Signal Processing

Romain MONCHAUX

UFR de Mécanique, ENSTA

Institut Polytechnique de Paris

Motivations

Visualise, quantify, caracterise

Signal processing: Motivations

Turbulent jet: hot-wire acquisition

von Karman flow: LDA acquisition

von Karman flow: SPIV acquisition

Master 2 – Fluid Mechanics - IPParis

Motivations - Outlines

Master 2 – Fluid Mechanics - IPParis

Sensors

Choose physical quantities

Pression

Position

Displacement

Velocity

Acceleration

Vorticity

Deformation

Force

. . .

Choose the sensor:

Sampling frequency
Sensitivity, dynamical range
Spatial extend / Integration
Intrusivity or not?
Life time

. . .

Sampling (continuous – discrete)

Original signal:

Fourier Transform

Sampled signal:

$$x_s(t) = x_c(t) \sum_{k=-\infty}^{+\infty} T_s \delta(t - kT_s)$$

$$X_s(f) = \int_{-\infty}^{+\infty} x_s(t) e^{-2\pi j f t} dt$$

$$X_s(f) = \frac{1}{T_s} \sum_{k=-\infty}^{+\infty} X_c(f - \frac{k}{T_s})$$

Sensor

Filtering

Master 2 – Fluid Mechanics -Sampl**in**garis Quar

Quantification

Acquisition

Sampling (aliasing)

Sampling (aliasing)

Sensor

FIltering

Master 2 – Fluid Mechanics - Samplingaris Quar

hanics - Quantification

Acquisition

Quantification (analog- digital)

Quantification noise:

Signal to noise ratio due to quantification

Nb bits	8	12	16
S/B	53 dB	77 dB	110 dB

Quantification level: n bits

Signal dynamics: $\pm V_{max}$

No quantification: $\delta V = \frac{2V_{max}}{2^n}$

Error spanned uniformly on: $-\delta V/2 < e(n) < \delta V/2$

Noise power:

$$\sigma_e^2 = \int_{-\delta V/2}^{\delta V/2} e^2 \frac{1}{\delta V} = \frac{\delta V^2}{12} = \frac{V_{max}^2 2^{-2n}}{3}$$

Acquisition

Irreversible action (cf. filtering)

Data flux:

- data quantity vs band width
- writting speed
- memory (RAM)

Master 2 – Fluid Mechanics Sampl**in**garis Quantification

FIltering

Low pass High pass Band pass

To respect Shannon criterion

To limit data volume

To reduce noise level

Data for science: saving data

Wish list

- o accessible
- portable
- understandable
- o long-life
- space saving
- 0 ...

Data representation

- Text files (.csv, .txt, ...)
- Binary files
- Proprietary formats
- .hdf5 or equivalent
- 0 ...

Data location

- o on computer
- on hard drive
- o on servers
- on cloud
- 0 ...

Time to analyse these signals Master 2 – Fluid Mechanics -

IPParis

Post-processing challenges

Statistical quantities:

- mean, satndard deviation
- correlations

Probability densities:

- fluctuation asymetry
- complex effect identification

Spectral content:

- rich informations (see practical session)

Drifts:

- in space or time
- data quality, non trivial long time effects

Mean and standard deviation

$$\overline{p} = \frac{1}{M} \sum_{n=0}^{M-1} p[n]$$

$$p_{rms} = \left(\frac{1}{M-1} \sum_{n=0}^{M-1} (p[n] - \overline{p})^2\right)^{1/2}$$

Standard deviation:

- carefull to estimation bias!
- fluctuation measurement
- distribution width
- data dispersion
- empirical error bars

Steady signal:

- obvious meaning

Unsteady signal:

- meaningless quantities
- moving moment estimation

Averages:

Ensemble average :
$$< T(\vec{x},t)> = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} T_i(\vec{x},t)$$

N times the same experiment

Average on realisations

Time average :
$$\overline{T}_a(\vec{x},t) = \frac{1}{2a} \int_{-a}^a T(\vec{x},t+s) ds$$

$$\overline{T}(\vec{x}) = \lim_{a \to \infty} \overline{T}_a(\vec{x},t)$$

Ergodicity if both are identical

Averages:

5 realisations over 10 time units

1 realisation over 50 time units

Time and ensemble averages:

Cylinder wake with oscillations forced by the flow

Visualisation

Master 2 – Fluid Mechanics - IPParis

Time and ensemble averages:

Time and ensemble averages:

Time and ensemble averages:

Ensemble average:

$$\overline{u(\vec{x},t_1)}$$
Fluid Me t ha(ic \vec{x},t_1)

Probability density function

Cumulated probability:

$$\mathcal{F}(x) = P(X < x)$$

Probability density function:

$$\mathcal{F}(x) = P(X < x)$$
$$f(x) = \frac{d\mathcal{F}}{dx}$$

Practically:

- histogram estimation
- histogram normalisation

Probability density

Gaussian white noise

Turbulent jet

Master 2 – Fluid Mechanics - IPParis

Power spectrum (definition)

Fourier transform (continuous signals)

$$X(f) = \langle x, e^{2\pi jft} \rangle = \int_{-\infty}^{+\infty} x(\tau)e^{-2\pi jf\tau} d\tau$$
$$x(t) = \int_{-\infty}^{+\infty} X(f)e^{2\pi jf\tau} df$$

Fourier transform (discrete signals)

$$X(\lambda) = \sum_{n=-\infty}^{+\infty} x[n]e^{-2j\pi\lambda n}, \quad \lambda \in [-0.5, 0.5]$$
$$x[n] = \int_{-0.5}^{0.5} X(\lambda)e^{2j\pi\lambda n} d\lambda$$

Power spectrum (definition)

Energy vs. power

$$P(x) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} |x(t)|^2 dt.$$
 (infinite signals)

$$E(x) = \int_{-\infty}^{+\infty} |x(t)|^2 dt.$$
 (finite signals)

Parseval theorem

$$E(x) = \int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Energy can be measured in spectral or physical space

Power spectrum (practical calculation)

Mean periodogram:

$$PSD_x(f) = \frac{1}{M} \sum_{i=0}^{M} |X_i(f)|^2$$

with
$$X_i(f) = FFT[f(n)x(n+iP)]$$

Required:

- segment number
- segment length
- windowing

Correlogram:

$$PSD_x(f) = \int_{-\infty}^{\infty} R_{xx}(t) dt$$

Wiener-Khintchine formula

Required:

- autocorrélation estimation
- Fourier transform calculation

Power spectrum (windows)

Rectangle

Bartlet

Hamming

Chebyshev

Correlations

$$R_x(\tau) = \overline{x(t)x(t+\tau)}$$

$$R_f(\tau) = \int_{-\infty}^{+\infty} f(t)f(t-\tau)dt$$

Auto-correlation

$$R_{xy}(\tau) = \overline{x(t)y(t+\tau)}$$

$$R_{fg}(\tau) = \int_{-\infty}^{+\infty} f(t)g(t-\tau)dt$$

Cross-correlation

Correlations

Sinusoïd

Soustract meanas real uel uid Mechanics - IPParis

Correlations

Correlations

Master 2 – Fluid Mechanics - IPParis