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Abstract— Analyzing and understanding human motion is a
major research problem widely investigated in the last decades
in various application domains. In this work, we address the
problem of human motion analysis in the context of kinaesthetic
rehabilitation using a robot coach system which should be able
to learn how to perform a rehabilitation exercise as well as
assess patients’ movements. For that purpose, human motion
analysis is crucial. We develop a human motion analysis method
for learning a probabilistic representation of ideal movements
from expert demonstrations. A Gaussian Mixture Model is
employed from position and orientation features captured using
a Microsoft Kinect v2. For assessing patients’ movements, we
propose a real-time multi-level analysis to both temporally and
spatially identify and explain body part errors. This allows the
robot to provide coaching advice to make the patient improve
his movements. The evaluation on three rehabilitation exercises
shows the potential of the proposed approach for learning and
assessing kinaesthetic movements.

Keywords: Robot coach, Physical rehabilitation, Body
Motion Analysis.

I. INTRODUCTION

Low back pain is a leading cause disabling people par-
ticularly affecting the elderly, whose proportion in Euro-
pean societies keeps rising, incurring growing concern about
healthcare. 50 to 80% of the world population suffers at a
given moment from back pain which makes it in the lead in
terms of health problems occurrence frequency [2]. To tackle
this chronic low back pain, active rehabilitation (physical
rehabilitation as opposed to cognitive-behavioral principles)
is considered as more effective than usual care [3].

With this perspective, solutions are being developed based
on assistive technology and particularly robotics. In KER-
AAL project, we are developing a robot coach for physical
rehabilitation exercises. The goal is to increase the time
patients spend exercising, by alleviating the lack of time
a physiotherapist can spend monitoring a patient [4]. The
system is composed of a low cost stereo vision camera
(Microsoft Kinect v2) and an open source humanoid robot
called Poppy. Figure 1 shows the setting of our system. The
kinect sensor is used to capture human motion of both the
therapists and the patients. In addition to its low cost and
ease of use, it is a seamless sensor as no markers or specific
suit are needed, nor time for setup. The Poppy robot is used
to demonstrate exercises to the patient and to provide him
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feedback. In the literature on robot coach systems, the Nao
robot is often used to achieve this task [5], [6]. However,
such a robot has only one DOF for the trunk. This makes
the performance of many rehabilitation exercises for low
back pain impossible or not natural. Conversely, the Poppy
robot is designed be anthropomorphic [7] with 25 degrees of
freedom (DOF) including a 5 DOFs articulated trunk. Given
its unique capability of realizing movements of the lumbar
spine, this robot fits well with the objectives of rehabilitation
programs dedicated to low back pain. We aim to develop a
robot coach capable of understanding the requirements of
a rehabilitation exercise from the medical expert. Then, it
should be capable of demonstrating rehabilitation exercises
to a patient. Currently, the learning of rehabilitation exercises
is achieved by manually moving the robot in collaboration
with physiotherapists and recording motor angles at each
timestamps. Finally, the robot should watch him/her carry
out the exercise and give him/her feedback so as to improve
his/her performance and keep them motivated. To achieve
these goals, human motion analysis is crucial. In that context
we propose in this paper a multi-level human motion analysis
to evaluate and assess rehabilitation movements performed
in front of a RGB-D camera.

Fig. 1: Setting of the system including a Microsoft Kinect v2 and
an open source humanoid robot called Poppy.

The rest of this paper is organized as follows: Section II
reviews existing approaches to address the problem of phys-
ical rehabilitation. Section III describes our proposed multi-
level human motion analysis approach for both learning ideal
rehabilitation movements and thoroughly assessing patients’
movements. The approach is evaluated on several kinaes-
thetic exercises in Section IV. Finally, Section V concludes
the paper and investigates possible future work.

II. RELATED WORK
In the literature, human motion analysis has been widely

investigated in different contexts like action recognition,
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motion segmentation and fall detection. However, only few
approaches addressed the challenge of physical rehabilitation
through coaching robot systems. In [8], a robotic exercise
tutor system for elderly people has been developed. A Nao
robot is able to demonstrate several exercises and evaluate
the performance of patients. In [9], the authors developed
a system of imitation learning for daily physical exercises.
The robot could learn new exercises from the therapists and
be an exercise demonstrator.

A. Representing human body
While in these approaches only joint angles derived from

joint positions are considered as human motion features,
other approaches also consider joint positions [4], [10] or
relative transformations (translation and rotation) [11]. Rel-
ative positions or orientations are more robust to subjects’
sizes and morphology variations. Relative position features
are more suitable to describe exercise characteristics like
“Place your hands at head’s height”. Orientation features
better correspond to characteristics like “Stretch your arm
horizontally”. In our project we propose a combination of
both relative position and orientation features. This allows
to better describe human motion and capture important
requirements of each exercise. To represent human body data,
traditional Euclidean space is usually employed. However, an
increasing number of approaches consider other spaces like
Riemannian spaces to represent human postures and motion
so as to handle the non linearity of human movements. Its
proven effectiveness in human motion analysis for action
recognition [12], [13] motivated us to also consider such non
linear spaces for physical rehabilitation.

B. Learning from experts
An important characteristic of a robot coach system

for physical rehabilitation is its ability to learn exercises
from experts. Whereas [9] has developed a neuro-genetic
approach for imitation learning, [8] employs direct trans-
formation of human joint angles into robot motor angles.
To improve the imitation, several expert demonstrations are
often appreciated. This allows to consider variations among
demonstrations to identify which features of exercises are
more important. In robotics, imitation learning also called
Programming by Demonstration (PbD) has been widely
investigated. Particularly, probabilistic methods based on
Hidden Markov Models (HMM) and Gaussian Mixture Mod-
els (GMM) have proven successful for robots learning by
observation of demonstrations such as in [14]. The Gaussian
Mixture Model thus learned after a few demonstrations
constitute a probabilistic description of the ideal movement,
which is robust to noise and small errors in the training data.
In this work, we propose a similar approach based on GMM
to learn a model representing ideal exercises from human
data captured using Kinect and represented on a Riemannian
space combining position and orientation features.

C. Assessing movements
Assessing the patient’s performance to provide him ade-

quate and personalized support such as performance feed-

back to help him correct his errors is also essential for an
intelligent tutoring system. [9] only focuses on the algorithms
for learning a model from experts and does not tackle the
assessment of an imitation attempt. [8] based their automatic
evaluation on the distance measure between the user’s current
arm angles and the specified goal arm angles. It is based
on only one template movement. The use of probabilistic
models such as GMM are more suitable to analyze deviation
according to an ideal movement and has been for instance
successfully applied for abnormal gait detection [15]. In
addition, only providing overall performance feedback may
be insufficient to help the patient correct his exercise. Spatial
information about which body part is incorrect facilitates er-
ror understanding and improvement by the patient. In human
motion analysis, movement segmentation is often adopted to
face human motion complexity. In motion assessment, it has
mainly been used for segmenting different repetitions of a
movement in an online way [16]. In this work we propose
to segment exercises online in motion primitives in order to
locally analyze patients’ movements. In addition, this allows
to temporally localize errors which can be beneficial for the
patient’s understanding. Finally, automatically providing in-
structions on how to improve the movement can significantly
help the patient perform the correct movement and keep him
motivated throughout the rehabilitation session. Along these
considerations, we propose a multi-level analysis of human
motion for assessing physical exercises in a context of a robot
coach system for rehabilitation.

III. MULTI-LEVEL HUMAN MOTION ANALYSIS FOR
PHYSICAL REHABILITATION

To guarantee an efficient intelligent tutoring system within
our robot coach, two phases have been identified, the learning
phase and the assessment phase.

A. Human Motion Learning

In robotics, Gaussian Mixture Models (GMM) have proven
successful for robots learning by observation of demon-
strations [14]. In our context of physical rehabilitation, ex-
pert demonstrations correspond to human motion sequences.
Hence an efficient representation of human motion is needed.

1) Human Pose Space: The Microsoft Kinect provides in
real-time the 3D position and the orientation of 25 joints
forming a humanoid skeleton. Figure 2a shows the structure
of the skeleton detected using Kinect. In this work, we focus
our analysis on upper body joints. In addition, we do not
consider hand and finger joints as they may be very noisy and
do not add relevant information for physical rehabilitation
exercises. As a result the number of joints is J = 11.

As quaternions provided by Kinect sensors represent ori-
entations relative to the parent’s bones, it naturally allows
invariance to subjects’ sizes and positions. However, this
is not the case for joint positions. Therefore, we employe
normalized relative positions. For a given joint j, its 3D
position Pj is computed relatively to the Spine Shoulder
absolute position pss and normalized using the length Lspine
of the spine bone (between Spine Shoulder joint and Spine
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(a) (b)
Fig. 2: Representation of the human pose. (a) The structure of the
skeleton captured by Kinect. (b)Illustration of the human pose space
H with three Gaussians computed on tangent space at means µk

(red dots). Black dots are elements on the manifold and blue dots
are their projection on tangent spaces.

Mid joint). As a result, a skeleton pose yt at frame t can be
represented as:

yt = [O1, P1, O2, P2, . . . , OJ , PJ ], (1)

where Oj is the orientation of joint j and Pj its relative
position defined as Pj = (pj − pss)/Lspine.

Note that data extracted from Kinect sensor are processed
using a Butterworth filter to remove noise.

While joint positions are naturally viewed in 3D Eu-
clidean space, quaternions can be represented as elements
of the 3-sphere S3 which is a 3 dimensional Riemannian
manifold. A Riemannian manifold is a smooth space that
locally resembles Euclidean space and is equipped with the
Riemannian metric defined on the tangent space at each point
of the manifold [17]. Furthermore, the Cartesian product
of several Riemannian manifolds is again a Riemannian
manifold. This property allows us to consider combinations
of joint quaternions and positions corresponding to the whole
body. We define the human pose space H as the Cartesian
product of quaternion and position of all skeleton joints:

H = R3 × S3 × R3 × S3 × · · · × R3 × S3. (2)

2) Imitation Learning Algorithm: For learning a model
representing an ideal movement from several expert demon-
strations, we have employed the recent framework proposed
in [18] extending common imitation learning techniques,
such as GMM, to Riemannian manifolds. Such framework is
particularly convenient for our work as our skeleton features
are represented in the Riemannian human pose space as
explained above. Indeed, as Riemannian manifolds are non
linear spaces, we cannot compute statistics as mean and
covariance similarly to Euclidean spaces.

A common way to handle the non-linearity of Riemannian
manifolds M is to consider tangent spaces TpM at a
reference point p ∈ M as a linear approximation of the
neighborhood of p. To map a point g from the manifold to
the tangent space at p resulting in v, the distance preserving
logarithmic map is defined as Logp(.) : M → TpM. Con-
versely, the exponential map Expp(.) : TpM → M allows
to go back from the tangent space to the manifold. More
details about exponential and logarithmic map computation
on the S3 manifold can be found in [18]. As the human pose

space H is the Cartesian product of several manifolds, corre-
sponding exponential and logarithmic mapping are obtained
by concatenating individual functions of each sub-manifold.

Using linear tangent spaces, we can compute approxi-
mated multivariate Gaussians on the human pose space. The
mean µ of N points y on the human pose space can be
obtained using [19]:

µ = arg min
p

N∑
i=1

d(p, y)2, (3)

where d(p, y) is the geodesic distance on the manifold
which can be written using logarithmic map as d(p, y) =
‖Logp(y)‖. Such mean is called the Riemannian center of
mass [19] and is obtained by an iterative process until no
change. Once a mean point is computed, the covariance
matrix Σ can be computed from points yi projected into the
tangent space at µ using the logarithmic map Logµ(yi). We
can then learn a Gaussian Mixture Model defined as:

p(x) =

K∑
k=1

φkN (x|µk,Σk), (5)

where x encodes both the human pose yt and the times-
tamps t, K is the number of Gaussians, φk the weight
of the k-th Gaussian, µk the Riemannian center of mass
of the k-th Gaussian computed on the manifold and Σk
the covariance matrix of the k-th Gaussian. The parameters
φk, µk and Σk are learned using Expectation-Maximization
on the human pose Space [20]. Figure 2b illustrates the
human pose space H with three Gaussians computed on
tangent space at means. We note that expert demonstration
are first temporally aligned using dynamic programming.
This allows us to handle possible velocity variations among
expert demonstrations.

3) Ideal movement generation: Once a model is learned
for each exercise, we can generate an optimal sequence using
Gaussian Mixture Regression (GMR) which approximates
the sequence using a single Gaussian:

p(x̂|t) ≈ N (µ̂, Σ̂). (6)

As described in [18], to remedy the non linearity of the
manifold, µ̂ is computed in an iterative process similarly to
the Riemannian center of mass and Σ̂ is computed on the
tangent space at µ̂. By evaluating x̂ for successive values
of t, we obtain a generalized form of the ideal motion X̂ .
This optimal motion sequence will be used as a reference to
evaluate a motion sequence of a patient.

B. Human motion assessment

In order to evaluate a test sequence of a patient and
provide him feedback, we propose a multi-level analysis of
the movement, as illustrated in Figure 3.

1) Global evaluation: To evaluate a patients’ movement
we first temporally aligned the motion sequence to the ideal
movement computed above using dynamic programming.
Then, we compute the log-likelihood that the given sequence
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Fig. 3: Illustration of the multi-level analysis of patients’ movement.

X has been generated by the learned Gaussian Mixture
Model of the corresponding exercise:

ln(p(X|φ, µ, σ) =

T∑
t=1

ln(

K∑
k=1

φkN (xt|µk,Σk)). (7)

As the log-likelihood value may not be significant for a
patient or for a physiotherapist, we can use thresholds to
translate the log-likelihood into percentage of success.

2) Temporal segment analysis: While providing a global
score for the sequence allows the patient to have a global
idea on his performance, it is also interesting to know which
part of the exercise is not performed correctly. Thus, we
propose an analysis based on temporal segments. We analyze
the motion within a window of length W by computing the
standard deviation among data included in the temporal win-
dow. The standard deviation within a window is computed
on the human pose space as:

σ =

√√√√ 1

W

W∑
t=1

d(µW , yt)2, (8)

where µW is the Riemannian center of mass of all skeleton
poses of the sequence included in the window. By sliding
the window along the sequence we can obtain the evolution
of the motion along the exercise. When the value is low, it
means that there is no motion. It corresponds to transition
between two elementary motions. Thus, by detecting local
minima, we are able to detect the transition frames and thus
identify the different temporal segments. However, for some
rehabilitation exercises, the holding postures that a patient
should keep for a while are more important than transitions
between them. With the the segmentation strategy proposed
above, we focus our analysis on transitions which may not
be suitable for some cases. That is why we propose a second
segmentation strategy by detecting key frames when the
motion value crosses the threshold. With this strategy, we
are able to differentiate transition movements and holding
postures. According to the evaluated exercise, we can select
the corresponding segmentation strategy. Figure 4 shows an
example of exercise segmentation using our two strategies.
Detected key frames representing boundaries between tem-
poral segments are depicted in red color.

In addition, by detecting when motion value crosses the
threshold for the first time, we can identify the beginning of
the exercise. We select the beginning 10 frames before such
crossing point. This allows us to compare sequences starting

at the same time. The detected starting frames are depicted
in green color in Figure 4.

Fig. 4: Motion evolution for segmentation. (Left) First strategy
focuses on elementary motion by detecting transitions when the
motion becomes slower. (Right) Second strategy differentiates
transition motions and holding postures. Red points correspond to
boundaries between two temporal segments. Green points corre-
spond to the beginning of the exercise. The black line corresponds
to the threshold used to detect starting frames and boundaries in
the second strategy.

3) Body part analysis: We also propose a local analysis
to differentiate different body parts. This allows to identify
which body part is more responsible of the error and gives
more precise feedback to the patient. As the skeleton pose xt
is the concatenation of all joint features, we can compute the
log-likelihood for data corresponding to joints of the desired
body part to obtain a score for each body part. As shown in
Figure 3, we differentiate the two arms and the spine.

4) Error explanation: Until now, the evaluation of a
motion sequence only provides a global score of success.
However in the case a movement is not correctly performed,
it is very important to understand the reason why it has
been detected as incorrect and propose a solution how to
improve the movement. When an error is detected for a
given body part, we propose to evaluate the log-likelihood
of the position and orientation features of each joint of the
body part to detect which joint and which feature are more
responsible of the incorrect movement. Then we compare the
corresponding feature values of the test sequence X with the
ideal movement X̂ . Suppose that the minimum log-likelihood
value is obtained for the position feature of joint j at time
t, we compute the difference between the two corresponding
position features P̂j and Pj as δ = (Pj − P̂j)/σ̂2

P̂j
, with σ̂Pj

the standard deviation obtained from the covariance matrix
Σ̂ for the corresponding position feature P̂j of the ideal
movement. By analyzing the 3-dimensional vector δ, we can
detect which coordinate deviates the most from the ideal
movement. This allows us to explain the error. For instance,
if the y coordinate is higher and positive, it means that the
joint is too high in comparison to the ideal movement.

For orientation features the process is slightly different. As
quaternion features Oj are on the S3 space we first need to
compute an intermediate difference vd on the tangent space
at Ôj as vd = (LogÔj

(Oj)−Ôj)/σ̂2
Ôj

. Then, vd is projected
back to the manifold using exponential map, resulting in qd.
Finally δ is computed as δ = φ(qd)− φ(Ôj), where φ(.) is
the function converting quaternion into Euler angles which
are more suitable to explain orientation errors. For instance,
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if the x value of δ is higher and negative, it means that the
corresponding bone is too much leaned down.

We note that in order to be more robust to noise, we
perform the error explanation process in a temporal window
of size W around the frame t where the error is detected
and report result based on the average through the window.

IV. EXPERIMENTAL RESULTS

We propose to evaluate our method on three rehabilitation
exercises selected in collaboration with physiotherapists 1. In
the first exercise, the patient raises his arms horizontally and
then rotates the trunk on both sides. In the second exercise,
the patient should raise an arm upright then lean on the side.
The same is the performed for the other arm. In the third
exercise, the patient should lift his arms in front of him with
the elbows bent and then spread the arms.

A. Dataset

Under the supervision of a physiotherapist, we collect a
training database of two different subjects performing each
exercise three times. Then we collect test data of a third
subject performing the same exercises twice. In addition, this
test subject performs incorrect exercises by simulating errors.
For the first exercise, the arms are not enough raised. For the
second exercise, the subject does not tilt the arm and keep it
straight. In the third exercise, the arms are not enough raised.
Therefore, for each exercise, we have both test data which
are correct and incorrect 2.

B. Global Assessment

First, we compute the global and body part scores for
each test sequence. Results are reported in Table I. We can
first observe that the obtained scores for correct exercises are
much higher than those obtained for incorrect exercise. This
shows that our method is able to detect when an exercise
is not correctly performed. Moreover, as different subjects
are used for training and testing, it shows that our method is
independent of subjects. In addition, we can see that correct
exercise 1 obtained lower scores than other correct exercises.
This can be explained by the fact that when the subject is
rotating the trunk, one arm is behind the chest and may be
incorrectly detected by the Kinect sensor. Thus it can affect
the overall score but not as much as incorrect exercises.
Finally, by observing the scores of the spine, we can see
that a score of 100% is obtained for most cases. This is
expected as the spine should always be straight. However,
for the incorrect exercise 2, when the subject keeps his back
straight and does not lean on the side, we can see that the
score for the spine is 90%. This shows that we are able to
detect the error. However, in comparison with other errors
in the arms, the score is still high. This shows that errors in
different body parts do not affect the score similarly. Adding
some weights for each body parts could allow us to overcome
this limitation. This will be part of our future work.

1Videos of exercises are available at: www.keraal.enstb.org/exercises.html
2Videos available at: www.keraal.enstb.org/incorrectexercises.html

TABLE I: Evaluation results for all test sequences. Global
scores and body part scores are reported for each sample.

Global Left arm Spine Right arm
Ex1 Correct 72% 75% 100% 63%
Ex1 Correct 82% 86% 100% 73%
Ex1 Error 12% 31% 100% 19%
Ex2 Correct 92% 98% 100% 96%
Ex2 Correct 98% 100% 100% 99%
Ex2 Error 24% 37% 90% 49%
Ex3 Correct 95% 90% 100% 100%
Ex3 Correct 93% 99% 100% 90%
Ex3 Error 27% 47% 100% 40%

C. Assessing each temporal segment

In a second time, we compute scores for each temporal
segment according to the two segmentation strategies. Fig-
ure 5 illustrates results for the incorrect exercise 3. By using
the first segmentation strategy where only transition motions
are considered, we can see that all temporal segments are
detected as incorrect but the first one and last one obtained
higher scores. For the first segment, this is because the
movement of raising arms is correct most of the time except
near the end as the arms are not enough raised. As a result
the mean score of this temporal segment is quite low. The
same applies for the last segment where the subject lowers
his arms. Only the beginning of the segments is incorrect as
it starts with the arms too low. In comparison, if we use the
second segmentation strategy, the first and last segments are
not detected as incorrect. This is because the second strategy
differentiates the movement and the holding postures. This
shows that for this third exercise, the second strategy is more
suitable. It allows to detect the error on the holding postures
and not on the previous transition motion which is correct.

Fig. 5: Temporal evaluation. Scores are computed for each temporal
segment according to the first strategy (top) and the second strategy
(bottom). Red colors mean low scores, while blue colors represent
correct scores. Black dot lines represents boundaries between tem-
poral segments.

Finally, we show two examples of explanation of detected
errors for exercises 2 and 3. These examples are illustrated
in Figure 6. Explanation sentences are build automatically
according to the evaluation of the patient’s movements. In
our rehabilitation scenario, such sentences are sent to the
Poppy robot which enunciates them using a Text To Speech
system.

These experimental results show that our method is able
to assess patients’ exercises and provide corresponding feed-
back indicating where and why the movement is not correct.
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Fig. 6: Error explanation for exercises 2 (left) and 3 (right).

V. CONCLUSIONS

We have proposed a human motion analysis method for
physical exercises assessment and compared two segmen-
tation strategies providing temporally analysis of patients’
performances. Our method is able to learn an ideal movement
from position and orientation features of expert demonstra-
tions. It allows to consider variations among demonstrations
and identify which part of the exercise is important. In
addition, our multi-level analysis allows to provide detailed
feedback of detected errors including the body parts, the
temporal segment and how to correct the error. Evaluation
on three different rehabilitation exercises targeting low back
pain demonstrated promising results.

However, these are only preliminary results as the eval-
uation is performed on three rehabilitation exercises with
healthy subjects. In that sense we will evaluate our method
within the whole integrated robot coach system in a clinical
environment with patients suffering from low-back pain.
These experiments will allow us to evaluate our method
in a real scenario with a larger set of users. Moreover, the
acceptability of the Poppy robot as a robot coach will also
be analyzed. In addition, as mentioned above, we plan to
investigate methods to convert human motion to robot motion
to make our robot automatically learn exercises by observing
expert demonstrations. Finally, we plan to extend our method
to be able to consider cases when a patient cannot perform
correctly an exercise due to physical limitation or pain. With
the current method his evaluation would be always incorrect.
As a result, this could affect his motivation. To overcome
this point, an adaptive model will be investigated to consider
personal characteristic of patients.
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