Rupture et plasticité

Département de Mécanique, Ecole Polytechnique, 2009-2010

Devoir (Mécanique de la rupture)

- Sujet distribué le 14/10 (mercredi prochain), copie à remettre (scola) le 13/11, coefficient 40%;
- Thème : rupture en conditions dynamiques;
- Règles du jeu :
 - Autorisé : bibliographie (BCX, Internet...); discussion entre élèves ou avec enseignants des concepts et méthodes.
 - Non autorisé : échange de solutions détaillées

Rupture et plasticité : plan du cours	
Comportements non linéaires des matériaux solides	Amphi 1
Rupture fragile	
 Singularités de contrainte et ténacité des matériaux 	Amphi 2
Analyse énergétique de la propagation d'une fissure l	Amphi 3
 Analyse énergétique de la propagation d'une fissure II. Fissuration par fatigue 	Amphi 4
Plasticité	
 Comportement élasto-plastique 	Amphi 5
 Dissipation plastique 	Amphi 6
 Structures élasto-plastiques standards 	Amphi 7
Charges limites	Amphi 8

Principales conclusions de l'amphi 3

- ► Approche énergétique introduit la notion d'irréversibilité et de dissipation.
- ► **Taux de restitution de l'énergie** = force thermodynamique associée à l'avancée de la fissure.
- Avancée de la fissure régie par une loi à seuil portant sur cette force thermodynamique.
- ► La formule d'Irwin donne une plus grande légitimité physique à l'approche par singularité de contrainte.
- ▶ Il est possible de discuter la stabilité de l'avancée de la fissure (poly, PC3).

Analyse énergétique de la propagation d'une fissure II. Rupture par fatigue

1. Taux de restitution de l'énergie : intégrales invariantes

2. Problèmes tridimensionnels

3. Fissuration par fatigue

Plan

1. Taux de restitution de l'énergie : intégrales invariantes

2. Problèmes tridimensionnels

3. Fissuration par fatigue

Cadre de travail et objectif de cette partie

- Hypothèse des petites perturbations à chaque instant, dans la configuration actuelle Ω(ℓ).
- Evolution quasi-statique : accélération négligée.
- Matériau élastique linéaire (homogène isotrope).
- Fissure libre de contraintes.
- ► Pour cette partie : Problème plan, fissure rectiligne se propageant en ligne droite (longueur ℓ).

Objectif : exprimer le taux de restitution de l'énergie G sous forme d'intégrales (de contour ou de domaine) **indépendantes du contour**. Approche adaptée (notamment) au calcul numérique de G par éléments finis

Taux de restitution de l'énergie

Rappel : énergie potentielle à l'équilibre (\underline{u} : solution)

$$\mathcal{D} = G\dot{\ell} = -\frac{\partial P}{\partial \ell}(\ell, \mathcal{C})\dot{\ell} = -\frac{\mathrm{d}P}{\mathrm{d}t}|_{\mathcal{C}=\mathsf{cste}} \quad \mathsf{avec} \quad P = \frac{1}{2}\int_{\Omega(\ell)}\underline{\underline{\sigma}}:\underline{\underline{\varepsilon}}\,\mathrm{d}\Omega - \int_{\partial\underline{\tau}\Omega}\underline{T}^{d}.\underline{\underline{u}}\,\mathrm{d}a$$

Idée : évaluer G par calcul direct de la dérivée de l'énergie potentielle :

$$\frac{\mathrm{d}P}{\mathrm{d}t}|_{\mathcal{C}=\mathsf{cste}} = \lim_{dt\to 0} \frac{1}{dt} (P(t+dt) - P(t))$$

Prolongement de l'avancée de fissure par une transformation de domaine :

$$\underline{x}\in \Omega(t)\Longrightarrow \underline{x}+\dot{\ell}\underline{ heta}(\underline{x})dt\in \Omega(t+dt)$$

 $\underline{\theta}$: « vitesse de transformation » continue telle que

 $\begin{array}{ll} \underline{\theta} = \underline{0} & & \text{à l'extérieur de } D, \\ \underline{\theta} = \underline{e}_x & & \text{en pointe de fissure.} \end{array}$

Méthode : calculer dP/dt par dérivation particulaire de *P* (cf. MEC 431).

Taux de restitution de l'énergie : expression sous forme d'intégrale de domaine

Résultat (admis, preuve dans poly) : la dérivée particulaire de l'énergie potentielle à l'équilibre P pour le champ de vitesse de transformation $\underline{\theta}$ est donnée par :

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \dot{\ell} \int_{\Omega(t)} {}^{\mathsf{T}} \underline{\underline{\nabla}} \theta : \underline{\underline{E}} \, \mathrm{d}\Omega \qquad \text{avec} \quad \underline{\underline{E}} = \frac{1}{2} (\underline{\underline{\sigma}} : \underline{\underline{\varepsilon}}) \underline{\underline{i}} - {}^{\mathsf{T}} \underline{\underline{\nabla}} u . \underline{\underline{\sigma}}$$

<u>E</u> est appelé le tenseur d'Eshelby.

La puissance dissipée dans une vitesse d'avancée de fissure ℓ est donc donnée par

$$\mathcal{D} = G\dot{\ell}, \quad G = -\int_{\Omega(t)} {}^{\mathsf{T}}\underline{\Sigma}\theta : \underline{\underline{E}} \,\mathrm{d}\Omega$$

- La démonstration de ce résultat repose sur la notion de dérivée particulaire de champs et d'intégrales (cf. Cinématique des milieux continus, cours P. le Tallec).
- ► Ici, la transformation de domaine est fictive : c'est un artifice pour décrire mathématiquement le changement de domaine associé à la propagation de fissure. En particulier, <u>\(\eta(x)\)</u> n'est pas la vitesse du point matériel situé en <u>\(\eta(x)\)</u> à l'instant t.

Taux de restitution de l'énergie : expression sous forme d'intégrale de domaine

$$\mathcal{D} = -\int_{\Omega(t)}{}^{\mathsf{T}}\underline{\underline{\nabla}}\boldsymbol{\theta} : \underline{\underline{E}} \, \mathrm{d}\Omega$$

- On retrouve le fait que G ne dépend que de la solution sur la configuration actuelle Ω(t).
- Propriété remarquable du tenseur d'Eshelby (en l'absence de forces de volume) :

div $\underline{\underline{E}} = \underline{0}$ hors de la pointe de fissure

Démonstration : simple vérification à partir de la définition de \underline{E} .

► Il reste à vérifier que l'expression ci-dessus de dP/dt est indépendante du choix de prolongement \u00ed\u00ed de la vitesse d'avanc\u00ede de fissure \u00ed e_x.

Taux de restitution de l'énergie : expression sous forme d'intégrale de contour

(

 $\underline{\theta}$ choisi tel que

$$\begin{array}{ll} \underline{\theta} = \underline{0} & \text{à l'extérieur de } D, \\ \underline{\theta} = \underline{e}_x & \text{à l'intérieur de } D_1. \end{array}$$

$$G = -\underbrace{\int_{D_1} {}^{\mathsf{T}}\underline{\nabla}\theta : \underline{\underline{E}}}_{= \underline{\underline{0}} \operatorname{car} \underline{\nabla}\theta = \underline{\underline{0}}} d\Omega - \int_{D-D_1} {}^{\mathsf{T}}\underline{\nabla}\theta : \underline{\underline{E}} d\Omega$$

On note ensuite que : ${}^{\mathsf{T}}\underline{\underline{\nabla}}\theta:\underline{\underline{E}}=\mathsf{div}(\underline{\theta},\underline{\underline{E}})-\underline{\theta}.\underline{\mathsf{div}}(\underline{\underline{E}})$ Par la formule de la divergence : $=\underline{\underline{0}}$

$$G = -\int_{D-D_1} \operatorname{div}\left(\underline{\theta},\underline{\underline{E}}\right) d\Omega = -\int_{\partial D} \underline{\theta},\underline{\underline{E}},\underline{n} \, \mathrm{d}a + \int_{\partial D_1} \underline{\theta},\underline{\underline{E}},\underline{n} \, \mathrm{d}a = \int_C \underline{e}_x,\underline{\underline{E}},\underline{n} \, \mathrm{d}a$$
$$G = J \quad \text{avec} \quad J = \int_C \underline{e}_x,\underline{\underline{E}},\underline{n} \, \mathrm{d}a = \int_C \left(\frac{1}{2}(\underline{\sigma};\underline{\varepsilon})n_x - \underline{u}_{,x},\underline{T}(\underline{n})\right) \mathrm{d}a$$

Récapitulation

- ► Tenseur d'Eshelby : $\underline{\underline{E}} = \frac{1}{2} (\underline{\underline{\sigma}} : \underline{\underline{\varepsilon}}) \underline{\underline{i}} {}^{\mathsf{T}} \underline{\underline{\nabla}} u . \underline{\underline{\sigma}}$
- ► Forme intégrale de domaine :

$$G = -\int_{\Omega(t)} {}^{\mathsf{T}}\underline{\underline{\nabla}} \theta : \underline{\underline{E}} \, \mathrm{d}\Omega$$

où $\underline{\theta}(\underline{x})$ est un prolongement de la vitesse **unitaire** d'avancée de fissure \underline{e}_x

► Forme intégrale de contour (connue sous le nom d'intégrale *J* de Rice-Eshelby) :

$$G = J$$
 avec $J = \int_C \underline{\underline{e}}_x \cdot \underline{\underline{\underline{E}}} \cdot \underline{\underline{n}} \, \mathrm{d}a$

où *C* est un contour joignant F^+ à F^- tel que la pointe est intérieure au domaine délimité par *C* et *F* (\underline{n} : normale extérieure à *C*, \underline{e}_x : direction de la fissure).

Indépendance par rapport à $\underline{\theta}$ de la forme intégrale de domaine ? Indépendance par rapport à C de la forme intégrale de contour ?

Intégrale J : indicatrice de la présence d'une fissure

Pour un domaine de contrôle $D \subset \Omega$ de bord ∂D :

$$J = \int_{\partial D} \underline{\underline{e}}_{x} \cdot \underline{\underline{\underline{E}}} \cdot \underline{\underline{\underline{n}}} \, \mathrm{d}a$$

Solide élastique sans fissure :

$$J = \int_{D} \underline{\underline{e}}_{x} \cdot \operatorname{div} \underline{\underline{\underline{E}}} \, \mathrm{d}\Omega$$
$$\Rightarrow \boxed{J = 0}$$

Solide élastique avec fissure :

$$J \neq 0$$

Indépendance de l'intégrale J par rapport au contour

Domaines de contrôle
$$D_1, D_2$$
 emboîtés :
 $D_1, D_2 = D_1 \cup D_{12} \supset D_1$
 $J(D_2) = \int_{\partial D_2} \underline{e}_x \cdot \underline{\underline{E}} \cdot \underline{n} \, da - \int_{\partial D_1} \underline{e}_x \cdot \underline{\underline{E}} \cdot \underline{n} \, da$
 $+ \int_{\partial D_1} \underline{e}_x \cdot \underline{\underline{E}} \cdot \underline{n} \, da$
 $= J(D_{12}) + J(D_1)$
De plus : $J(D_{12}) = 0$ (pas de pointe de fissure dans D_{12}) d'où
 $J(D_2) = J(D_1)$

Domaines de contrôle D₁, D₂ non emboîtés : l'argument précédent s'adapte, et on a encore

$$J(D_2)=J(D_1)$$

Indépendance de l'intégrale J par rapport au contour

Intégrale J et formule d'Irwin

 Idée : évaluer J par passage à la limite sur le contour ∂D_ε d'un voisinage évanouissant D_ε de la pointe de fissure :

$$J = \lim_{\epsilon \to 0} \int_{\partial D_{\epsilon}} \underline{e}_{x} \cdot \underline{\underline{E}} \cdot \underline{\underline{n}} \, \mathrm{d}a$$

$$\underline{\underline{\nabla u}} \sim \frac{K}{\sqrt{\rho}} \underline{\underline{F}}_{u}(\theta), \ \underline{\underline{\sigma}} \sim \frac{K}{\sqrt{\rho}} \underline{\underline{F}}_{\sigma}(\theta)$$

avec de plus $da = \epsilon d\theta$

puis évaluer la limite de l'intégrale quand $\epsilon \rightarrow \mathbf{0}$

Tous calculs faits, on retrouve bien, comme attendu, la formule d'Irwin :

$$J = \frac{1 - \nu^2}{E} (K_I^2 + K_{II}^2) + \frac{1}{2\mu} K_{III}^2 = G.$$

,

Formulation par intégrale de domaine : indépendance en $\underline{\theta}$

- ► Domaine de contrôle D_e délimité par C : contour fini C,
 - C_{ϵ} : contour évanouissant C_{ϵ} ,
- $\underline{\theta}$: champ vectoriel **continu** tel que

 $\underline{\theta} = \underline{0}$ à l'extérieur de *C*,

 $\underline{\theta} = \underline{e}_x$ à l'intérieur de C_{ϵ} .

$$G = \lim_{\epsilon \to 0} \int_{C_{\epsilon}} \underline{\underline{e}}_{x} \cdot \underline{\underline{\underline{E}}} \cdot \underline{\underline{n}} \, \mathrm{d}a = \lim_{\epsilon \to 0} \int_{C_{\epsilon}} \underline{\underline{\theta}} \cdot \underline{\underline{\underline{E}}} \cdot \underline{\underline{n}} \, \mathrm{d}a = -\lim_{\epsilon \to 0} \int_{D_{\epsilon}} {}^{\mathrm{T}} \underline{\underline{\underline{D}}} \underline{\underline{\theta}} : \underline{\underline{\underline{E}}} \, \mathrm{d}\Omega = -\int_{D} \left\{ \dots \right\} \, \mathrm{d}\Omega$$

Pour tout domaine de contrôle *D* contenant la pointe de fissure, Pour tout champ $\underline{\theta}$ continu, nul à l'extérieur de *C*, égal à \underline{e}_{\star} en *A*,

$$G\dot{\ell} = -\int_{D} {}^{\mathsf{T}}\underline{\underline{\nabla}}\theta : \underline{\underline{E}} \,\mathrm{d}\Omega$$

Expression en notation indicielle :

$$G = -\int_{D} \left(\frac{1}{2} \sigma_{ij} u_{i,j} \theta_{k,k} - \sigma_{ij} \theta_{i,k} u_{k,j} \right) \, \mathrm{d}\Omega.$$

Extraction de K_1 et K_2

- ► On note \underline{u}_{I} la solution singulière **connue** (amphi 2) telle que $K_{I}(\underline{u}_{I}) = 1, \ K_{II}(\underline{u}_{I}) = 0$
- ► Calcul de G par Irwin et par intégrale de domaine pour les états <u>u</u> + <u>u</u>₁ et <u>u</u> <u>u</u>₁ :

$$\frac{1-\nu^{2}}{E} \left[(\mathcal{K}_{I}(\underline{\textit{u}})+1)^{2} + \mathcal{K}_{II}^{2}(\underline{\textit{u}}) \right] = -\int_{D}^{\mathsf{T}} \underline{\underline{\nabla}} \theta : \underline{\underline{E}}(\underline{\textit{u}}+\underline{\textit{u}}_{I}) \, d\Omega$$
$$\frac{1-\nu^{2}}{E} \left[(\mathcal{K}_{I}(\underline{\textit{u}})-1)^{2} + \mathcal{K}_{II}^{2}(\underline{\textit{u}}) \right] = -\int_{D}^{\mathsf{T}} \underline{\underline{\nabla}} \theta : \underline{\underline{E}}(\underline{\textit{u}}-\underline{\textit{u}}_{I}) \, d\Omega$$

Soustraction

Expression de $K_{I}(\underline{u})$ par intégrale d'interaction : $\frac{4(1-\nu^{2})}{E}K_{I}(\underline{u}) = -\int_{D} \left(\frac{1}{2}(\underline{\sigma}(\underline{u}):\underline{\nabla}u_{I})\operatorname{div}\underline{\theta} - \underline{\sigma}(\underline{u}).(\underline{\nabla}u_{I}.\underline{\nabla}\theta)\right) d\Omega$ On procède de même, avec \underline{u}_{II} la solution singulière connue (amphi 2) telle que $K_{II}(\underline{u}_{I}) = 0, \ K_{II}(\underline{u}_{I}) = 1$, pour extraire K_{II} .

Approche très bien adaptée au calcul de K_1 et K_1 par éléments finis.

Expressions du taux de restitution de l'énergie en 2D : récapitulation

► Tenseur d'Eshelby :

$$\underline{\underline{E}} = \frac{1}{2} (\underline{\underline{\sigma}} : \underline{\underline{\varepsilon}}) \underline{\underline{i}} - {}^{\mathsf{T}} \underline{\underline{\nabla}} u . \underline{\underline{\sigma}}$$

► Forme intégrale de domaine :

$$G = -\int_{\Omega(t)} {}^{\mathsf{T}} \underline{\underline{\nabla}} \theta : \underline{\underline{E}} \, \mathrm{d}\Omega$$

où $\underline{\theta}(\underline{x})$ est un prolongement continu arbitraire de la vitesse unitaire d'avancée de fissure \underline{e}_x

► Forme intégrale de contour (intégrale J de Rice) :

$$G = J$$
 avec $J = \int_C \underline{\underline{e}}_x \cdot \underline{\underline{E}} \cdot \underline{\underline{n}} \, \mathrm{d}a$

où *C* est un contour **arbitraire** joignant F^+ à F^- tel que la pointe est intérieure au domaine délimité par *D* et *F* (<u>*n*</u> : normale extérieure à *C*).

► Extraction des modes individuels de rupture par intégrale d'interaction.

Expressions adaptées au calcul numérique de G et K₁, K₁₁ (éléments finis,...)

Exemple 2D de calcul numérique : plaque rectangulaire avec fissure droite

Solution exacte pour la plaque de hauteur infinie $V = \infty$:

$$G^{\rm ref} = {\cal K}_{\rm I}^{\rm ref} = \frac{1-\nu^2}{E}\sigma^2\pi{\rm asec}\frac{\pi{\rm a}}{2H}$$

Maillage

Champ de vitesse de transformation (Rouge : $\theta = 1$, bleu : $\theta = 0$)

$$\frac{G^{\text{num}}}{G^{\text{ref}}} - 1 \approx -0.015$$

Conclusions de cette partie

- Expressions sous forme d'intégrales (domaine, contour) du taux de restitution de l'énergie
 - Indépendantes du choix de domaine de contrôle ou de contour;
 - Expressions en termes de la solution actuelle ($\underline{u}, \underline{\sigma}$) uniquement (et non de ses dérivées par rapport à ℓ ;
 - Adaptées aux structures de géométrie complexe et au calcul numérique;
 - A employer en association avec un critère de rupture.
- ► Formule d'Irwin : cas-limite de l'intégrale J pour un contour évanouissant ;
- Séparation des facteurs d'intensité des contraintes :
 - G combine les F.I.C.
 - Évaluation séparée de K_{I} , K_{II} par « intégrales d'interaction ».

Plan

1. Taux de restitution de l'énergie : intégrales invariantes

2. Problèmes tridimensionnels

3. Fissuration par fatigue

Cadre de travail et objectif de cette partie

Fissure tridimensionnelle : coupure de forme quelconque décrite par une surface \mathcal{F} à bord γ (lèvres \mathcal{F}^+ et \mathcal{F}^-).

Hypothèses :

- Hypothèse des petites perturbations à chaque instant,
- Evolution quasi-statique : accélération négligée.
- Matériau élastique linéaire (homogène isotrope).
- Fissure plane *F*(γ) de contour quelconque γ, libre de contrainte.

Objectifs:

- (a) Préciser la notion de taux de restitution de l'énergie *G* pour une fissure tridimensionnelle;
- (b) Exprimer G au moyen d'une intégrale de domaine.

Singularités au voisinage du front de fisssure

Singularité de $\underline{\sigma}$ en front de fissure :

$$\underline{\underline{\sigma}}(\underline{x}) = \frac{K_{I}(s)}{\sqrt{r}} \underline{\underline{f}}_{I}(\theta) + \frac{K_{II}(s)}{\sqrt{r}} \underline{\underline{f}}_{II}(\theta) \\ + \frac{K_{III}(s)}{\sqrt{r}} \underline{\underline{f}}_{III}(\theta) + O(r^{0})$$

 $\underbrace{f}_{=I}(\theta), \underbrace{f}_{=II}(\theta) : \text{ fonctions angulaires modes I et II}_{(déformation plane),} \\ \underbrace{f}_{=II}(\theta) : \text{ fonctions angulaires mode III antiplan}$

- Résultat asymptotique pour $r \rightarrow 0$;
- Les points <u>x</u>(r, θ, s) avec r petit « voient » le front γ comme (asymptotiquement pour r → 0) rectiligne.

F

ξ

F⁺

 F^+

Energie dissipée dans une propagation de fissure

Proportionnalité locale entre puissance dissipée et accroissement d'aire de fissure.

- Problèmes plans :
- Problèmes tridimensionnels :

 $\mathcal{D} = G\dot{\ell};$ $\mathcal{D} = \int_{\gamma} G(s)\dot{\ell}(s) \; ds.$

Le taux de restitution de l'énergie est une grandeur locale sur le front de fissure : G = G(s)

Aire de fissure créée par une propagation infinitésimale :

$$dS=dt\int_{\gamma}\dot{\ell}(s)~ds$$

Critère énergétique de propagation de fissure

• Généralisation du critère « de Griffith » (amphi 3), reposant sur la notion d'énergie de rupture G_c caractéristique du matériau :

en tout point s de γ :

$$\begin{array}{ll} {\rm si} & G(s) < G_c & \ \ \, {\rm alors} & \dot{\ell}(s) = 0, \\ {\rm si} & G(s) = G_c & \ \ \, {\rm alors} & \dot{\ell}(s) \geq 0. \end{array}$$

 Critère local sur le front : la valeur critique G_c n'est pas nécessairement atteinte partout sur γ

Sous cette forme, le critère suppose que la fissure se propage dans son plan : applicable surtout au mode l pur.

Critère énergétique de propagation de fissure

- La propagation plane en mode l pur est une situation rare.
- Généralement, la propagation de fissure se fait en mode mixte (combinaison des modes I, II et III);
- ▶ Une fissure, même initialement plane, ne le reste généralement pas :

- Critères de propagation combinant :
 - une loi à seuil (par exemple $G(s) \leq G_c$),
 - un critère complémentaire permettant la prédiction des branchements et courbures (par exemple imposer $K_{II}(s) = 0$)

Déversement : exemple de simulation en modes I + III

- Méthode numérique : éléments finis de frontière.
- Critères de propagation : $G \leq G_c$ et $K_{II} = 0$

© G. Xu, A.F. Bower, M. Ortiz, Brown Univ., USA (Int. Journal of Solids and Structures, 1994)

Calcul de G par dérivation particulaire de l'énergie potentielle

 Une analyse similaire à celle faite pour les problèmes plans (amphi 3) permet de montrer que

$$\mathcal{D} = \mathcal{P}_{e} - \dot{W} = (\mathcal{P}_{e} - \dot{W})|_{\mathcal{C}=cste} = -\frac{dP}{dt}|_{\mathcal{C}=cste}$$

 Le calcul de dP/dt repose sur la construction d'un prolongement continu <u>θ</u> de la vitesse d'avancée de fissure :

$$\underline{\theta}(\underline{x}) = \dot{\ell}(s)\underline{\nu}(s) \quad (\underline{x} \in \gamma), \qquad \underline{\theta}(\underline{x}) = \underline{0} \quad (\underline{x} \in \partial D)$$

 $D \subseteq \Omega$: région tubulaire contenant le front de fissure.

Calcul et résultat essentiellement identiques à ceux pour le cas plan :

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \int_{D} {}^{\mathsf{T}}\underline{\Sigma}\theta : \underline{\underline{E}} \,\mathrm{d}\Omega \quad \underline{\underline{E}} = \frac{1}{2}(\underline{\underline{\sigma}} : \underline{\underline{\varepsilon}})\underline{\underline{i}} - {}^{\mathsf{T}}\underline{\Sigma}u . \underline{\underline{\sigma}} \quad (\text{tenseur d'Eshelby})$$

Calcul de G : la méthode $G - \theta$

Le taux de restitution local G(s) vérifie, pour toute distribution de vitesse d'avancée de fissure $\dot{\ell}(s)\underline{\nu}(s)$ et tout prolongement continu $\underline{\theta}$ nul en-dehors d'un ouvert $D \subseteq \Omega$ contenant γ :

$$\int_{\gamma} G(s)\dot{\ell}(s) \, ds = -\int_{D} {}^{\mathsf{T}}\underline{\underline{\nabla}}\theta : \underline{\underline{E}} \, \mathrm{d}\Omega \tag{G-}\theta$$

Cette relation constitue la base de la **méthode** $G - \theta$ de calcul numérique de G(s) :

- ► Poser une approximation de G(s) sous la forme $G(s) = \sum_{k=1}^{n} G_k \varphi_k(\underline{x}(s)), \qquad \underline{x}(s) \in \gamma;$
- ► Ecrire la relation $(G \theta)$ tour à tour pour chaque choix $\underline{\theta}(\underline{x}) = \varphi_k(\underline{x})\underline{\nu}(s)$ Cela conduit à un système linéaire d'inconnue $\{G\} = \{G_1, \dots, G_n\}$:

$$[A]{G} = {b} \qquad A_{ik} = \int_{\gamma} \varphi_i(\underline{x}(s))\varphi_k(\underline{x}(s)) ds, \quad b_i = -\int_D^{\mathsf{T}} \underline{\nabla}(\varphi_i \underline{\nu}) : \underline{\underline{E}} d\Omega$$

La méthode G – θ est très bien adaptée à une mise en œuvre dans le cadre des éléments finis. Disponible dans des codes tels que Cast3M (CEA), Code_Aster (EDF), ZeBuLoN (Ecole des Mines / ONERA).

Exemple numérique 3D : fissure semi-elliptique débouchante

(Méthode $G - \theta$ en 3D, éléments finis)

© H. Rajaram, S. Socrate, D.M. Parks, Engineering Fracture Mechanics (2000)

Taux de restitution de l'énergie : formule d'Irwin en 3D

▶ En 3D, pas d'expression de *G* en termes d'intégrale de contour :

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \int_{D_1} {}^{\mathsf{T}} \underline{\underline{\nabla}} \theta : \underline{\underline{E}} \, \mathrm{d}\Omega - \int_{\partial D_1} \underline{\theta} . \underline{\underline{E}} . \underline{\underline{n}} \, \mathrm{d}\Omega$$

Pour un voisinage tubulaire évanouissant de γ, on retrouve la formule d'Irwin :

$$G(s) = \frac{1 - \nu^2}{E} (K_I^2(s) + K_{II}^2(s)) + \frac{1}{2\mu} K_{III}^2(s)$$

(Preuve : insertion des champs singuliers en front de fissure et passage à la limite)

Conclusions de cette partie

- Singularités de contraintes analogues au cas 2D;
- ► Caractère local (sur le front de fissure) de G(s), K_{I,II,III}(s), et du critère de propagation;
- La méthode $G \theta$: support du calcul (généralement numérique) de G(s) dans des conditions très générales de géométrie et de chargement.
 - Implantée dans des codes éléments finis industriels.
- Extraction de K₁, K₁₁, K₁₁₁ par extension au 3D de la notion d'intégrale d'interaction (admis).
- ► Pas d'expression de G(s) sous forme d'intégrale de contour dans le cas tridimensionnel;
- Complexités de la propagation de fissure et de son analyse dans les cas tridimensionnels;

Plan

1. Taux de restitution de l'énergie : intégrales invariantes

2. Problèmes tridimensionnels

3. Fissuration par fatigue

Matériaux et structures : dommages créés par chargements répétés

- ► Jusqu'ici : rupture critique (l'état mécanique atteint un seuil, ex. G = G_c) seule considérée. Exemple : fatigue des rails
- La rupture peut également se produire par l'effet de chargements sous-critiques répétés : fatigue des matériaux et des structures.
- Fatigue à faible nombre n de cycle (dite fatigue oligocyclique) :
 - Plasticité importante,
 - fissuration
- Fatigue à grand nombre *n* de cycles $(n = O(10^5) O(10^6))$:
 - Peu de plasticité;
 - Deux phases : amorçage puis propagation de fissure ;
 - Proportion des deux phénomènes dans la durée de vie totale : varie selon matériau, chargement, température, environnement...

(a) amorçage sur un défaut dans zone de contraintes maximales(b) propagation par fatigue à chaque passage de roue

Cadre

- Chargement à un paramètre Q(t);
- Problèmes plans
- Elasticité linéaire H.P.P. (donc champs singuliers en pointe de fissure)
- Un seul mode de rupture (typiquement mode l d'ouverture)
- Propagation droite de fissure décrite par $\ell(t)$
- ► Facteur d'intensité de contrainte de la forme

$$K_{I}(t) = Q(t)K(\ell(t))$$

 $(K(\ell) : F.I.C.$ pour chargement unitaire et fissure de longueur ℓ)

Exemple : Boeing 737 Aloha Airlines

- ► Maintenance déterminée en fonction du nombre d'heures de vol;
- Durée typique des vols pour cet appareil : 7h ;
- ▶ Mais sur cette ligne (desserte locale îles Hawaii) : durée de vol 36 mn;
- Un cycle = une mission (pressurisation/dépressurisation, décollage/atterrissage);
- Nombre *n* de cycles multiplié par ≈ 11

Croissance de fissures par fatigue dans les métaux

- On observe une corrélation forte entre $d\ell/dn$ et $\Delta Q = Q_{max} Q_{min}$.
- ▶ Proportionnalité entre Q et K, donc entre ΔQ et ΔK , à ℓ fixé (amphi 2)

- Phase II : phase de propagation par fatigue
- Phase III : phase de propagation brutale

Lois de fatigue

Première loi : « loi de Paris » (Paris et Erdogan, 1963) :

$$\frac{\mathrm{d}\ell}{\mathrm{d}n} = C[\Delta K(\ell)]^m$$

- n : nombre de cycles (joue le rôle du temps);
- $\ell = \ell(n)$: longueur de fissure;
- C, m : paramètres matériau (et facteurs externes), à déterminer expérimentalement.

Généralisations : autres lois de forme générale

$$\frac{\mathrm{d}\ell}{\mathrm{d}n} = f\left(\Delta K(\ell), \frac{K_{\max}(\ell)}{K_{\min}(\ell)}, K_{\mathrm{Ic}}, \ldots\right)$$

Evaluation de la durée de vie : repose sur

- ► La connaissance du chargement cyclique (amplitude ΔQ , rapport de charge Q_{\max}/Q_{\min});
- La capacité de calculer $\Delta K(\ell)$ pour toute longueur ℓ donnée;
- ► La connaissance de la loi de fatigue (et notamment des paramètres matériau tels que *C*, *m*.

Exemple : fissuration d'une poutre en flexion cyclique

Exemple : simuler la fissuration par fatigue de disques de turbine

Projet de recherche coordonné (PRC) SNECMA Moteurs, ONERA, Centrale Nantes, ENS Cachan, X (LMS)...

Objectif : éviter l'éclatement des disques de turbine

Exemple : simuler la fissuration par fatigue de disques de turbine

Propagation de fissure plane (quart de cercle de rayon 2mm) sur une portion (1/16em) de disque de turbine HP. Chargement lié à une rotation à vitesse constante de 15 000 tr/min. Propagation plane suivant une loi de Paris locale. Evolution du rayon moyen de la fissure en fonction de nombre de missions.

- ▶ Propagation 3D, fatigue (loi type Paris de la forme $d\ell(s)/dn = f(\Delta G(s))$)
- Calcul par approche énergétique de type $G \theta$;
- Etude (LMS) sur séparation K_{I}, K_{II}, K_{III} par intégrale d'interaction 3D.

©V. Chiaruttini, F. Feyel (ONERA). Code ZeBuLon.

Conclusions de l'amphi 4

- ► Outils pour le calcul effectif du taux de restitution d'énergie :
 - L'invariant intégral de contour J (problèmes plans);
 - La formulation intégrale de domaine (méthode $G \theta$, problèmes plans ou tridimensionnels)
- Complexités de la propagation et de son analyse dans les cas tridimensionnels;
- Notion de propagation sous-critique par fatigue (chargements répétitifs), loi de fatigue.