Experimental methods

One point techniques

Romain MONCHAUX

LMI - ENSTA

Institut Polytechnique de Paris

One point techniques

Pitot tube

Principle:

Stagnation pressure measurement Static pressure measurement Bernoulli theorem

Pitot tube

Principle:

Stagnation pressure measurement Static pressure measurement Bernoulli theorem

Pros / cons:

Cheap
Easy to use
Suited for time averages
Intrusive
Poor time resolution
Poor spatial resolution

Uses:

Monitoring Calibration In situ Large arrays

Simple Pitot

Pitot tube

Master 2 – Fluid Mechanics - IPParis

How does it look like?

Platinium or tungsten thin wire (few microns thick, few mm long) welded to the prongs of the probe support

Master 2 - Fluid Mechanics - IPParis

Illustrations: von Karman institute, ENSTA

How does it look like?

Pocket size model (mean velocity)

150 – 400 €

Lab model (fluctuations, 10 probes) 30-40 k€

Mini CTA (fluctuations, 1 probe) 2-4 k€

Illustrations: DANTEC dynamics

How does it look like?

ENSTA wind tunnel – Ahmed body + hot wire

How does it work?

Flow is cooling the probe: « chill factor »

Thermal boundary layer

Governing equations

Energy stored in the wire:

$$\frac{dE}{dt} = \dot{W} - \dot{Q}$$

Electrical power $\dot{W} = R_w I^2 > 0$

Joule effect

$\dot{Q} > 0$ Heat variation

Conduction to fluid

Convection to fluid

Conduction to support

Radiation

Heat flux

$$\overrightarrow{j_Q} = -k_f \overrightarrow{\nabla} \overrightarrow{T}$$

Nusselt number

 $Nu = hd/k_f$

Convection efficiency

$$Nu = I$$

$$\longrightarrow \dot{Q} = k_f l\pi \left(T_w - T_0 \right) Nu$$

 $\frac{\dot{Q}}{A} = h(T_w - T_0)$

Governing equations

Power budget
$$\frac{dE}{dt} = R_w I^2 - \pi l k (T_w - T_0) N u$$

$$R_w I^2 = \pi l k (T_w - T_0) N u$$

Link between Nu and the velocity U?

Governing equations

Heat transfer: Nu = f(Re, Pr, Ma, l/d ...)

Wire Reynolds number:
$$Re_w = \frac{Ud}{v_f} \ll 1$$

Fluid Prandtl number:
$$P_r = \frac{v_f}{\kappa_f} \simeq 1$$

Laminar flow

Thermal and viscous boundary layers similar

$$Nu = 1 + \sqrt{2\pi Re_w}$$

King's laws
$$Nu = 0.42 P_r^{\frac{1}{5}} + 0.57 Re_w^{\frac{1}{2}} P_r^{\frac{1}{3}}$$

$$Nu=a_0+b_0\sqrt{Re_w}$$

Governing equations

$$R_w I^2 = \pi l k (T_w - T_0) (a_0 + b_0 R e_w^{\frac{1}{2}})$$

What do we measure?

- Tension: $e = R_w I$
- No link with U a priori
- But ...

$$R_w = f(T_w)$$

$$R_{w} = R_{0}(1 + \beta(T_{w} - T_{0}))$$

$$\beta = \frac{1}{R_{w}} \frac{\partial R_{w}}{\partial T} \simeq cst$$

$$R_{w}I^{2}$$

$$R_{w}I^{2}$$

$$R_{w} - R_{0}$$

For Tu or Pt:

$$\beta \simeq 5 \times 10^{-3} K^{-1}$$

$$\frac{e^2}{R_W(R_W - R_0)} = a + b\sqrt{U}$$

Two strategies

$$\frac{e^2}{R_w(R_w - R_0)} = a + b\sqrt{U}$$

$$e = R_w I$$

King's law

Ohm's law

Constant current anemometry CCA

- *I* is constant
- U through fluctuations of R_w
- Obsolete

Constant temperature anemometry CTA

- R_w i.e. T_w is constant
- U through fluctuation of I i.e. e

Overheat 100° - 200°:

$$R_{eq} < R_w$$

Negative feedback:

$$\delta e = I(R_w - R_0)$$

$$E_{\rm S} = G \, \delta e$$

$$E_S = \sqrt{R_W(R_W - R_0)(a + b\sqrt{U})}$$

$$E_s = \sqrt{A + B\sqrt{U}}$$

Calibration

Modified King's law

$$E_s^2 = A + BU^n$$

n between 0.4 and 0.6

Fitting strategy

$$A = E_s^2(0)$$

$$n \log U + \log B = \log \left(E_s^{2(U)} - A \right)$$

Empirical relations

Collis & Williams (1959)'s empirical relation

$$n = 0.45$$
 for $0.02 < Re_w < 44$
 $n = 0.51$ for $44 < Re_w < 140$

The wire is a cylinder in a cross flow:

- $Re_w < 44$: the wake is steady and symmetric
- $Re_w > 44$: the wake is unsteady and non symmetric with periodic vortex shedding: heat transfer is enhanced
- $Re_w > 140$: the wake becomes disorderd, heat transfer is further enhanced

Frequency response

Square excitation

 τ : empirical response time with undershoot (15%)

 f_c : cut-off frequency

Freymuth P (1977) Frequency response and electronic testing for constant-temperature hot-wire anemometers. J Phys E Sci Instrum 10(7):705–710

Finite length effect

From Champagne et al (1967) reproduced by Lomas (1986)

Non uniform temperature in wire

Minimise k_w Maximise $\frac{l}{d}$ Keep l not too long

——

Usual compromise: $l \approx 1$ mm, $d \approx 5$ μm

Directional sensitivity

Measured velocity:

$$U_{eff}^2 = \sqrt{u_\perp^2 + k^2 u_z^2}$$

When
$$\frac{l}{d} \to \infty : k \to 0$$

When
$$\frac{l}{d} \to 1: k \to 1$$

Different probes

- Several probes (a,c,e): to measure several components
- With cold probes (d): to compensate temperature
- Hot films (f): water measurements

Master 2 - Fluid Mechanics - IPParis

Main features

- Time resolved
- Point measurement (0D)
- Mainstream flow
- Non linear calibration
- Directional ambiguity
- Emperature sensitivity

Invented in 1964 by Yeh & Cummins

Laser

• Electromagnetic waves

 $\vec{E}(t,\vec{r}) = \vec{p} E_0 \cos(\omega t - \vec{k}.\vec{r} + \phi)$

- Wavelength $\lambda = \frac{2\pi}{k}$
- Celerity $c = \frac{\omega}{k}$

Properties

- Monochromatic
- Coherent
- Linearly polarized
- Collimated
- Gaussian intensity distribution

Master 2 - Fluid Mechanics - IPParis

Usual Lasers

Argon: continuous power in green-blue

Helium: continuous power in red

Nd:Yag: pulsed in infrared shifted to green

LASER	λ	color	power	diameter
	(nm)		(mW)	(mm)
He-Ne (gas)	632.8	red	1-15	0.65
	476.5	violet	1-600	1.5
Ar ²⁺ (gas)	488	blue	1-1500	1.5
	514.5	green	1-2000	1.5
doubled YAG (solid)	532	green	20-2000	1

Doppler effect

Doppler effect

Still source, moving receiver

$$T = 1/f$$

$$\lambda' = cT + \vec{v} \cdot \vec{e}T$$

$$f' = f \frac{1}{1 + \frac{\vec{v}}{c} \cdot \vec{e}}$$

Moving source, still receiver

$$T' = 1/f'$$

$$\lambda'' = cT' + \vec{v} \cdot \overrightarrow{e'}T'$$

$$f'' = f' \frac{1}{1 - \frac{\vec{v}}{c} \cdot \overrightarrow{e'}}$$

Doppler effect

Application to velocimetry

$$f' = f \frac{1}{1 + \frac{\vec{v}}{c} \cdot \vec{e}}$$

$$f'' = f' \frac{1}{1 - \frac{\vec{v}}{c} \cdot \overrightarrow{e'}}$$

Doppler frequency

$$f^{\prime\prime}\simeq f+f_D$$

$$f_D = f \frac{\vec{v}}{c} \cdot (\overrightarrow{e'} - \overrightarrow{e})$$

Measurement

$$f \simeq 10^{14} \ \mathrm{Hz}$$
 $f_D \simeq 10^6 - 10^7 \ \mathrm{Hz}$

- Requires a 10^{-8} resolution for 10% accuracy
- Depends on observation direction

Measurement of f_D is preferred through interferometric system

Doppler effect on crossed beams

Frequency along e':

$$f_1 \simeq f + f \frac{\vec{v}}{c} \cdot (\overrightarrow{e'} - \overrightarrow{e_1})$$

$$f_2 \simeq f + f \frac{\vec{v}}{c} \cdot (\overrightarrow{e'} - \overrightarrow{e_2})$$

Intensity along e':

$$I = E_1^2 + E_2^2 + 2E_1E_2\cos(2\pi f \frac{\vec{v}}{c}.(\vec{e_1} - \vec{e_2}))$$

Measurement

- One component detected: $f_D = f \frac{\vec{v}}{c} \cdot (\vec{e_1} \vec{e_2}) = 2f \frac{v_x}{c} \sin \left(\frac{\alpha}{2}\right)$
- No Doppler shift if $\vec{v} \perp \overrightarrow{e_x}$
- Independent of observation direction

Doppler effect on crossed beams

Measurement

- When $V_{\chi} = 0$, $f_D = \Delta f$
- When $V_x < 0$, $f_D < \Delta f$
- When $V_x > 0$, $f_D > \Delta f$

Problem

- Insensitive to direction
- Zero velocity not measurable

Solution

- Scrolling fringes
- Shift frequency Δf

$$f_D = 2f \frac{v_x}{c} \sin\left(\frac{\alpha}{2}\right) + \Delta f$$

Interferometry

- Amplitudes sum up
- Intensity is measured

$$I(\vec{r},t) = \left| \vec{E_1} \vec{p_1} \cos(\omega_1 t - \vec{k_1} \cdot \vec{r}) + \vec{E_2} \vec{p_2} \cos(\omega_2 t - \vec{k_2} \cdot \vec{r}) \right|^2$$

At the sensor time scale

Interference pattern

- Spatially structured
- Independent of time
- Max when both have the same polarisation, i.e. $\overrightarrow{p_1} = \pm \overrightarrow{p_2}$

Interferometry

$$I(\vec{r},t) = I_0 + \gamma \cos((\vec{k_2} - \vec{k_1}).\vec{r})$$

Interfringe: exercise

$$(\overrightarrow{k_2} - \overrightarrow{k_1}) \cdot \overrightarrow{r} = 2\pi$$

$$d = \frac{\lambda}{2\sin\frac{\alpha}{2}}$$

Interferometry

Seeding particles pass through the fringe at velocity $ec{v}$

Scattered light is modulated in time at period T_D or frequency f_D

$$T_D = \frac{d}{\overrightarrow{v}.\overrightarrow{e_x}}$$
 We recover the Doppler shift! $f_D = \frac{2v_x}{\lambda}\sin\frac{\alpha}{2}$ Master 2 – Fluid Mechanics - IPParis

Implementation

Beam generator

Generating two interfering beams

Beam generator

Bragg cell

Master 2 - Fluid Mechanics - IPParis

Diffraction limit for gaussian beams

Measurement volume

Volume dimensions

$$\delta_{z} = \frac{4f\lambda}{\pi D_{L}\sin\frac{\alpha}{2}}, \qquad \delta_{y} = \frac{4f\lambda}{\pi D_{L}}, \qquad \delta_{x} = \frac{4f\lambda}{\pi D_{L}\cos\frac{\alpha}{2}}$$

$$\delta_{y} = \frac{4f\lambda}{\pi D_{L}}$$

$$\delta_X = \frac{4f \,\lambda}{\pi D_L \cos \frac{\alpha}{2}}$$

Interfringe

$$d = \frac{\lambda}{2\sin\frac{\alpha}{2}}$$

Number of fringes

$$N = rac{8f an rac{lpha}{2}}{\pi D_L}$$

Particles

For liquids

State	Material	Mean diameter (μm)	
Solid polystyrène		0.5-10	
	Aluminium	2-7	
	Magnesium	2-5	
	synthetic granules	1-10	
	glass microbeads	30-100	
Liquid oils		0.5-10	
	dioctylphathalate	< 1	

For gas

State	Material	Mean diameter (μm)
Solid	polystyrene	10-100
	Aluminium	2-7
	hollow glass sphere	10-100
	granules for synthetic coating	10-500
Liquid	oils	50-500
Gas	bubles of O_2 , H_2 , etc	50-1000

Particles

Seeking tracers

$$\underbrace{\frac{\pi}{6}\phi^{3}\rho_{p}\frac{d_{p}}{dt}\mathbf{v}_{p}}_{\text{inertial force}} = \underbrace{-3\pi\mu\phi(\mathbf{v}_{p}-\mathbf{v}_{f})}_{\text{Stokes force}} - \frac{\pi\phi^{3}}{6}\underbrace{\nabla P}_{\rho\frac{d\mathbf{v}_{f}}{dt}}$$

$$1\pi_{43} \left(d\mathbf{v}_{f}\right)$$

$$- \frac{1}{2} \frac{\pi}{6} \phi^3 \rho_f \left(\frac{d \mathbf{v}_f}{dt} - \frac{d_p \mathbf{v}_p}{dt} \right)$$

fluid resistance to sphere acceleration

$$+\frac{3}{2}\phi^2\sqrt{\pi\rho_f\mu}\int_0^t\frac{1}{\sqrt{t-t'}}\left(\frac{d\mathbf{v}_f}{dt}-\frac{d_p\mathbf{v}_p}{dt}\right)dt'+\mathbf{f}_{ext}$$

HeNe

Ar-lon

Diode

Nd:Yag

PC

drag force due to an unsteady flow

Maxey, Riley, Gattignol, 1983

receiving op-

tics & sensor

Achrom. lens

Photomultiplier

Signal conditioner

Amplifier

Filter

Spatial filter

Photodiode

Flow

Seeding Particles

signal processing

Spectrum analyser

Counter, Tracker

Correlator

transmiting

optics

Beamsplitter

Achrom. lens

Bragg cell

Particles

Seeking tracers

$$\frac{dv_p}{dt} = 18 \frac{\mu}{\phi^2 \rho_p} \left(v_f - v_p \right)$$

$$v_p = v_f \left(1 - e^{-t/\tau_p} \right)$$

Relaxation time

$$\tau_p = \frac{\rho_p \phi^2}{18\mu}$$

Particles

Looking for light

Diffracted light in all directions

Master 2 - Fluid Mechanics - IPParis

Implementation

Detection system

Master 2 - Fluid Mechanics - IPParis

Implementation

Fourier analysis

$$I(t) = a \left(1 + \sin(2\pi f_D t)\right) G(t)$$

$$|\hat{I}(f)| = a \,\hat{G}(f) + a \,\delta(f - f_D) * \hat{G}(f)$$

Master 2 - Fluid Mechanics - IPParis

2D system

3D system

Standard full system

Small integrated 3D FiberFlow probe

Fiber Flow probes (60 & 85 mm)

Sources of noise

- Detection noise
- Electronic and thermal noises of the pre-amplifying line.
- High order laser modes (optical noise)
- Diffused light out of the control volume, dirts, damaged window, ambient light,
- Multiple particles, etc.
- Stray reflections (windows, lens, mirrors, ...)

Laser power selection, seeding, optical parameters, ... to optimise the signal over noise ratio

Main features

- Time-resolved point measurement
- Point measurement is a small ellipsoid (spatial coarsening)
- Non-uniform sampling frequency
- The flow must be seeded
- Linear law
- Expensive

Comparison

	Pitot Tube	Hot Wire Anemometry	Laser Doppler Anemometry
Sketch	$\begin{array}{c c} U \\ \hline \\ P_0 & P_1 \end{array}$	I Zzzó U	
Principle	Two pressure measurements: static and dynamics Bernoulli	Measure of dissipated Joule power in a wire	Interferometric measurement of a Doppler shift on scattering particle
Pros	Easy to use Cheap (1 k€) Suited for time average	Very high time and space resolution Suited for fluctuation measurements Easy to use Medium price (10 k€)	Non intrusive High time and space resolution Suited for fluctuations Suited for several components
Cons	Highly intrusive Very poor time & space resolution	Intrusive, fragile Non linear calibration Sensitive to temperature	Non regular sampling High price (50-100 k€) Seeding required Difficult settings