAC (Self-Adaptative Goal Generation - Robust
Intelligent Adaptative Curiosity [5]), owing to its planning
and its hierarchical representation of the environment.

IV. CONCLUSION AND FUTURE WORKS

Through this article, we have presented and shown the
interest of SGIM-PB and CHIME in learning to perform
complex tasks. They both efficiently managed to learn them
through procedures and planning. We have also proposed an
algorithm unifying both approaches and regrouping similar
aspects, as the intrinsically guided strategical learning and
the hierarchical representation. As SGIM-PB relies on a

given set of outcome features and explores the dependencies
between tasks to learn sequences of actions, CHIME builds
dynamically its set of features to construct models that are
then used to plan sequences of actions.

In future works, we consider developing an implementa-
tion of the SGIM-SAHT algorithm using all the described
features: learning primitive policies and then planning se-
quences of them, but also learning and optimizing directly
these sequences thanks to the procedure framework. The
planning will bootstrap the learning while learning the
sequence, and not just the primitive, will result in more
optimized policies and will reduce the planning complexity.

We also wish to compare the different performances and
features from each algorithm on a common experiment.
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