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Flow structures

Bevel sound
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Flow structures

Cylinder wake flow
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Flow structures

Guadeloupe wake flow

Institut Polytechnique de Paris
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Flow structures

Natural convection
(Schlieren photograph, Gas Dynamics Lab, Penn State University)
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Flow structures

Boundary layer transition
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Flow structures

Fully developed turbulence
(computer simulation with more than 200 billion degrees of freedom,
M. Wilczek (2018))
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How to extract flow structures?

Open cavity flow
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Decomposition on a basis of known functions

The usual approach is to decompose the flow on a basis of known functions
(in the L2-space) :

e Fourier mode expansion exp(ik - r);
e Bessel functions (in axisymmetric geometries) ;

e Wavelets (redundant decomposition for scanning both location and scale of a
given pattern in the flow) ;

e Global modes (given by the stability analysis of a steady base flow);

e Etc

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
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Seeding thoughts

Holmes, P. J., Lumley, J. L., Berkooz, G., Mattingly, J. C., & Wittenberg, R. W.,
Physics Reports 287 (1997) 337-384

For fluid flow one has a well-accepted mathematical model : the
Navier-Stokes equations. Why, then, is the problem of turbulence so
intractable ? One major difficulty is that the equations appear insoluble in
any reasonable sense. (A direct numerical simulation certainly yields a
“solution”, but it provides little understanding of the process per se.)
However, three developments are beginning to bear fruit :

1. The discovery, by experimental fluid mechanicians, of coherent
structures in certain fully developed turbulent flows;

2. the suggestion, by Ruelle, Takens and others, that strange
attractors and other ideas from dynamical systems theory might
play a role in the analysis of the governing equations, and

3. the introduction of the statistical technique of Karhunen-Loéve or
proper orthogonal decomposition, by Lumley in the case of
turbulence.
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Toward data-driven bases of function?
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Outline

Introduction

Some preliminary définitions

Proper Orthogonal Decomposition (POD)
Dynamic Mode Decomposition (DMD)

Concluding remarks
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Some preliminary definitions
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Deterministic systems

We consider the state vector X € M where M C RV is the manifold on which evolves
the system.
The dynamics is deterministic when the system can be written in the form

X = f(X, t).

The system is said autonomous when the vector field f does not depend explicitly on
time t.

Example of deterministic systems :

e The pendulum
y+uwiy =0,
for which X = (X1, X2) = (y, )" and f(X) = (X2, —w3X1)T.

e The diffusion equation

8¢/t = v&?P /x>,

where X(t) = (¢(x1, t), #(x2,t)...)7 is of inifinite dimension.

e etc.

What about the Navier-Stokes equations ?
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Flow field as realizations of the state vector

o If the sampling is random, X can be seen as a random process.
e u(X) is the result of a measurement on the random variable.
e We form the set of random variables S = {uy}«—1,... v Where u, = u(X(tx))

e Can we define principal components {1 }x=1,... n “most representative” of the
datain S7

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
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Probability functions

Let us consider the ensembles of scalar random variables Sy, = {uy}k=1,... v and
Sy = {Vi}k=1,...,n- We note :

— p(u) the probability function of the random variables : it focuses on what
happens at 1 point regardless of the others;

— p(u, v) the joint probability function : it focuses on the link between two
realizations, regardless of the others.

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
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One-point statistics

e Mean
<u>E:/up(u)du
S

e Variance
7t = (=< u>ef)e = [ (um <u>e) plu)d

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

18



Two-points statistics

e Auto-correlation
Ruu(n, m) =< upum >g= / UnUm p(Un, Um) dun dum
S

e Auto-covariance
Cuu(n, m) = {(un— < un >E)(um— < um >g))g
e Cross-correlation

RLIV("? m) =< UpVm >g= / UnVm P(Un, Vm)dun dvm
S

e Cross-covariance
Cuv(n,m) = ((un— < un >g)(Vm— < vm >£))g
Note :
Variance Cyy(n, n) = o2.
Correlation Ry (n, n) = corr(un, va)

Covariance Cyy(n, n) = cov(up, vp)
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Two-point correlations of the velocity field

Consider the “snapshot matrix”

u(Xl, tl) U(Xl, t2) A u(Xl, tNt)

u(x, t1) u(x2, t2) ... u(xe, ty,)
U=

U(XNX7 tl) U(XNX, tz) . U(XNX, tNt)

The spatial correlation tensor of the velocity field can be set in the form :

1
Ruu(x,x’) = ﬁUUT
¢

while the temporal correlation tensor writes :

1
Ruu(t,t') = N—UTU.

X

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
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Stationary random processes

e Stationarity of random processes can be defined in two ways :

® Strictly
All the statistics of the random process are time invariant.

P(ul, u,. .. UN) = P(u1+m7 wim, .- - uN+m)

e Weakly
Only one-point and two-point statistics are time invariant.

e Ergodicity
A process is ergodic if ensemble statistics and temporal statistics match.

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

21



Proper Orthogonal Decomposition (POD)
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A mathematical definition of coherent structures

G. Berkooz, P. Holmes, & J.L. Lumley, Annu. Rev. Fluid Mech. 25 (1993) 539-75
Proper orthogonal decomposition (POD) [...] has something to offer.

1. It is statistically based-extracting data from experiments and
simulations.

2. lIts analytical foundations supply a clear understanding of its
capabilities and limitations.

3. It permits the extraction, from a turbulent field, of spatial and
temporal structures judged essential according to predetermined
criteria and it provides a rigorous mathematical framework for their
description.

As such, it offers not only a tool for the analysis and synthesis of data
from experiment or simulation, but also for the construction, from the
Navier-Stokes equations, of low-dimensional dynamical models for the
interaction of these essential structures. Thus, coming full circle, we have
a statistical technique that contributes to deterministic dynamical analysis.
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Coherent structures as two-point correlated events in space

The coherent structures 4, of the velocity field u = (u*, u¥, u?) are defined as the

eigen-modes of the cross-correlation function :

; /Q Ry (6 X' Y02 (') o’ = o (x)

known as the Fredholm equation.
R, ,8(x,x’) is the two-point spatial cross-correlation tensor defined as :

1 Npop
R (xx) = 7 [ (e t)u 0y e = > o (00 ()

n=1

e The problem is well-posed if the 1, are normed to 1
(constrained optimization problem)

e Eigenvectors are space dependent.

e Size : Npop = Nx X nc
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Classical POD or direct method (Lumley, 1967)

e Compute the eigenfunctions of R a5 (x,X’).

° <~>E:%f7—'df

i.e. the ensemble average is a temporal average.
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Coherent structures as time correlated events ?

.- T

Average over space

e Cannot we replace R, a5 (x,x") by Ruu(t,t')?
o <->p= [o-dx

i.e. the ensemble average is a spatial average.
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Snapshot POD (Sirovich, 1987)

Fredholm equation :

/T Rua(t, t')bn(t') dt’ = Anin(t)

where Ruu(t,t’) is the two-point temporal correlation tensor defined as :

1 1 Npop
Ruu(t, t') = ?/Qu(x, 0wl ) de= 2 > onbn(t)63(t)
n=1

e Eigenvectors are time dependent.
e No cross correlations.
e Linear independence of the snapshots is assumed.

e Size : Npop = N;.

Recall : For the classical POD, Nppop = Nx X nc
= Snapshot POD reduces drastically computational effort when Ny > N;.
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Snapshot POD or classical POD ?

What is the typical situation ?

e For experimental data : long time history with moderate spatial resolution
= Two-point spatial correlation tensor R, a s (x,x") well converged

Exception : data sets obtained from Particle Image Velocimetry

e For numerical simulation data : much higher spatial resolution but a moderate
time history

= Two-point temporal correlation tensor Ruu(t,t’) well converged
e Consequences :

® Classical POD generally used with experimental data,

e Snapshot POD generally used with numerical data.
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Common properties of the two approaches

1. Spatial modes v ,(x) are orthonormal :

(Wnrtbm) = | 65000 6 (6) bt = G

2. Each space-time realization u(x, t) can be expanded into the basis of the
orthogonal eigen-modes 1) ,(x) with uncorrelated coefficients ¢n(t) :

Npop
u(x, t) = Z Tndn(t)P,(x),

n=1

where o, accounts for the fraction of kinetic energy extracted by 1,(x) from
the snapshot set of the velocity field.

3. The time coefficients ¢,(t) are orthogonal :

1 N B
7 [ onte1einte) de = bum.
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POD Important consequences

e The spatial basis functions 1,(x) can be estimated as :

¥,(x)

=T TU(X7 t)on(t) dt

i.e. as a linear combination of the instantaneous velocity fields.

= The 1) ,(x) possess all the properties of u(x, t) that can be written as linear
and homogeneous equations.

e For an incompressible flow
Vu=0 = V-¢,=0 Vn=1,...,Npop

e Same boundary conditions

If they are homogeneous, then they are satisfied by each of the eigenfunctions
individually.
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POD : different approaches

POD approaches depend on :

e the inner product :
o [2
o H!

e the kind of correlations :
® spatial x = (x,y,z)
e temporal t

e control parameters c, for instance Reynolds number . . .

e the ensemble average < - >g
® spatial
e temporal

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
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Other names

e Also known as :

® Karhunen-Loéve decomposition : Karhunen (1946), Logve (1945);
e Principal Component Analysis : Hotelling (1953);
e Singular Value Decomposition : Golub and Van Loan (1983).

e Applications include :
® Random variables (Papoulis, 1965) ;
Image processing (Rosenfeld and Kak, 1982);
Signal analysis (Algazi and Sakrison, 1969) ;
Data compression (Andrews, Davies and Schwartz, 1967) ;
Process identification and control (Gay and Ray, 1986);
Optimal control (Ravindran, 2000 ; Hinze et Volkwein 2004 ; Bergmann,
2004) and of course in fluid mechanics

e Introduced in turbulence by Lumley (1967)

Lumley J.L. (1967) : The structure of inhomogeneous turbulence. Atmospheric
Turbulence and Wave Propagation, ed. A.M. Yaglom & V.l. Tatarski, pp.
166-178.
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Choice of inner product and associated norm

1. L? inner product (the most used)

L? = {square integrable functions}

1
(uv) = (v +wvi +uvi)dx ; ful?=(uu) 5 E = Splul?
Q

= L2 is a natural space in which to do fluid mechanics since it corresponds to
flows having finite kinetic energy.
2. H?! inner product (lollo et al., 2000)
HY(Q)={ue L2(Q) —— € L%(Q)} : Sobolev space
(u,v) = /(u7 v)dx + 5/(Vu - Vv)dx
Q Q

where ¢ is a parameter.
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Choice of inner product and associate norm

3. Inner product for aeroacoustic compressible flow (Rowley et al., 2001)

Flow variables q = (u, v, a) where u and v are the 2D velocities and a is the
local sound speed :

2¢e

(91,92)c = / (U1U2 +vive + 73132) dx
Q ¥y —1)

where ~ is the ratio of specific heats and ¢ is a parameter.

® if ¢ = v then ||q||?> = 2hp i.e. twice the total enthalpy of the flow,

o if £ = 1 then ||q||? gives twice the total energy of the flow.
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Snapshot Data Matrix

u=(u,v,w) x € {x1,x0,..,xn.} ; te€{ti,tr,..., tn}
u(xy, t1) u(xi, t2) u(xy, ty,—1) u(x1, tn,)

V(Xl, tl) V(X17 t2) V(Xl, tN!—l) V(X17 tN[)

W(X].7 tl) W(Xl, t2) W(X1, t/\/tfl) W(Xl, t‘/\/t)

u(xo, t1) u(xz, t2) u(xo, ty,—1) u(xo, tn,)

v(x, t1) v(x, t2) v(xo, ty,—1) v(xo, tn,)

A= W(X27 tl) W(Xz, t2) W(X2, t/\/tfl) W(X2, t‘/\/t)
ulxn,, t1) | g, t2) uCxn,s th,—1) | ulxw,, to,)

vixn,, 1) | v, 22) vixn,, tv,—1) | v, th,)

wxn,, t1) | wlxn,, t2) w(xn,, th,—1) | wlxn,, tn,)

with A € RGN XN
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Singular Value Decomposition (SVD)

A= \U):d)T c R3NX><N[

where
= R3NX><3NX : b= R3NX><N[ : b e RNtXN’

o Left singular vectors : W = (¢1,92,...,%3n, ), VW T = Ky
e Right singular vectors : ® = (¢1, ¢2,...,¢n,), POT = Iy,

e Singular values : o;,i =1,..., p = min(3Nx, N;)
Y = diag(o1,...,0p,0...,0) with
01>02>...20r> 0,41 =0r42 = ... = 0p = 0 where r = rank(A) < p.

e SVD and eigenvalue problems

o AAT = Us2uT = WAWUT with AAT € R3Mxx3Nx
o ATA= 03207 = OADT with ATA € RVexNe

=0 = \/)\i(AAT) = \/Ai(ATA)

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
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SVD for 3N, < N,

For 3Ny < N¢ , A= WEdT ¢ R3NXN yyrites :

o1
A=( 91 ... Ysan, )

03N,

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
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SVD for 3N, > N,

For 3Ny > N; , A= WUXdT ¢ R3NXN: wyrites :

A=(v1 ... YN YN
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SVD Dyadic decomposition and norms

e Dyadic decomposition :

AN x N, = \U3NX><3NXZ3NX><Nt¢;(/—t><Nt
- > 0 = T
= (Manwr Vanex(ve—r) ) roxr 0 )( Prxr Prx(e—r) )
= W3Nxxrzr><r¢7v—t><,

‘ Ay x N, = T1P10] + 02add + ...+ orhrd] .

e 2-induced norm ||All2 = maxy|,=1 [[Av][2 = o1.

e Frobenius norm ||A||f = 2,32’{ EJN:H a2 =./>"7 0?2
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Low rank approximation of A

Let A € R3NxxNe,

Determine Aj € R3M<xNe gich that rank(Ay) = k < rank(A) which minimizes the

2-norm (or Frobenius norm) of the error E = A — Ay.

Eckart-Young theorem :

minrank(Ak)SkHA - Ak||2 = ak+1(A)

PIRAC

i=k+1

min,ank(a)<kllA = Akllr =

. > 0
with Ay = ¥ ( ok 0 ) &7 = a11¢] + oothnds + ... + orrdy

Remark : This theorem establishes a relationship between the rank k of the
approximant, and the singular values of A.
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Image compression by truncated SVD Generalities

e Consider an image with nx x ny, pixels. This image can be stored as a matrix
A € R™*" where aj; contains the grey level of pixel (i, ).

e Memory nx X ny, bytes 4 header
e Eckart-Young th. : best approximation of A with rank r writes
A=o11¢] +02t2d] +... + o],

and is such that .
IA=Al2 = or1.

e Size reduction

® Store wl,..,,w,,m(j)ir,...,cr,qﬁ;r in place of A

e Memory r X (nx + ny) bytes.

= Interesting method if r is low.
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Image compression by truncated SVD clown & trees

Clown : matrix 200 x 330 Trees : matrix 128 x 128
rank : 200, size : 258 kb rank : 128, size : 64 kb

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
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Image compression by truncated SVD singular values

10 I I I I I L I I I
0 20 40 60 80 100 120 140 160 180 200

+ : "clown” image; o : "trees” image
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Relative Information Content (RIC)

For an image of rank r :

Master 2 Fluid Mechanics — Institut Polytechnique de Paris
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Image compression by truncated SVD " clown”

App. of rank 12; size : 24,8 kb
Reduction : 90.4%

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

App. of rank 6; size : 12,4 kb
Reduction : 95.2%

App. of rank 20; size : 41,4 kb;

Reduction : 84%
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Image compression by truncated SVD "trees”

s T

App. of rank 12; size : 12 kb
Reduction : 81.2%
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POD applied to the cylinder wake flow

(a) Baseline (original) flow J
((b) POD modes (u velocity)
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POD applied to the 3D cylinder wake flow

.

(@) o} (b) o3

(e) ¢y

Akhtar Imran’s courtesy

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

48



POD modes of the cavity flow
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POD modes of the cavity flow
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POD : pro & cons

e Pros

® POD provides a mathematical definition of coherent structures.

e POD is an energy-based decomposition of the flow field : it is optimal and
robust with respect to energy.

e The POD modes form a complete basis for data set.

e Cons.

Possible spectral mixing.
e Localized travelling patterns require several POD modes for a proper
description.

Master 2 Fluid Mechanics — Institut Polytechnique de Paris 51



Dynamic Mode Decomposition (DMD)
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What is DMD aimed at?

P.J. Schmid, JFM (2010) :

The description of coherent features of fluid flow is essential to our
understanding of fluid-dynamical and transport processes. A method is
introduced that is able to extract dynamic information from flow fields
that are either generated by a (direct) numerical simulation or
visualized/measured in a physical experiment. The extracted dynamic
modes, which can be interpreted as a generalization of global stability
modes, can be used to describe the underlying physical mechanisms
captured in the data sequence or to project large-scale problems onto a
dynamical system of significantly fewer degrees of freedom.
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What is DMD aimed at?

C. Rowley et al, JFM (2009) :

The global behaviour of complex nonlinear flows is described by
decomposing the flow into modes determined from spectral analysis of the
Koopman operator, an infinite-dimensional linear operator associated with
the full nonlinear system. The Koopman modes are associated with a
particular observable, and may be determined directly from data (either
numerical or experimental) using a variant of a standard Arnoldi method.
They have an associated temporal frequency and growth rate and may be
viewed as a nonlinear generalization of global eigenmodes of a linearized
system. They provide an alternative to proper orthogonal decomposition,
and in the case of periodic data the Koopman modes reduce to a discrete
temporal Fourier transform.
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The Koopman operator

Consider a dynamical system evolving on a manifold M such that, for the state vector
Xk € M at time t;
X1 = (X)),

where f : M — M.

The Koopman operator K is a linear operator that maps any scalar-valued function
g : M — R™ into a new function Kg as

Keg(X) = g(f(X)).
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A linear operator

K is a linear operator :
K(ag + 882)(X) = aKgi1(X) + BKg2(X)

for any functions gi, g» and scalars «, 3.

Important remark :

Although the dynamical system is nonlinear and evolves on a finite-dimensional
manifold M, the Koopman operator K is linear infinite dimensional.

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

56



A data-driven analysis

Let ¢; : M — C denote eigenfunctions and )\; € C eigenvalues of the Koopman
operator :

Kpi(X) = Xjgi(X),  j=1,2,...

Consider that X € M contains the full information about the flow field at a particular
time (state vector).

g(X) : M — R™ is a vector of any quantities of interest, such as a velocity
measurements at various points in the flow.

If each of the m components of g lies within the span of the eigenfunctions {¢;}, then
we may expand the vector-valued g in terms of these eigenfunctions as

g(X) =D ¢i(X)g;.

jz1

The eigenfunctions (; are referred to as the Koopman eigenfunctions, the
corresponding vectors &; as the Koopman modes of the map f corresponding to the
observable g.
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Discrete time evolution

Iterates of Xp are given by

g(Xk) = > Krpi(Xo)g; = D A i(Xo)g;.
j=1

jz1

The Koopman eigenvalues \; € C characterize the temporal behaviour of the
corresponding Koopman mode §; :

e the phase of \; determines the angular frequency : wj = Slog(Aj)/At
o the magnitude of )\; determines the growth rate : o; = Rlog();)/At
Remark :

If the components of g do not lie within the span of the eigenfunctions of K, one may
split K into regular and singular components, and project components of g onto the
span of the eigenfunctions
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Koopman modes for linear systems

Suppose M is a n-dimensional linear space, and suppose the map f is linear :

f(X) = AX.
Let £; and \; be eigenvectors and eigenvalues of A : Ag; = \§;,
Let w; be the corresponding eigenfunctions of the adjoint A* : Arw; = /_\jwj,

normalized so that < &;, Wk >= djk, jk=1,...,n-

The scalar-valued functions ;(X) =< X,w; >, j =1,..., n, are eigenfunctions of K
with eigenvalues ;. Indeed :

Kpj(X) = @j(AX) =< AX,w; >=< X, A%w; >= ) < X, w; >= X;jp;(X).
Now, for any X € M, as long as A has a full set of eigenvectors, we may write

X=>"<Xw > => Ngi(X)E;.
j=1

j=t

= For linear systems, the Koopman modes coincide with the eigenvectors of A.

Remark : Unlike A, the operator K has a countably infinite number of eigenvalues,
since )\J’f is also an eigenvalue, with eigenfunction gpj(X)k, for any integer k.
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Koopman modes for periodic solutions

Suppose that the set of distinct vectors S = {Xo,...,X,_1} forms a periodic solution
of the system :
Xktn = X, for all k.

Define the new set of vectors {)A(o, e )A(n,l} by applying the discrete Fourier
transform to X :

n—1
Xi =Y _exp(2nijk/n)X;, k=0,...,n—1.
j=0
Define the set of functions ¢; : S — C by pj(Xk) = exp (2wijk/n) ,j k=0,....n—1 -

The ¢; are eigenfunctions of the Koopman operator K with eigenvalues exp (27ij/n) :
Kei(Xk) = ¢j(f(Xk)) = ¢j(Xkt1) = exp (27ij(k + 1)/n) = exp (27ij/n) ¢;(X).

Therefore,

n—1
X = ¢j(Xi)X;.
j=0

— The Koopman modes are the vectors )A(j

— The phase of the corresponding eigenvalues are the frequencies j/n.
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Koopman operator on attractors

When the dynamics is non-periodic but evolves on an attractor, the following
properties hold :
e The Koopman eigenvalues lie on the unit circle.

e The Koopman modes may be calculated by harmonic averages, which for
finite-time datasets reduce to discrete Fourier transforms.
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Dynamic modes vs Koopman modes

DMD provides an approximation of the action of the Koopman operator on a
finite-dimensional (Krylov) subspace spanned by (time-resolved) realizations of the
velocity field.
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Application to snapshots of the velocity field

e Input :
Consider an ensemble of snapshots v;, i = 1,--- , N such that

N N
V' ={vi,v2,v3, -+ vy} € RT

e Hypothesis #1 :
Assume a linear mapping A between v; and vj

Viy1 = AV,‘ with A€ Rmxm
ie. VlN is Krylov matrix of dimension m x N
v = {VLAVI,A2V1:"' ,AN_1V1}

e Objective : Determine a good approximation of the eigen-elements of A —
without knowing A
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The Companion matrix

e Hypothesis #2 :
If N is sufficiently large, we can express vy as a linear combination of the
previous v;, (i=1,--- ;N —1) je.

vy =CvV1 + Vo + -+ ey_1vy—1 +

= Vlelc +r
where r e R™ and ¢ = (c1,c1,--- ,ey—1)| € RVN-1
e Ruhe (1984) proved that
AVNTL = VNS ey 4T (1)

where €; is the ith Euclidean unitary vector of length (N —1) and S a
Companion matrix

0 0 ... O c
1 0 0 c
0 1 0

c3 e RIN-1)x(N-1)

Master 2 Fluid Mechanics — Institut Polytechnique de Paris 64



Ritz eigenvalues

e If we already know eigen-elements of S then we can determine approximated
eigen-elements of A. Indeed, we can demonstrate that :

if  Sy; = wuiy; then Az; ~ piz; with z; = Vlely;

Proof :
Az — pizi = AV "ty — VY Ty
= AV "ty — v isy,
= (AT = v IS) yi = ren 1 Ty — 0 if [l — 0
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The Vandermonde matrix

When the eigenvalues are distinct, the diagonalisation of C = Y ~1AY involves a

Vandermonde matrix :

N—2
1 m 7 B )
2 N—-2
1 p2 By ey
Y = . . . ) where A = diag (g1, - ., tn_1)-
: : K s
1 pn—a HFy_1 -+ Hy—_1
N—1
If now v, = Z ,U,JI-(CJ- fork=1,...,N—1, then [v,...,vy_1] = VIN_1 ==Y, where
j=1
the elements ¢; of = are given by = = VlelYfl. Introducing the next snapshot

N—1
N—1
ww= Y pul ¢ +r,  r Lspanfvi,...,vy 1}
j=1

one has
V= VvIIC e’ = VLY TIAY e = ZAY 4rel.
— If r =0 : the approximate modes are indistinguishable from Koopman modes.
— Ifr#0: (4, CJ-) are approximations of the eigenvalues and Koopman modes
(scaled by ¢;(Xo)).
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DMD algorithm

[Z, i, Res] = DMD (V{V)
Input : N sequence of snapshots VIN = {vi,vo,v3, - ,vy}
Output : (N — 1) empirical Ritz vectors Z and Ritz values i ; Res : residual.

e m = size (VIN, 1)

o N =size (V1N,2)

o vy = VNG N)

o VTl = vl 1N 1)

o VN =VN(1:N-1)

e c= Vlel/ vy

e S = companion (c)

o [Y,u] = eig(S)

o Z=VvNly

e Res = norm (V2N - Vll\FlS7 1)

with Z = (z1,--- ,zy) and Y = (y1, - ,yn)-
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Preprocessing of the data

e Apply the SVD
VNl —wsof  with WU =, 00M = Iy,
Remarks :
® VY contains the spatial POD eigenfunctions and,

e & contains the temporal POD eigenfunctions
POD is here a by-product of DMD

e Starting from AVle1 = V1N715 +reny_1 " and first considering that r = 0, we
obtain after some manipulations :

vhaw = yHvlos-1 =5

Since r # 0, we have :

vhaw =wHylos—1 = 3§ where  § s a full matrix.
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Ritz eigenvalues

o If we already know eigen-elements of S then we can determine approximated
eigen-elements of A. Indeed :

it Syi = piyi then A¢; = i€, with & = Vy;

Proof :
AL = pi€; = AVy; = p,;Wy;
= ‘YHAWYi = iV = iy
= Syi = wiyi
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DMD applied to the cylinder wake flow

mode 2
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Dynamic modes of an unstable jet flow

=0 ;=20

Figure 6

(Top panel) Time evolution of a low-density helium jet. (Middle panel) Koopman spectrum obtained using an
Arnoldi algorithm. Larger symbols correspond to larger-scale structures, and smaller ones to smallcr-scale

structures. (Boztom panel) Four Koopman modes, whose eigenvalues are numbered in the middle panel.
Figure taken from Schmid et al. (2011).
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DMD applied to a jet in cross-flow

a b
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Figure 3
(a) Part of the spectrum of the Koopman operator for a jet in crossflow, with (a) Koopman cigenvalues on the unic circle, with the
darker red indicating a larger Koopman mode amplirude and blue indicati 1, and (b) their magnitudes. () The two

largest magnitude Koopman modes corresponding to (¢) high and (¢) low frequency. Positive (red) and negative (bue) contour levels of
the streamwise velocity components of two Koopman modes are shown. The direction of the crossflow is z. Figure taken from Rowley
ctal. 2009).

I. Mezi¢, Annu. Rev. Fluid Mech. 45 (2013) 357-78
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POD vs DMD

Frequency Based

| Energy Based |
Proper Orthogonal Decomposition (POD) Dynamic Mode Decomposition (DMD)
Advantage: ) . Advantage:
A ) Hybrid Methods for .

’ Energy Optimality Stationary flows: Spectral separation
and Robustness Spectral POD (Sieber et al, 2016) )
Recursive DMD (Noack et al, 2017) Problems:

Cronos-Koopman (Camilleri et al 2013) . Poor convergence,

No Time Localization

. Problems:
Possible Spectral Mixing,
Poor Conditioning

non uniqueness

from M.A. Mendez, Fundamentals and Recent Advances in Particle Image Velocimetry
and Lagrangian Particle Tracking, VKI lecture series, Nov. 2021.
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