
Short introduction to Matlab

Attilio Frangi

13 janvier 2006

1 Matlab commands

This document serves as an introductory and simple guide to common Matlab commands
employed in the FEM codes analysed in the sequel. For further reference, please consult the
complete Matlab documentation.

1.1 The command window

The command line in the command window allows users to send commands to Matlab. The
command dir, for instance, tells Matlab to list the contents of the current directory :

>> dir

. elast2d_tri3 example.m matlab.pdf

.. elast3d_tet4 matlab.aux matlab.tex

coupled2d_tri3 elastaxi_tri3 matlab.log matlab_commands.tex

We can change the current directory by means of the usual DOS commands. Suppose we are
currently in a directory matlab. First we move to parent directory, then list the contents and
finally return back into matlab.

cd ..

>> dir

. SISM.pdf pc1 pc3 pc5 pc7 pc9

.. matlab pc2 pc4 pc6 pc8 utility

>> cd matlab

1.2 Basic operations

We define variables a=1 and b=2. The semicolons prevent Matlab echo. Next we perform alge-
braic operations on a and b and save the result in c :

>> a=1;

>> b=2;

>> c=a+b+a*b-2

c =

3

1

We now create the row vector a. Remark that we can use the same name previously employed
for a scalar variable. Next we define vector b as the transpose of a.

>> a=[1 2 3];

>> size(a)

ans =

1 3

>> b=a’

b =

1

2

3

>> size(b)

ans =

3 1

Finally we compute the scalar product d between a and b :

>> d=a*b

d =

14

On the contrary, the product of a column vector and a row vector yields the tensor (outer)
product. For instance :

>> mat=b*a

ans =

1 2 3

2 4 6

3 6 9

As expected, mat has a null determinant :

>> det(mat)

ans =

0

We now add the identity matrix to mat and evaluate the determinant again :

2

>> mat=mat+eye(3)

mat =

2 2 3

2 5 6

3 6 10

>> det(mat)

ans =

15

The function eye is an example of Matlab built-in function. A very useful feature is the in-line
help, which can be invoked typing on the command line help followed by the name of the
command we wish to investigate. Frequent use of this in-line help, when reading the FEM
codes, is strongly suggested.

>> help eye

EYE Identity matrix.

EYE(N) is the N-by-N identity matrix.

EYE(M,N) or EYE([M,N]) is an M-by-N matrix with 1’s on

the diagonal and zeros elsewhere.

EYE(SIZE(A)) is the same size as A.

See also ONES, ZEROS, RAND, RANDN.

Suppose now we want to solve the system mat*x=b, where x is the unknown solution vector.
Then we simply type :

>> x=mat\b

x =

0.0667

0.1333

0.2000

>> mat*x

ans =

1

2

3

A very powerful feature of Matlab is the ability to operate on several elements of matrices and
or vectors at the same time. In this example a row vector full of zeros is created (help zeros)
and the first three elements are initialized. Then the second and fifth are given specific values.

3

>> a=zeros(1,5);

>> a(1:3)=[1 3 4]

a =

1 3 4 0 0

>> b=[2 5];

>> a(b)=[-2 3]

a =

1 -2 4 0 3

This feature can be also employed for matrices, as the following example clarifies :

>> a=zeros(4,4);

>> b=[1 2; 3 4];

>> ir=[2 4];

>> ic=[2 3];

>> a(ir,ic)=b

a =

0 0 0 0

0 1 2 0

0 0 0 0

0 3 4 0

This possibility will be often exploited especially when assembling global rigidity matrices.
It is often necessary to enter a complete matrix from an m file (see further on) or from the
command line. Lines of the matrix are delimited by the semicolon symbol as follows

>> a=[1 3 4; 2 5 7; 10 11 13]

a =

1 3 4

2 5 7

10 11 13

Is is worth stressing that matrices are stored in memory as vectors. Suppose we have an (M,N)
matrix a. Then Matlab implicitly creates a vector the first M coefficients of which are the
coefficients of the first column of a, followed by the M coefficients of the second column and so
on. We say that Matlab uses a column-wise vector storage of matrices
For instance, using the matrix a just defined, if we ask Matlab to write a(4)

>> a(4)

ans =

3

we obtain the fourth coefficient in the equivalent matrix vector

4

1.3 Matrix operations versus coefficient operations

Some operators, like the product * operator, the exponential operator ^ and others, can have
different effects if applied to matrices as a whole or to single coefficients.
Let us first define two matrices :

>> a=[1 3 4; 2 5 7; 1 1 0];

>> b=[4 1 0; 0 2 5; 5 4 3];

Then as expected :

>> a*b

ans =

24 23 27

43 40 46

4 3 5

is the classical row-vector product of matrices. On the contrary, if we add a point before the
product operator

>> a.*b

ans =

4 3 0

0 10 35

5 4 0

Matlab yields a matrix whose coefficients are the product of the corresponding coefficients in
a and b. Essentially, whenever defined, the dot operator placed before a second operator tells
Matlab to perform operation coefficient-wise and not on matrices as a whole

1.4 M files

Pieces of code can be stored in files with extension .m. These files can be executed by sim-
ply typing the name of the file itself in the command line. Suppose we have created the file
example.m containing the following lines which define the elastic coefficient matrix for 2D plane
stress (typed exactly as we were working with the command line) :

E=100; nu=.3;

A=E/(1-nu^2)*[1,nu,0;

nu,1,0;

0,0,(1-nu)/2];

The file can be conveniently created using the Matlab editor which can be invoked from the
command line by typing edit. Then from the command line first we execute example, then we
display matrix A contents :

>> example

>> A

A =

109.8901 32.9670 0

32.9670 109.8901 0

0 0 38.4615

5

1.5 Flow control

Test construct if. Suppose we create the following if file.m file :

if a>0,

b=0;

else

b=1;

end

Then, from the command line :

>> a=1;

>> if_file

>> b

b =

0

>> a=-2;

>> if_file

>> b

b =

1

A second example is the definition of the material stiffness matrix A which will be employed in
the FEM codes. Variable type can have the values 1 (for plane stress) or 0 (for plane strain).
E and nu are material parameters

if type==1, % plane stress

A=E/(1-nu^2)*[1,nu,0;

nu,1,0;

0,0,(1-nu)/2];

else %plane strain

A=E/((1+nu)*(1-2*nu))*[1-nu,nu,0;

nu,1-nu,0;

0,0,(1-2*nu)/2];

end

Loop for. Suppose we have created the for file.m file :

a=zeros(1,10);

for i=1:10,

a(i)=2*i-1;

end

Vector a is created as a row of ten zeros (use help zeros to learn more about zeros). Then
the loop over i is used to initialize it :

>> for_file

>> a

a =

1 3 5 7 9 11 13 15 17 19

6

This is not the most efficient way to perform this initialization. A much better way would be :

>> a=[1:2:20];

This command should be interpreted as follows : create a vector whose entries are obtained
starting from 1 and adding 2 until the number is not greater than 20.

Switch construct. According to the value of Action different outputs are produced

switch Action

case ’Initialize’

sprintf(’%s’,’You have chosen to Initialize’)

case ’Refresh’

sprintf(’%s’,’You have chosen to Refresh’)

otherwise

sprintf(’%s’,’No valid choice has been made’)

end

For instance :

>> Action=’Refresh’;

>> switch_file

ans =

You have chosen to Refresh

1.6 Functions

It is often convenient to collect a series of commands into a function with inputs and outputs.
The function must be saved in an .m file having the same name of the function itself. In the
sequel the file ex func.m is shown. Function ex func accepts as input a and computes the
output b according to some rule :

function b=ex_func(a)

if a>0,

b=sqrt(a/3);

else

b=sqrt(-a);

end

Hence, from the command line :

>> b=ex_func(27)

b =

3

>> b=ex_func(-4)

b =

2

7

1.7 File I/O

It is often required to read and write data on files. Imagine we have the following lines saved
in dam.msh. This file is actually one of the input files which will be used in the FEM codes.

$NOD

13

1 0 0 0

2 5 0 0

3 0 10 0

4 2.499999999999938 0 0

5 4.000000000000028 1.999999999999943 0

6 3.000000000000051 3.999999999999898 0

7 2.000000000000072 5.999999999999856 0

8 1.000000000000069 7.999999999999861 0

9 0 7.500000000000055 0

10 0 5.000000000000111 0

11 0 2.500000000000167 0

12 1.87818608546323 2.00364788202003 0

13 1.313048020223624 3.825819278107899 0

$ENDNOD

Then we create an M file to read data. Before we can do this we need to introduce structures.
A structure is simply an object with many fields. For instance we can define the structure
analysis with the field nnod (the number of nodes) and the field nel (the number of elements) :

>> analysis.nnod=2

analysis =

nnod: 2

>> analysis.nel=10

analysis =

nnod: 2

nel: 10

It is useful when we want to collect several pieces of information under a single name, like
analysis in the example.
Now let us read the file. First we have to open it, in order to make it accessible :

fmid=fopen(dam.msh,’r’);

Then read the string $NOD, and the following one (which contains the number of nodes). The
number of nodes is directly read from the string

tline = fgets(fmid);

tline = fgets(fmid);

analysis.nnod=sscanf(tline,’%d’);

The code ’%d’ tells Matlab that we want to read an integer. Then, line by line, all the nodal
coordinates are read

8

coor=zeros(analysis.nnod,2);

for i=1:analysis.nnod,

tline = fgets(fmid);

h=sscanf(tline,’%d %f %f %f’)’;

coor(i,:)=h(2:3);

end

fclose(fid)

Please remark the different codes %d, %f which are used for reading intergers and floats, res-
pectively.
Remark also the transposition sign in the last sscanf which is required since sscanf creates
by default a column vector.

1.8 Debugging

A very powerful feature is the possibility to debug applications. In Figure 2 the debugging
buttons are evidenced in the tool-bar.
The first one on the left, in particular, can be used to set and remove break-points. In this case
a break point as been set as shown by the arrow. The break point is graphically represented by
a red dot.
If now we launch the m-file form the command line, the analysis will stop at the chosen line
and a green arrow will appear on the left. If we now point with the cursor any of the variables
defined above the breakpoint, Matlab will automatically show the value. The same info can be
obtained from the command line :

K>> nnod

nnod =

5

9

Fig. 1 – Debugging commands

Fig. 2 – Analysis stopped at a break point

10

