

Advanced Experimental Methods : Fluid

Velocimetry

Luc Pastur

ENSTA Paris

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Why measuring the velocity?

Reveal "structures" in the flow.

- $R = 3^{2}$ $R = 3^{2}$ $R = 3^{2}$ $R = 5^{2}$ $R = 10^{2}$ $R = 10^{2}$
- Solution of the Navier-Stokes equations.

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへの

How to measure the velocity?

• Concept of *fluid particle*.

• Seeding :

Ink

Bubles or smokes

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Different techniques of velocimetry

	Ditat tuba	Hot wire	Laser Doppler	Particle Image	
	Filot tube	anemometry	Velocimetry	Velocimetry	
		(HWA)	(LDV)	(PIV)	
Scheme	U $r_0 P_1$			Laser Camera	
Principle	Bernoulli's equation ba- sed on the static and dy- namic pressures $U = \sqrt{2(p_T - p_s)/\rho}$	based on the power dissipated RI^2 by a heated wire	Interferometric measure of the Doppler shift on a scattering particle	Correlation between two images of seeding par- ticles	
Advantages	Simple to implement. Cheap $(\mathcal{O}(1 \text{ke}))$. Ideal for mean velocity profiles.	Excellent spatial & temporal resolutions. Rather simple to implement. Reasonably expensive $(\mathcal{O}(3-5k\in))$	Non intrusive. Linear calibration. Very good spatial & temporal resolutions. Possibility for more than one velocity component.	Non intrusive. Instantaneous 2D field.	
Drawbacks	Very intrusive. Weak spatial & tempo- ral resolution	Intrusive. Fragile. Non-linear calibration. Contaminations (tempe- rature fluctuations)	Optical access and transparent fluid. Seeding particles. Fine adjustments. Expensive $\mathcal{O}(10\text{-}50\mathrm{k}\oplus)$.	Optical access and transparent fluid. Seeding particles. Weak temporal resolu- tion (standard PIV). Very expensive $O(50-100 \text{ ke})$.	

Outline

Introduction

Hot wire anemometry

Principle CCA and CTA Limitations

Laser Doppler Anemometry : the fringe model

Principle About light Measurement volume

Laser Doppler Anemometry : the Doppler effect

Seeding particles Refinements LDV signal analysis

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Hot wire anemometry

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 の�?

Hot wire anemometry : how does it look like?

platinium or tungstene thin wire (few microns thick, few mm long) welded to the prongs of the probe support

Range of devices

"lab" model (instantaneous velocity)

DANTEC 1000 -10000 €

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Hot wire anemometry : how does it work?

- Heat is generated when a current passes through the wire, balanced by heat loss (primarily convective) to the surroundings in equilibrium.
- If velocity changes, convective heat transfer coefficient will change, wire temperature will change and eventually reach a new equilibrium.

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

Governing Equations

If E is the thermal energy stored in the wire

$$\frac{dE}{dt} = \dot{W} - \dot{Q}$$

- $\dot{W} = R_w I^2$ is the power generated by Joule heating,
- $-\dot{Q}$ the heat transferred to surroundings via
 - \rightarrow Convection to the fluid :

$$\dot{Q}_{cnv} = h\mathcal{A}(T_w - T_0) = \pi \ell k_f N u (T_w - T_0)$$

with $Nu = h\phi/k_f$ the Nusselt number, ϕ the wire diameter, $A = 2\pi \ell(\phi/2)$ the wire area,

h heat transfer coefficient,

 k_f heat conductivity of the fluid

- \rightarrow Conduction to the fluid and to supports;
- \rightarrow Radiation to surroundings :

$$\dot{Q}_{rad} = \sigma \mathcal{A}(T_w^4 - T_0^4),$$

with the Stefan constant $\sigma = 5.7 \times 10^{-8} \, \mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mathrm{K}^{-4}$

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

The King's law

The Nusselt number is function of many parameters

$$Nu = f(Re_w; Pr, Ma, \ell/\phi, R_w/R_0)$$

where $Re_w = U\phi/\nu_f$ is the Reynolds number associated with the wire diameter and U the velocity a few ϕ upstream of the wire, ν_f the fluid viscosity at $T_f = (T_w + T_0)/2$.

In a regime of forced convection where $Pr = \nu/\kappa \approx 1$, $\ell/d \gg 1$, the **King's law** (1914) for an apparent potential stationary 2D flow reads

 $Nu = 1 + \sqrt{2\pi Re_w}.$

The law in $Re_w^{1/2}$ is typical of heat transfers in laminar flows!

Stationarity is satisfied if the time scale of the turbulent fluctuations $\tau \ll \phi/U$, where the time of advection along the wire $\phi/U \approx 0.5 \,\mu s$ ($U/\phi \approx 2 \,\text{MHz}$).

In practice,

$$Nu = a_0(Pr, Ma, \ell/d, \ldots) + b_0(Pr, Ma, \ell/d, \ldots)\sqrt{Re_w}$$

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ シヘぐ

Probe resistance

The wire resistance R_w changes with T_w .

$$R_w = R_0 \left(1 + \beta (T_w - T_0) \right)$$

where

$$\beta = \frac{1}{R_w} \frac{\partial R_w}{\partial T}$$

is reasonably constant over a large range of T.

For Pt or tungstene,
$$\beta \approx 5 \times 10^{-3} \,\mathrm{K}^{-1}$$
.

The King's law becomes

$$\frac{R_w I^2}{R_w - R_0} = a + b\sqrt{U}.$$

i.e., with $e = R_w I$

$$\frac{e^2}{R_w(R_w-R_0)}=a+b\sqrt{U}.$$

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two strategies

— Keep the current I constant and measure U through the fluctuations of R_w only

Constant Current Anemometer (CCA) : today obsolete.

— Keep the resistance R_w constant, and thus the wire temperature T_w constant, and measure U through the fluctuations of I

Constant Temperature Anemometer (CTA).

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

(ロ) (同) (目) (日) (日) (の)

Constant Current Anemometer (CCA)

The bridge is initially balanced ($\delta e = 0$ when U = 0), unbalanced when R_w varies because of the flow, with I_O constant

$$\delta e = (R_w - R_{eq})I = I\delta R_w, \qquad E_s = G\delta e, \qquad G \approx 10^3$$

Drawback : frequency range limited to \approx 700 Hz as the time scale to thermal equilibrium due to T_w variations should be much shorter than the time scales of the flow fluctuations.

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

Constant Temperature Anemometer (CTA)

The bridge is initially unbalanced $(R_{eq} \neq R_w)$ with an **overheat coefficient**

 $\alpha = R_w/R_{eq} > 1$

 R_w is kept constant at $T_w = T_0 + (\alpha - 1)/\beta$ through a negative feedback loop ($E_s = -\delta e$), where

$$\delta e = \sqrt{R_w(R_w - R_0)(a + b\sqrt{U})}$$

$$E_s=\sqrt{A+B\sqrt{U}}.$$

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

Calibration

The King's law is non-linear, which requires a careful calibration of the probe

A modified King's law is usually better suited

$$E_s^2(U) = A + BU^n$$

with n usually between 0.4 and 0.6. The coefficients are determined as

$$A=E_s^2(0)$$

$$n \log U + \log B = \log(E_s^2(U) - A)$$

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

Empirical relation

Collis & Williams (1959)'s empirical relation

 $\begin{array}{ll} n = 0.45 & \mbox{for} & 0.02 < Re_w < 44, \\ n = 0.51 & \mbox{for} & 44 < Re_w < 140. \end{array}$

Why so?

The wire can be seen as a cylinder in a cross-flow

- $Re_w < 44$, the wake is steady and symmetric.
- $Re_w > 44$, the wake becomes non-symmetric and unsteady with the cyclic release of vortices : heat transfers are enhanced.
- $Re_w > 140$, the wake becomes disordered, heat transfers become even better.

Frequency response

The bandwidth is defined as the inverse of the time at which the signal amplitude is damped by $-3 \, dB$,

$$f_c = 1/1.3\tau$$

 $\begin{array}{ll} \mathsf{CCA} &\approx \mathsf{700}\,\mathsf{Hz} \\ \mathsf{CTA} &\approx 1\,\mathsf{MHz} \\ & \mathsf{reduced to 10-100\,\mathsf{kHz} \,\mathsf{by}} \\ & \mathsf{the spatial resolution}\,\,(\ell) \end{array}$

イロト 不得 とくほと くほとう

too high gain

э

Finite length effect

Conduction by support \Rightarrow non-uniform temperature distribution along the wire

A usual compromise is $\ell \approx 1 \text{ mm}, \phi \approx 5 \mu \text{m}$

• • • • • • • • • • •

프 > 프

Directional sensitivity

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

Different probes

- X Anemometers : two (or more) crossed anemometers to measure two (or more) velocity components (a,c,e)
- Anemometers with cold probe to compensate temperature fluctuations in the flow (d)
- Hot film anemometers with nickel coating on a quartz support (f).

Hot wire anemometry : main features

- Time-resolved "point" measurement (0D).
- Intrusive and fragile.
- Mainstream flow.
- Non-linear law in the convective regime (modified King's law) :

$$E_s^2(U) = A + BU^n$$

• Directional ambiguity.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Laser Doppler Velocimetry

Inventeurs : Yeh & Cummins (1964)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の��

Laser Doppler Velocimetry / hot wire comparison

Hot wire	LDV
0D	0D
Time-resolved	Time-resolved
Intrusive	Non-intrusive
Fragile	Robust
Non-linear law	Linear law
Directional ambiguity	Directional ambiguity manageable
Reasonably expensive	Expensive

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Laser Doppler Anemometry : the fringe model

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Principle

Transmitting optics

Measurement line

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Detection system

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Why a laser?

- Monochromatic
- Coherent
- Linearly polarised
- Collimated
- Gaussian intensity distribution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

Some usual laser

• Argon laser

Continuous power; one of the four green-blue colors can be used : 514.5 nm, 496.5 nm, 488.0 nm 476.5 nm

• Helium laser

Continuous He laser emitting in the red at 632.8 nm.

• YAG Laser

Pulse emission in the infrared, providing, after doubling the frequency, a wavelength at 532 nm.

LASER	λ	color	power	diameter
	(nm)		(mW)	(mm)
He-Ne (gas)	632.8	red	1-15	0.65
	476.5	violet	1-600	1.5
Ar ²⁺ (gas)	488	blue	1-1500	1.5
	514.5	green	1-2000	1.5
doubled YAG (solid)	532	green	20-2000	1

The electro-magnetic vibration

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{p} \boldsymbol{E}_0 \cos\left(\omega t - \boldsymbol{k} \cdot \boldsymbol{r} + \varphi\right) \equiv \boldsymbol{p} \, \Re\left(\boldsymbol{E}_0 e^{i(\omega t - \boldsymbol{k} \cdot \boldsymbol{r})}\right)$$

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

One spectrum, many colors

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

Why does light interfere?

Both vibrations sum up, intensity is measured

$$I(\mathbf{r},t) = |\mathbf{E}_{1}(\mathbf{r},t) + \mathbf{E}_{2}(\mathbf{r},t)|^{2} = |E_{1}\mathbf{p}_{1}\cos(\omega_{1}t - \mathbf{k}_{1}\cdot\mathbf{r}) + E_{2}\mathbf{p}_{2}\cos(\omega_{2}t - \mathbf{k}_{2}\cdot\mathbf{r})|^{2}$$

If $\omega_1 = \omega_2$ then $k_1 = k_2$ but $k_1 \neq k_2$

$$I(\mathbf{r}, t) = E_1^2 \cos^2(\omega t - \mathbf{k}_1 \cdot \mathbf{r}) + E_2^2 \cos^2(\omega t - \mathbf{k}_2 \cdot \mathbf{r}) + E_1 E_2 \mathbf{p}_1 \cdot \mathbf{p}_2 (\cos((\mathbf{k}_2 - \mathbf{k}_1) \cdot \mathbf{r}) + \cos(2\omega t - (\mathbf{k}_2 + \mathbf{k}_1) \cdot \mathbf{r}))$$

At the scale of the sensor time response au

$$\langle I(\mathbf{r},t) \rangle_{\tau} = I_0 + \gamma \underbrace{\cos\left((\mathbf{k}_2 - \mathbf{k}_1) \cdot \mathbf{r}\right)}_{\tau}$$

interference network

Spatially structured, independent of time. γ max when $p_1 = \pm p_2$

Interfringe of the interference network $\langle I(\mathbf{r}, t) \rangle_{\tau} = I_0 + \gamma \cos((\mathbf{k}_2 - \mathbf{k}_1) \cdot \mathbf{r})$

• • • • • • • •

Exercise : determine the interfringe d.

 $\Xi \rightarrow$

э

э.

Interfringe of the interference network $\langle I(\mathbf{r}, t) \rangle_{\tau} = I_0 + \gamma \cos((\mathbf{k}_2 - \mathbf{k}_1) \cdot \mathbf{r})$

• • • • • • • •

Exercise : determine the interfringe d.

$$(\mathbf{k}_2 - \mathbf{k}_1) \cdot \mathbf{r} = \frac{2\pi}{\lambda} (\mathbf{e}_2 - \mathbf{e}_1) \cdot \mathbf{r} = \frac{2\pi}{\lambda} 2x \sin\left(\frac{\alpha}{2}\right) \qquad \Rightarrow \qquad 2\pi = \frac{2\pi}{\lambda} 2d \sin\left(\frac{\alpha}{2}\right)$$
$$d = \frac{\lambda}{2\sin\frac{\alpha}{2}}$$

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

 $\Xi \rightarrow$

э

э.

What do we measure?

Seeding particles pass through the fringes with velocity \boldsymbol{v} .

イロト イヨト イヨト イヨト

The light scattered by the seeding particles is modulated in time with period

$$T_D = rac{d}{m{v} \cdot m{e}_x}$$

or frequency

$$f_D = rac{2V_x}{\lambda}\sinrac{lpha}{2}.$$

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

э

The measurement point in fact is a volume

Limit of diffraction of a gaussian beam

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Characteristics of the measurement volume

Volume dimensions

$$\delta_z = \frac{4f\lambda}{\pi D_L \sin \frac{\alpha}{2}}, \qquad \delta_y = \frac{4f\lambda}{\pi D_L}, \qquad \delta_x = \frac{4f\lambda}{\pi D_L \cos \frac{\alpha}{2}}$$

Interfringe

$$d = rac{\lambda}{2\sinrac{lpha}{2}}$$

Number of fringes

$$N = \frac{8f \tan \frac{\alpha}{2}}{\pi D_L}$$

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Residing time in the measurement volume

$$\Delta t = rac{\delta_x}{V_x} \qquad \Rightarrow \qquad f_s = 1/\Delta t$$

 V_x particle velocity and δ_x measurement volume dimension along x. For V_x fixed, the sampling frequency f_s is increased when δ_x is decreased

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

(ロ) (同) (目) (日) (日) (の)

Laser Doppler Anemometry : the Doppler effect

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

With a single beam...

... it would also works!

What is the Doppler effect?

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 の�?

Doppler effect

• Still source, moving particle (observer)

$$\Rightarrow \quad T'\left(1-\frac{\mathbf{v}\cdot\mathbf{e}}{c}\right)=T \quad \text{and} \quad f'=\left(1-\frac{\mathbf{v}\cdot\mathbf{e}}{c}\right)f$$

• Moving source (particle), still receptor

The Doppler shift

Emission/reception relation

$$f'' = \left(1 - \frac{\mathbf{v} \cdot \mathbf{e}}{c}\right) \left(1 + \frac{\mathbf{v} \cdot \mathbf{e}'}{c}\right) f$$

Doppler shift

$$f_D = f'' - f \simeq f \frac{\mathbf{v}}{c} \cdot (\mathbf{e}' - \mathbf{e}) \quad \text{if} \quad \frac{\mathbf{v}}{c} \ll 1$$

Estimate the value of f_D

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

The Doppler shift

Emission/reception relation

$$f'' = \left(1 - \frac{\mathbf{v} \cdot \mathbf{e}}{c}\right) \left(1 + \frac{\mathbf{v} \cdot \mathbf{e}'}{c}\right) f$$

Doppler shift

$$f_D = f'' - f \simeq f \frac{\mathbf{v}}{c} \cdot (\mathbf{e}' - \mathbf{e}) \quad \text{if} \quad \frac{\mathbf{v}}{c} \ll 1$$

Estimate the value of f_D

$$f\sim 10^{14}~\text{Hz}, \qquad f_D\sim 10^6-10^7~\text{Hz}$$

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

The Doppler shift

Emission/reception relation

$$f'' = \left(1 - \frac{\mathbf{v} \cdot \mathbf{e}}{c}\right) \left(1 + \frac{\mathbf{v} \cdot \mathbf{e}'}{c}\right) f$$

Doppler shift

$$f_D = f'' - f \simeq f \frac{\mathbf{v}}{c} \cdot (\mathbf{e}' - \mathbf{e}) \quad \text{if} \quad \frac{\mathbf{v}}{c} \ll 1$$

Estimate the value of f_D

$$f \sim 10^{14}~\text{Hz}, \qquad f_D \sim 10^6 - 10^7~\text{Hz}$$

- $\Rightarrow\,$ a direct measurement of $f^{\prime\prime}$ would require a device of resolution 10^{-8} for a precision of only 10%.
- \Rightarrow a direct measurement of f_D is preferred with a interference system.

Doppler shift on crossed beams

$$\begin{aligned} f_1 &\simeq f\left(1-\frac{\pmb{v}}{c}\cdot(\pmb{e}_1-\pmb{e}')\right) \\ f_2 &\simeq f\left(1-\frac{\pmb{v}}{c}\cdot(\pmb{e}_2-\pmb{e}')\right) \end{aligned}$$

・ロト ・日ト ・日

注入 注

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

Recombination of crossed beams

Intensity at the sensor : $I(t) = |\boldsymbol{E}_1(t) + \boldsymbol{E}_2(t)|^2$

Detected intensity :
$$i(\tau) = \langle I(t) \rangle_{\tau} = \frac{E_1^2}{2} + \frac{E_2^2}{2} + E_1 E_2 \cos((\omega_1 - \omega_2)\tau)$$

Doppler shift :

$$\omega_1 - \omega_2 = 2\pi (f_1 - f_2) = 2\pi f\left(\frac{\mathbf{v}}{c} \cdot (\mathbf{e}_2 - \mathbf{e}_1)\right) = 2\pi \frac{f}{c}\left(2V_x \sin\frac{\alpha}{2}\right) = 2\pi f_D$$
$$\Rightarrow \quad f_D = f_1 - f_2 = f\left(\frac{\mathbf{v}}{c} \cdot (\mathbf{e}_2 - \mathbf{e}_1)\right)$$

- one component detected : $\frac{\mathbf{v}}{c} \cdot (\mathbf{e}_2 \mathbf{e}_1) = \frac{V_x}{c} 2 \sin \frac{\alpha}{2}$
- no Doppler shift if **v** has no component along x
- measurement independent of the direction of detection $oldsymbol{e}'$

Seeding particles

For liquids

State	Material	Mean diameter (μ m)
Solid	polystyrene	10-100
	Aluminium	2-7
	hollow glass sphere	10-100
	granules for synthetic coating	10-500
Liquid	oils	50-500
Gas	bubles of O_2 , H_2 , etc	50-1000

For gas

State	Material	Mean diameter (μ m)
Solid	polystyrène	0.5-10
	Aluminium	2-7
	Magnesium	2-5
	synthetic granules	1-10
	glass microbeads	30-100
Liquid	oils	0.5-10
	dioctylphathalate	< 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Particle dynamics in the flow

Diluted spherical particles (negligible effect on the flow)

$$\frac{\frac{\pi}{6}\phi^{3}\rho_{p}\frac{d_{p}}{dt}\mathbf{v}_{p}}{\underset{\text{inertial force}}{\underbrace{=}}=\underbrace{-3\pi\mu\phi(\mathbf{v}_{p}-\mathbf{v}_{f})}_{\text{Stokes force}}-\frac{\pi\phi^{3}}{6}\underbrace{\nabla P}_{\rho\frac{d\mathbf{v}_{f}}{dt}}$$
$$-\underbrace{\frac{1}{2}\frac{\pi}{6}\phi^{3}\rho_{f}\left(\frac{d\mathbf{v}_{f}}{dt}-\frac{d_{p}\mathbf{v}_{p}}{dt}\right)}_{\text{fluid resistance to sphere acceleration}}$$
$$+\underbrace{\frac{3}{2}\phi^{2}\sqrt{\pi\rho_{f}\mu}\int_{0}^{t}\frac{1}{\sqrt{t-t'}}\left(\frac{d\mathbf{v}_{f}}{dt}-\frac{d_{p}\mathbf{v}_{p}}{dt}\right)}_{\mathbf{v}_{f}}dt'+\mathbf{f}_{ext}}$$

drag force due to an unsteady flow

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Dynamics of relaxation

$$\frac{d_p}{dt} \boldsymbol{v}_p = 18 \frac{\mu}{\phi^2 \rho_p} (\boldsymbol{v}_f - \boldsymbol{v}_p)$$

$$\mathbf{v}_{p} = \mathbf{v}_{f} \left(1 - e^{-t/\tau_{p}} \right) \qquad \text{with} \qquad \tau_{p} = rac{
ho_{p}\phi^{2}}{18\mu}$$

Particle	Fluid	Diameter (µm)	
			10 kHz
Silicone oil	atmospheric air	2.8	0.8
TiO ₂	atmospheric air	1.3	0.4
MgO	methane-air flame	2.6	0.8
	(1800 K)		
TiO ₂	oxygen plasma	3.2	0.8
	(2800 K)		

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ ● ●

Regimes of diffusion

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

₹ 990

Light diffusion by the particles

 $\rm FIGURE$ – Polar representation of diffracted light intensity (on a logarithmic scale) $\it vs$ angle of diffraction.

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

<ロト <問 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Forward and backward diffusion

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Backscatter configuration

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Reference beam mounting

- Historically first operating mode
- Doppler frequency extracted by optical heterodyne detection
- Photodetector must be aligned with the reference beam
- Only detect a small amount of diffused light (the fringe setup allows to collect diffused light with a wide solid angle)
- Requires high concentrations of diffused light
- Backscattering not allowed

イロト 不得下 不足下 不足下

Bragg cell

Problem

- particles moving at the same velocity in two opposite directions will produce the same frequency shift !
- Motionless particules are not detected.

(日) (同) (三) (三) (三) (0)

Bragg cell

Problem

- particles moving at the same velocity in two opposite directions will produce the same frequency shift !
- Motionless particules are not detected.

Solution

- Scrolling fringes thanks to the Bragg cell (acousto-optical modulator)
- Shift frequencies of the order of 40 MHz

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- When $V_x = 0$, $f_D = \Delta f \neq 0$
- Negative velocities $\rightarrow f_D < \Delta f$
- Positive velocities $\rightarrow f_D > \Delta f$

The interference fringes scroll with the velocity

$$U_f = d\Delta f$$

-

・ロト ・ 同ト ・ ヨト

Two-component LDV

(laser Ar++, $\lambda = 488$ nm et 514,5 nm)

Three-component LDV

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Compact probes

Fiber Flow probes (60 & 85 mm)

Small integrated 3D FiberFlow probe

Signal example

- ϕ sufficiently large to increase the scattered light intensity
- targeted if possible in the direction of a diffraction lobe
- $\phi \gg d \Rightarrow$ no optical contrast

・ロト ・同ト ・ヨト ・ヨト 三日

Sources of noise

- Detection noise.
- Electronic and thermal noises of the pre-amplifying line.
- High order laser modes (optical noise).
- Diffused light out of the control volume, dirts, damaged window, ambient light, multiple particles, etc.
- Stray reflections (windows, lens, mirors, etc).

 $\rightarrow\,$ Laser power selection, seeding, optical parameters, etc, in order to optimise the signal over noise ratio.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Fourier analysis

$$\begin{split} I(t) &= a \left(1 + \sin(2\pi f_D t) \right) \cdot G(t) \\ &\downarrow \\ |\hat{I}(f)| &= a \hat{G}(f) + a \, \delta(f - f_D) \star \hat{G}(f) \end{split}$$

Master 2 Fluid Mechanics — Institut Polytechnique de Paris

Electronic of detection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

LDV main features

- Time-resolved point measurement
- The point measurement is a small ellipsoid (spatial coarsening)
- Non-uniform sampling frequency
- The flow must be seeded
- Linear law
- Expensive

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで