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Flow structures

Bevel sound
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Flow structures

Cylinder wake flow
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Flow structures

Guadeloupe wake flow
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Flow structures

Wing stall flow

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
5



Flow structures

Natural convection
(Schlieren photograph, Gas Dynamics Lab, Penn State University)
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Flow structures

Boundary layer transition
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Flow structures

Fully developed turbulence
(computer simulation with more than 200 billion degrees of freedom,

M. Wilczek (2018))
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How to extract flow structures ?

Open cavity flow
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Decomposition on a basis of known functions

The usual approach is to decompose the flow on a basis of known functions
(in the L2-space) :

• Fourier mode expansion exp(i k · r) ;

• Bessel functions (in axisymmetric geometries) ;

• Wavelets (redundant decomposition for scanning both location and scale of a
given pattern in the flow) ;

• Global modes (given by the stability analysis of a steady base flow) ;

• Etc
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Seeding thoughts

Holmes, P. J., Lumley, J. L., Berkooz, G., Mattingly, J. C., & Wittenberg, R. W.,
Physics Reports 287 (1997) 337-384

For fluid flow one has a well-accepted mathematical model : the
Navier-Stokes equations. Why, then, is the problem of turbulence so
intractable ? One major difficulty is that the equations appear insoluble in
any reasonable sense. (A direct numerical simulation certainly yields a
“solution”, but it provides little understanding of the process per se.)
However, three developments are beginning to bear fruit :

1. The discovery, by experimental fluid mechanicians, of coherent
structures in certain fully developed turbulent flows ;

2. the suggestion, by Ruelle, Takens and others, that strange
attractors and other ideas from dynamical systems theory might
play a role in the analysis of the governing equations, and

3. the introduction of the statistical technique of Karhunen-Loève or
proper orthogonal decomposition, by Lumley in the case of
turbulence.
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Toward data-driven bases of function ?

Open cavity flow coherent structures
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Outline
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Some preliminary définitions

Proper Orthogonal Decomposition (POD)

Dynamic Mode Decomposition (DMD)

Concluding remarks
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Some preliminary definitions
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Deterministic systems
We consider the state vector X ∈ M where M ⊂ RN is the manifold on which evolves
the system.
The dynamics is deterministic when the system can be written in the form

Ẋ = f(X, t).

The system is said autonomous when the vector field f does not depend explicitly on
time t.

Example of deterministic systems :

• The pendulum
ÿ + ω2

0y = 0,

for which X = (X1,X2) = (y , ẏ)T and f(X) = (X2,−ω2
0X1)T .

• The diffusion equation
∂φ/∂t = ν∂2φ/∂x2,

where X(t) = (φ(x1, t), φ(x2, t) . . .)T is of inifinite dimension.

• etc.

What about the Navier-Stokes equations ?
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Flow field as realizations of the state vector

• If the sampling is random, X can be seen as a random process.

• u(X) is the result of a measurement on the random variable.

• We form the set of random variables S = {uk}k=1,...,N where uk = u(X(tk ))

• Can we define principal components {ψk}k=1,...,N “most representative” of the
data in S ?
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Probability functions

Let us consider the ensembles of scalar random variables Su = {uk}k=1,...,N and
Sv = {vk}k=1,...,N . We note :

→ p(u) the probability function of the random variables : it focuses on what
happens at 1 point regardless of the others ;

→ p(u, v) the joint probability function : it focuses on the link between two
realizations, regardless of the others.
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One-point statistics

• Mean

< u >E=

∫
S
u p(u) du

• Variance

σ2
u =

〈
(u− < u >E )2

〉
E

=

∫
S

(u− < u >E )2 p(u) du
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Two-points statistics
• Auto-correlation

Ruu(n,m) =< unum >E=

∫
S
unum p(un, um) dun dum

• Auto-covariance

Cuu(n,m) = 〈(un− < un >E )(um− < um >E )〉E

• Cross-correlation

Ruv (n,m) =< unvm >E=

∫
S
unvm p(un, vm) dun dvm

• Cross-covariance

Cuv (n,m) = 〈(un− < un >E )(vm− < vm >E )〉E

Note :

Variance Cuu(n, n) = σ2
u .

Correlation Ruv (n, n) = corr(un, vn)
Covariance Cuv (n, n) = cov(un, vn)
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Two-point correlations of the velocity field

Consider the “snapshot matrix”

U =


u(x1, t1) u(x1, t2) . . . u(x1, tNt )
u(x2, t1) u(x2, t2) . . . u(x2, tNt )

...
...

...
...

u(xNx , t1) u(xNx , t2) . . . u(xNx , tNt )



The spatial correlation tensor of the velocity field can be set in the form :

Ruu(x, x′) =
1

Nt
UUT

while the temporal correlation tensor writes :

Ruu(t, t′) =
1

Nx
UTU.
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Stationary random processes

• Stationarity of random processes can be defined in two ways :

• Strictly
All the statistics of the random process are time invariant.

p(u1, u2, . . . uN) = p(u1+m, u2+m, . . . uN+m)

• Weakly
Only one-point and two-point statistics are time invariant.

• Ergodicity
A process is ergodic if ensemble statistics and temporal statistics match.
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Proper Orthogonal Decomposition (POD)
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A mathematical definition of coherent structures

G. Berkooz, P. Holmes, & J.L. Lumley, Annu. Rev. Fluid Mech. 25 (1993) 539-75

Proper orthogonal decomposition (POD) [...] has something to offer.

1. It is statistically based-extracting data from experiments and
simulations.

2. Its analytical foundations supply a clear understanding of its
capabilities and limitations.

3. It permits the extraction, from a turbulent field, of spatial and
temporal structures judged essential according to predetermined
criteria and it provides a rigorous mathematical framework for their
description.

As such, it offers not only a tool for the analysis and synthesis of data
from experiment or simulation, but also for the construction, from the
Navier-Stokes equations, of low-dimensional dynamical models for the
interaction of these essential structures. Thus, coming full circle, we have
a statistical technique that contributes to deterministic dynamical analysis.
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Coherent structures as two-point correlated events in space

The coherent structures ψn of the velocity field u = (ux , uy , uz ) are defined as the
eigen-modes of the cross-correlation function :

nc∑
α=1

∫
Ω
Ruαuβ (x, x′)ψαn (x′) dx′ = σnψ

β
n (x)

known as the Fredholm equation.
Ruαuβ (x, x′) is the two-point spatial cross-correlation tensor defined as :

Ruαuβ (x, x′) =
1

T

∫
T
uα(x, t)uβ(x′, t) dt =

NPOD∑
n=1

σnψ
α
n (x)ψβ?n (x′)

• The problem is well-posed if the ψn are normed to 1
(constrained optimization problem)

• Eigenvectors are space dependent.

• Size : NPOD = Nx × nc
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Classical POD or direct method (Lumley, 1967)

• Compute the eigenfunctions of Ruαuβ (x, x′).

• < · >E= 1
T

∫
T · dt

i.e. the ensemble average is a temporal average.
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Coherent structures as time correlated events ?

• Cannot we replace Ruαuβ (x, x′) by Ruu(t, t′) ?

• < · >E=
∫

Ω · dx

i.e. the ensemble average is a spatial average.
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Snapshot POD (Sirovich, 1987)

Fredholm equation : ∫
T
Ruu(t, t′)φn(t′) dt′ = λnφn(t)

where Ruu(t, t′) is the two-point temporal correlation tensor defined as :

Ruu(t, t′) =
1

T

∫
Ω
u(x, t) · u(x, t′) dx =

1

T

NPOD∑
n=1

σnφn(t)φ?n (t′)

• Eigenvectors are time dependent.

• No cross correlations.

• Linear independence of the snapshots is assumed.

• Size : NPOD = Nt .

Recall : For the classical POD, NPOD = Nx × nc
⇒ Snapshot POD reduces drastically computational effort when Nx � Nt .
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Snapshot POD or classical POD ?

What is the typical situation ?

• For experimental data : long time history with moderate spatial resolution

⇒ Two-point spatial correlation tensor Ruαuβ (x, x′) well converged

Exception : data sets obtained from Particle Image Velocimetry

• For numerical simulation data : much higher spatial resolution but a moderate
time history

⇒ Two-point temporal correlation tensor Ruu(t, t′) well converged

• Consequences :

• Classical POD generally used with experimental data,

• Snapshot POD generally used with numerical data.
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Common properties of the two approaches

1. Spatial modes ψn(x) are orthonormal :

(ψn,ψm) =

∫
Ω
ψn(x) ·ψm(x) dx = δnm.

2. Each space-time realization u(x, t) can be expanded into the basis of the
orthogonal eigen-modes ψn(x) with uncorrelated coefficients φn(t) :

u(x, t) =

NPOD∑
n=1

σnφn(t)ψn(x),

where σn accounts for the fraction of kinetic energy extracted by ψn(x) from
the snapshot set of the velocity field.

3. The time coefficients φn(t) are orthogonal :

1

T

∫
T
φn(t)φ?m(t) dt = δnm.
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POD Important consequences

• The spatial basis functions ψn(x) can be estimated as :

ψn(x) =
1

Tλn

∫
T
u(x, t)φ?n (t) dt

i.e. as a linear combination of the instantaneous velocity fields.

⇒ The ψn(x) possess all the properties of u(x, t) that can be written as linear
and homogeneous equations.

• For an incompressible flow

∇ · u = 0 ⇒ ∇ ·ψn = 0 ∀n = 1, . . . ,NPOD

• Same boundary conditions

If they are homogeneous, then they are satisfied by each of the eigenfunctions
individually.
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POD : different approaches

POD approaches depend on :

• the inner product :

• L2

• H1

• . . .

• the kind of correlations :

• spatial x = (x , y , z)
• temporal t
• control parameters c, for instance Reynolds number . . .

• the ensemble average < · >E

• spatial
• temporal
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Other names

• Also known as :

• Karhunen-Loève decomposition : Karhunen (1946), Loève (1945) ;
• Principal Component Analysis : Hotelling (1953) ;
• Singular Value Decomposition : Golub and Van Loan (1983).

• Applications include :

• Random variables (Papoulis, 1965) ;
• Image processing (Rosenfeld and Kak, 1982) ;
• Signal analysis (Algazi and Sakrison, 1969) ;
• Data compression (Andrews, Davies and Schwartz, 1967) ;
• Process identification and control (Gay and Ray, 1986) ;
• Optimal control (Ravindran, 2000 ; Hinze et Volkwein 2004 ; Bergmann,

2004) and of course in fluid mechanics

• Introduced in turbulence by Lumley (1967)

Lumley J.L. (1967) : The structure of inhomogeneous turbulence. Atmospheric
Turbulence and Wave Propagation, ed. A.M. Yaglom & V.I. Tatarski, pp.
166-178.
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Choice of inner product and associated norm

1. L2 inner product (the most used)

L2 = {square integrable functions}

(u, v) =
∑

Ω

(u1v
?
1 + u2v

?
2 + u3v

?
3 ) dx ; ‖u‖2 = (u, u) ; Ec =

1

2
ρ‖u‖2

⇒ L2 is a natural space in which to do fluid mechanics since it corresponds to
flows having finite kinetic energy.

2. H1 inner product (Iollo et al., 2000)

H1(Ω) = {u ∈ L2(Ω) :
∂u

∂xi
∈ L2(Ω)} : Sobolev space

(u, v) =

∫
Ω

(u, v)dx + ε

∫
Ω

(∇u · ∇v)dx

where ε is a parameter.
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Choice of inner product and associate norm

3. Inner product for aeroacoustic compressible flow (Rowley et al., 2001)

Flow variables q = (u, v , a) where u and v are the 2D velocities and a is the
local sound speed :

(q1, q2)ε =

∫
Ω

(
u1u2 + v1v2 +

2ε

γ(γ − 1)
a1a2

)
dx

where γ is the ratio of specific heats and ε is a parameter.

• if ε = γ then ‖q‖2 = 2h0 i.e. twice the total enthalpy of the flow,

• if ε = 1 then ‖q‖2 gives twice the total energy of the flow.
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Snapshot Data Matrix

u = (u, v ,w) ; x ∈ {x1, x2, . . ., xNx } ; t ∈ {t1, t2, . . ., tNt }

A =



u(x1, t1) u(x1, t2) . . . u(x1, tNt−1) u(x1, tNt )
v(x1, t1) v(x1, t2) . . . v(x1, tNt−1) v(x1, tNt )
w(x1, t1) w(x1, t2) . . . w(x1, tNt−1) w(x1, tNt )
u(x2, t1) u(x2, t2) . . . u(x2, tNt−1) u(x2, tNt )
v(x2, t1) v(x2, t2) . . . v(x2, tNt−1) v(x2, tNt )
w(x2, t1) w(x2, t2) . . . w(x2, tNt−1) w(x2, tNt )

...
...

...
...

...
u(xNx , t1) u(xNx , t2) . . . u(xNx , tNt−1) u(xNx , tNt )
v(xNx , t1) v(xNx , t2) . . . v(xNx , tNt−1) v(xNx , tNt )
w(xNx , t1) w(xNx , t2) . . . w(xNx , tNt−1) w(xNx , tNt )



with A ∈ R(3Nx )×Nt .
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Singular Value Decomposition (SVD)

A = ΨΣΦT ∈ R3Nx×Nt

where
Ψ ∈ R3Nx×3Nx ; Σ ∈ R3Nx×Nt ; Φ ∈ RNt×Nt

• Left singular vectors : Ψ = (ψ1, ψ2, . . . , ψ3Nx ),ΨΨT = I3Nx

• Right singular vectors : Φ = (φ1, φ2, . . . , φNt ),ΦΦT = INt

• Singular values : σi , i = 1, . . . , p = min(3Nx ,Nt)

Σ = diag(σ1, . . . , σp , 0 . . . , 0) with

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = σr+2 = . . . = σp = 0 where r = rank(A) ≤ p.

• SVD and eigenvalue problems

• AAT = ΨΣ2ΨT = ΨΛΨT with AAT ∈ R3Nx×3Nx

• ATA = ΦΣ2ΦT = ΦΛΦT with ATA ∈ RNt×Nt

⇒ σi =
√
λi (AAT ) =

√
λi (ATA)
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SVD for 3Nx < Nt

For 3Nx < Nt , A = ΨΣΦT ∈ R3Nx×Nt writes :

A =
(
ψ1 . . . ψ3Nx

)


σ1 0 . . . . . . 0

. . .
...

...

. . .
...

...

. . .
...

...
σ3Nx 0 . . . . . . 0





φT1
...
...

φT3Nx

φT3Nx+1

...

...
φTNt
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SVD for 3Nx > Nt

For 3Nx > Nt , A = ΨΣΦT ∈ R3Nx×Nt writes :

A =
(
ψ1 . . . ψNt ψNt+1 . . . ψ3Nx

)



σ1

. . .

. . .

. . .

σNt

0 . . . . . . . . . 0
...

...
...

...
0 . . . . . . . . . 0





φT1
...
...
...
...
...
...
φTNt
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SVD Dyadic decomposition and norms

• Dyadic decomposition :

A3Nx×Nt = Ψ3Nx×3Nx Σ3Nx×Nt ΦT
Nt×Nt

=
(

Ψ3Nx×r Ψ̄3Nx×(Nt−r)

)( Σr×r 0
0 0

)(
ΦNt×r Φ̄Nt×(Nt−r)

)T
= Ψ3Nx×rΣr×rΦT

Nt×r

A3Nx×Nt = σ1ψ1φ
T
1 + σ2ψ2φ

T
2 + . . .+ σrψrφ

T
r .

• 2-induced norm ‖A‖2 = max‖v‖2=1 ‖Av‖2 = σ1.

• Frobenius norm ‖A‖F =
∑3Nx

i=1

∑Nt
j=1 a

2
ij =

√∑r
i=1 σ

2
i
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Low rank approximation of A

Let A ∈ R3Nx×Nt .

Determine Ak ∈ R3Nx×Nt such that rank(Ak ) = k < rank(A) which minimizes the
2-norm (or Frobenius norm) of the error E = A− Ak .

Eckart-Young theorem :

minrank(Ak )≤k‖A− Ak‖2 = σk+1(A)

minrank(Ak )≤k‖A− Ak‖F =

√√√√ r∑
i=k+1

σ2
i (A)

with Ak = Ψ

(
Σk 0
0 0

)
ΦT = σ1ψ1φ

T
1 + σ2ψ2φ

T
2 + . . .+ σkψkφ

T
k

Remark : This theorem establishes a relationship between the rank k of the
approximant, and the singular values of A.
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Image compression by truncated SVD Generalities

• Consider an image with nx × ny pixels. This image can be stored as a matrix
A ∈ Rnx×ny where aij contains the grey level of pixel (i , j).

• Memory nx × ny bytes + header

• Eckart-Young th. : best approximation of A with rank r writes

Â = σ1ψ1φ
T
1 + σ2ψ2φ

T
2 + . . .+ σrψrφ

T
r ,

and is such that
‖A− Â‖2 = σr+1.

• Size reduction

• Store ψ1, . . . , ψr , σ1φ
T
1 , . . . , σrφ

T
r in place of A

• Memory r × (nx + ny ) bytes.

⇒ Interesting method if r is low.
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Image compression by truncated SVD clown & trees

Clown : matrix 200× 330 Trees : matrix 128× 128
rank : 200, size : 258 kb rank : 128, size : 64 kb
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Image compression by truncated SVD singular values

+ : ”clown” image ; ◦ : ”trees” image
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Relative Information Content (RIC)
For an image of rank r :

RIC(M) =

∑M≥r
i=1 σi∑r
i=1 σi
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Image compression by truncated SVD ”clown”

Original image ; size : 258 kb App. of rank 6 ; size : 12,4 kb
Reduction : 95.2%

App. of rank 12 ; size : 24,8 kb App. of rank 20 ; size : 41,4 kb ;
Reduction : 90.4% Reduction : 84%
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Image compression by truncated SVD ”trees”

Original image ; size : 64 kb App. of rank 6 ; size : 6 kb
Reduction : 90.6%

App. of rank 12 ; size : 12 kb App. of rank 20 ; size : 20 kb
Reduction : 81.2% Reduction : 68.8%
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POD applied to the cylinder wake flow

Idreen Sadrehaghighi’s courtesy
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POD applied to the 3D cylinder wake flow

Akhtar Imran’s courtesy
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POD modes of the cavity flow
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POD modes of the cavity flow

from F. Guéniat, L. Pastur, F. Lusseyran, Physics of Fluids 26 (2014) 085101
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POD : pro & cons

• Pros

• POD provides a mathematical definition of coherent structures.
• POD is an energy-based decomposition of the flow field : it is optimal and

robust with respect to energy.
• The POD modes form a complete basis for data set.

• Cons.

• Possible spectral mixing.
• Localized travelling patterns require several POD modes for a proper

description.
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Dynamic Mode Decomposition (DMD)
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What is DMD aimed at ?

P.J. Schmid, JFM (2010) :

The description of coherent features of fluid flow is essential to our
understanding of fluid-dynamical and transport processes. A method is
introduced that is able to extract dynamic information from flow fields
that are either generated by a (direct) numerical simulation or
visualized/measured in a physical experiment. The extracted dynamic
modes, which can be interpreted as a generalization of global stability
modes, can be used to describe the underlying physical mechanisms
captured in the data sequence or to project large-scale problems onto a
dynamical system of significantly fewer degrees of freedom.
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What is DMD aimed at ?

C. Rowley et al, JFM (2009) :

The global behaviour of complex nonlinear flows is described by
decomposing the flow into modes determined from spectral analysis of the
Koopman operator, an infinite-dimensional linear operator associated with
the full nonlinear system. The Koopman modes are associated with a
particular observable, and may be determined directly from data (either
numerical or experimental) using a variant of a standard Arnoldi method.
They have an associated temporal frequency and growth rate and may be
viewed as a nonlinear generalization of global eigenmodes of a linearized
system. They provide an alternative to proper orthogonal decomposition,
and in the case of periodic data the Koopman modes reduce to a discrete
temporal Fourier transform.
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The Koopman operator

Consider a dynamical system evolving on a manifold M such that, for the state vector
Xk ∈ M at time tk

Xk+1 = f(Xk ),

where f : M → M.

The Koopman operator K is a linear operator that maps any scalar-valued function
g : M → Rm into a new function Kg as

Kg(X) = g(f(X)).
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A linear operator

K is a linear operator :

K(αg1 + βg2)(X) = αKg1(X) + βKg2(X)

for any functions g1, g2 and scalars α, β.

Important remark :

Although the dynamical system is nonlinear and evolves on a finite-dimensional
manifold M, the Koopman operator K is linear infinite dimensional.
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A data-driven analysis

Let ϕj : M → C denote eigenfunctions and λj ∈ C eigenvalues of the Koopman
operator :

Kϕj (X) = λjϕj (X), j = 1, 2, . . .

Consider that X ∈ M contains the full information about the flow field at a particular
time (state vector).

g(X) : M → Rm is a vector of any quantities of interest, such as a velocity
measurements at various points in the flow.

If each of the m components of g lies within the span of the eigenfunctions {ϕj}, then
we may expand the vector-valued g in terms of these eigenfunctions as

g(X) =
∑
j≥1

ϕj (X)ξj .

The eigenfunctions ϕj are referred to as the Koopman eigenfunctions, the
corresponding vectors ξj as the Koopman modes of the map f corresponding to the
observable g.
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Discrete time evolution

Iterates of X0 are given by

g(Xk ) =
∑
j≥1

K kϕj (X0)ξj =
∑
j=1

λkj ϕj (X0)ξj .

The Koopman eigenvalues λj ∈ C characterize the temporal behaviour of the
corresponding Koopman mode ξj :

• the phase of λj determines the angular frequency : ωj = = log(λj )/∆t

• the magnitude of λj determines the growth rate : σj = < log(λj )/∆t

Remark :

If the components of g do not lie within the span of the eigenfunctions of K , one may
split K into regular and singular components, and project components of g onto the
span of the eigenfunctions
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Koopman modes for linear systems
Suppose M is a n-dimensional linear space, and suppose the map f is linear :

f(X) = AX.

Let ξj and λj be eigenvectors and eigenvalues of A : Aξj = λjξj ,

Let wj be the corresponding eigenfunctions of the adjoint A? : A?wj = λ̄jwj ,

normalized so that < ξj ,wk >= δjk, j,k=1,...,n.

The scalar-valued functions ϕj (X) =< X,wj >, j = 1, . . . , n, are eigenfunctions of K
with eigenvalues λj . Indeed :

Kϕj (X) = ϕj (AX) =< AX,wj >=< X,A?wj >= λj < X,wj >= λjϕj (X).

Now, for any X ∈ M, as long as A has a full set of eigenvectors, we may write

X =
n∑

j=1

< X,wj > ξj =
n∑

j=1

λjϕj (X)ξj .

⇒ For linear systems, the Koopman modes coincide with the eigenvectors of A.

Remark : Unlike A, the operator K has a countably infinite number of eigenvalues,
since λkj is also an eigenvalue, with eigenfunction ϕj (X)k , for any integer k.
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Koopman modes for periodic solutions
Suppose that the set of distinct vectors S = {X0, . . . ,Xn−1} forms a periodic solution
of the system :

Xk+n = Xk for all k.

Define the new set of vectors {X̂0, . . . , X̂n−1} by applying the discrete Fourier
transform to X :

Xk =

n−1∑
j=0

exp (2πijk/n) X̂j , k = 0, . . . , n − 1.

Define the set of functions ϕj : S → C by ϕj (Xk ) = exp (2πijk/n) ,j,k=0,...,n−1 .

The ϕj are eigenfunctions of the Koopman operator K with eigenvalues exp (2πij/n) :

Kϕj (Xk ) = ϕj (f(Xk )) = ϕj (Xk+1) = exp (2πij(k + 1)/n) = exp (2πij/n)ϕj (Xk ).

Therefore,

Xk =

n−1∑
j=0

ϕj (Xk )X̂j .

→ The Koopman modes are the vectors X̂j

→ The phase of the corresponding eigenvalues are the frequencies j/n.
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Koopman operator on attractors

When the dynamics is non-periodic but evolves on an attractor, the following
properties hold :

• The Koopman eigenvalues lie on the unit circle.

• The Koopman modes may be calculated by harmonic averages, which for
finite-time datasets reduce to discrete Fourier transforms.
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Dynamic modes vs Koopman modes

DMD provides an approximation of the action of the Koopman operator on a
finite-dimensional (Krylov) subspace spanned by (time-resolved) realizations of the
velocity field.
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Application to snapshots of the velocity field

• Input :
Consider an ensemble of snapshots vi , i = 1, · · · ,N such that

VN
1 = {v1, v2, v3, · · · , vN} ∈ Rm×N

• Hypothesis #1 :
Assume a linear mapping A between vi and vi+1

vi+1 = Avi with A ∈ Rm×m

i.e. VN
1 is Krylov matrix of dimension m × N

VN
1 =

{
v1,Av1,A

2v1, · · · ,AN−1v1

}
• Objective : Determine a good approximation of the eigen-elements of A —

without knowing A !
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The Companion matrix
• Hypothesis #2 :

If N is sufficiently large, we can express vN as a linear combination of the
previous vi , (i = 1, · · · ,N − 1) i.e.

vN = c1v1 + c2v2 + · · ·+ cN−1vN−1 + r

= VN−1
1 c + r

where r ∈ Rm and c = (c1, c1, · · · , cN−1)T ∈ RN−1

• Ruhe (1984) proved that

AVN−1
1 = VN−1

1 S + reN−1
T (1)

where ei is the ith Euclidean unitary vector of length (N − 1) and S a
Companion matrix

S =


0 0 . . . 0 c1

1 0 . . . 0 c2

0 1 . . . 0 c3

...
...

...
...

...
0 0 . . . 1 cN−1

 ∈ R(N−1)×(N−1)

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
64



Ritz eigenvalues

• If we already know eigen-elements of S then we can determine approximated
eigen-elements of A. Indeed, we can demonstrate that :

if Syi = µiyi then Azi ' µizi with zi = VN−1
1 yi

Proof :

Azi − µizi = AVN−1
1 yi − µiVN−1

1 yi

= AVN−1
1 yi − VN−1

1 Syi

=
(
AVN−1

1 − VN−1
1 S

)
yi = reN−1

T yi −→ 0 if ‖r‖ −→ 0

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
65



The Vandermonde matrix
When the eigenvalues are distinct, the diagonalisation of C = Y−1ΛY involves a
Vandermonde matrix :

Y =


1 µ1 µ2

1 . . . µN−2
1

1 µ2 µ2
2 . . . µN−2

2
...

...
...

...

1 µN−1 µ2
N−1 . . . µN−2

N−1

 where Λ = diag (µ1, . . . , µN−1).

If now vk =

N−1∑
j=1

µkj ζj for k = 1, . . . ,N − 1, then [v1, . . . , vN−1] = VN−1
1 = ΞY , where

the elements ζj of Ξ are given by Ξ = VN−1
1 Y−1. Introducing the next snapshot

vN =

N−1∑
j=1

µN−1
j ζj + r, r ⊥ span{v1, . . . , vN−1}

one has
VN

2 = VN−1
1 C + reT = VN−1

1 Y−1ΛY + reT = ΞΛY + reT .

→ If r = 0 : the approximate modes are indistinguishable from Koopman modes.

→ If r 6= 0 : (µj , ζj ) are approximations of the eigenvalues and Koopman modes
(scaled by ϕj (X0)).
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DMD algorithm

[Z, µ,Res] = DMD
(
VN

1

)
Input : N sequence of snapshots VN

1 = {v1, v2, v3, · · · , vN}
Output : (N − 1) empirical Ritz vectors Z and Ritz values µ ; Res : residual.

• m = size
(
VN

1 , 1
)

• N = size
(
VN

1 , 2
)

• vN = VN
1 (:,N)

• VN−1
1 = VN

1 (:, 1 : N − 1)

• VN
2 = VN

1 (:, 1 : N − 1)

• c = VN−1
1 / vN

• S = companion (c)

• [Y , µ] = eig(S)

• Z = VN−1
1 Y

• Res = norm
(
VN

2 − VN−1
1 S, 1

)
with Z = (z1, · · · , zN) and Y = (y1, · · · , yN).
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Preprocessing of the data

• Apply the SVD

VN−1
1 = ΨΣΦH with ΨΨH = Im×m, ΦΦH = IN×N

Remarks :

• Ψ contains the spatial POD eigenfunctions and,
• Φ contains the temporal POD eigenfunctions

POD is here a by-product of DMD

• Starting from AVN−1
1 = VN−1

1 S + reN−1
T and first considering that r = 0, we

obtain after some manipulations :

ΨHAΨ = ΨHVN
2 ΦΣ−1 = S

Since r 6= 0, we have :

ΨHAΨ = ΨHVN
2 ΦΣ−1 = S̃ where S̃ is a full matrix.
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Ritz eigenvalues

• If we already know eigen-elements of S̃ then we can determine approximated
eigen-elements of A. Indeed :

if S̃yi = µiyi then Aξi = µiξi with ξi = Ψyi

Proof :
Aξi = µiξi ⇒ AΨyi = µiΨyi

⇒ ΨHAΨyi = µiΨ
HΨyi = µiyi

⇒ S̃yi = µiyi
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DMD applied to the cylinder wake flow

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
70



Dynamic modes of an unstable jet flow
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DMD applied to a jet in cross-flow

I. Mezić, Annu. Rev. Fluid Mech. 45 (2013) 357-78
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POD vs DMD

from M.A. Mendez, Fundamentals and Recent Advances in Particle Image Velocimetry
and Lagrangian Particle Tracking, VKI lecture series, Nov. 2021.
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