Plan général

- Partie 1: Généralités
- Partie 2: Méthodes directes
- Partie 3: Méthodes itératives
- Partie 4: Problèmes aux valeurs et vecteurs propres
- Partie 5: Systèmes linéaires mal conditionnés

Motivations for eigenvalue / eigenvector computation

Mechanics and physics: Eigenvalues/eigenvectors useful for a very diverse array of reasons.

- Stability in time of mechanical and physical systems determined by eigenvalue problems. Likewise, eigenvalues reveal potential resonances.
- Eigenvectors often used (e.g. in structural dynamics) for low-dimensional approximation of dynamical responses.

Example: perturbation of dynamical system about equilibrium solution x_0 ($x(t), x_0 \in \mathbb{R}^n$)

 $\dot{x} = \mathcal{F}(x), \qquad x(t) = x_0 + y(t), \ \mathcal{F}(x_0) = 0 \implies \dot{y} = \mathcal{F}'(x_0)y + o(||y||)$

Try $y(t) = Ye^{\lambda t}$ on linearized model, then $\lambda Y = \mathcal{F}'(x_0)Y$, stability if $\operatorname{Re}(\lambda) < 0$.

Statistics: eigenvalues/eigenvectors of covariance matrices

Computation and algorithms:

- Computing matrix SVDs (A = USV^H) requires eigenvalues/eigenvectors. Then, singular values/vectors quantify information content of linear system.
- Knowing eigenvalue properties essential in *preconditioning* of iterative solution methods (lecture 4).

This lecture:

- A few major ideas and methods for eigenvalue/eigenvector computation;
- Focus on symmetric (Hermitian) eigenvalue problem;
- First, methods for isolated eigenvalues
- Then, methods for complete matrix spectra

For any $A \in \mathbb{K}^{n \times n}$, there exist *n* eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ and eigenvectors x_1, \ldots, x_n such that

 $Ax_i = \lambda_i x_i$ $1 \le i \le n$.

Eigenvalues: the *n* roots of the *n*-th degree *characteristic polynomial* $p_A(\lambda) := \det(A - \lambda I)$; can have multiplicities.

- If $\mathbb{K}^n = \operatorname{span}(x_1, \dots, x_n)$, A is diagonalizable: $A = X \wedge X^{-1}$ ($\Lambda := \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, $X := [x_1, \dots, x_n]$).
- If $A = Q \Lambda Q^{-1} = Q \Lambda Q^{H}$ with Q unitary, A is unitarily diagonalizable.
- Unitary diagonalization of A possible if and only if A normal $(AA^{H} = A^{H}A)$.
- A Hermitian (A = A^H) is normal, hence unitarily diagonalizable, and λ_i ∈ ℝ.
 A real symmetric ⇒ Q orthogonal, A = QΛQ^T.
- A not diagonalizable is called *defective*. Example:

$$A = \begin{vmatrix} a & b \\ 0 & a \end{vmatrix} : \qquad \lambda_1 = \lambda_2 = a, \quad E_\lambda = \operatorname{span}(x_1), \ x_1 = \begin{cases} 1 \\ 0 \end{cases}$$

Algebraic multiplicity \geq geometric multiplicity (here $2 \geq 1$).

• Gershgorin theorem: Each λ_k in one of the disks $\mathcal{D}_i(A) := \{ z \in \mathbb{C} : |z - a_{ii}| \le \sum_{j \ne i} |a_{ij}| \}.$

Convention: eigenvalues ordered such that $|\lambda_1| \ge |\lambda_2| \ge \dots |\lambda_n|$.

Impossibility of direct algorithm for eigenvalue computation

- (a) Eigenvalues are roots of (degree-n) characteristic polynomial.
 - (b) Any (degree-n) polynomial is characteristic polynomial of some matrix:

$$P(X) = a_0 + a_1 X + \ldots + a_{n-1} X^{n-1} + X^n$$

 $A_P = \begin{vmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 2 & z \end{vmatrix} .$ companion matrix of P

Therefore eigenvalue problems and polynomial root-finding problems are equivalent

- No direct general root-finding method if $n \ge 5$ (impossibility result, Galois)
- Therefore no direct method for general eigenvalue problems ۲

Any general method for computing matrix eigenvalues must be iterative.

This lecture:

- Computation of isolated eigenvalues
- Computation of matrix spectra

Computation of isolated eigenvalues: Rayleigh quotient

Computation of isolated eigenvalues: main ingredients are

- Power iterations
- Rayleigh quotients
- Matrix shifts

Let $A \in \mathbb{K}^{n \times n}$ Hermitian, $x \in \mathbb{K}^n$. Rayleigh quotient r(x): $r(x) := \frac{x^H A x}{x^H x}$.

We have

$$\nabla_{x} r(x) = \frac{2}{x^{\mathsf{H}} x} (A x - r(x) x)$$

- Rayleigh quotient is stationary $(\nabla_x r(x) = 0)$ if x, r(x) eigenvector/eigenvalue pair.
- The smallest (largest) eigenvalue of A minimizes (maximizes) r(x) over $x \in \mathbb{K}^n \setminus \{0\}$.
- Infinite-dimensional counterpart: Courant-Fischer min-max principle (ENSTA ANA 202)
- Dynamics of mechanical systems: r(x) ratio of strain and kinetic energies.

Computation of isolated eigenvalues: power iterations

Repeated evaluations $x^{(0)} \mapsto Ax^{(0)} \mapsto A^2x^{(0)} \mapsto \dots$, compute Rayleigh quotients along the way:

Algorithm 9 Power iteration

 $\begin{array}{ll} A \in \mathbb{K}^{n \times n} \text{ Hermitian (input), } x^{(0)} \in \mathbb{K}^n \text{ with } \|x^{(0)}\| = 1 \text{ (initialization)} \\ \text{for } k = 0, 1, 2, \dots \text{ do} \\ v = Ax^{(k)} & (\text{apply } A \text{ to current normalized iterate}) \\ \lambda^{(k)} = v^H x^{(k)} & (\text{Rayleigh quotient}) \\ x^{(k+1)} = v/\|v\| & (\text{next normalized iterate}) \\ \text{Stop if convergence, set } \lambda_1 = \lambda^{(k)}, \ q_1 = x^{(k)} \\ \text{end for} \end{array}$

Power iterations promote λ_1, q_1 (assuming $|\lambda_2| > |\lambda_1|$): use $A = Q \Lambda Q^{\mathsf{H}}$, expand on eigenvectors:

$$\begin{aligned} x^{(0)} &= y_1 q_1 + y_2 q_2 + \dots + y_n q_n \\ x^{(k)} &= c_k A^k x^{(0)} \\ &= c_k \lambda_1^k [y_1 q_1 + y_2 (\lambda_2 / \lambda_1)^k q_2 + \dots + y_n (\lambda_n / \lambda_1)^k q_n] \end{aligned}$$

Convergence of power iterations

Assume $q_1^{\text{H}} x^{(0)} \neq 0$ and $|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_n|$. Then: $|\lambda^{(k)} - \lambda_1| = O(|\lambda_2/\lambda_1|^{2k}), \qquad || \pm x^{(k)} - q_1|| = O(|\lambda_2/\lambda_1|^k) \quad (k \to \infty)$

Computation of isolated eigenvalues: power iterations (properties, limitations)

$|\lambda^{(k)} - \lambda_1| = O(|\lambda_2/\lambda_1|^{2k}), \qquad \| \pm x^{(k)} - q_1\| = O(|\lambda_2/\lambda_1|^k) \quad (k \to \infty)$

- Convergence of λ^k to λ_1 linear (error reduced by constant factor at each iteration);
- Convergence of $x^{(k)}$ to q_1 also linear.
- Error reduction depends on closeness of $|\lambda_1|$ and $|\lambda_2|$.
- "raw" power iteration, evaluate λ_1, q_1 only.
- Computational work: one matrix-vector product per power iteration.

Computation of isolated eigenvalues: inverse iterations

Idea: if A invertible, can apply power iterations to A^{-1} .

- Iterates: $x^{(k+1)} = A^{-1}x^{(k)}$ (i.e. solve $Ax^{(k+1)} = x^{(k)}$)
- Expected to produce λ_n, q_n (smallest eigenvalue)

Extension: apply power iterations to shifted matrix $(A - \mu I)^{-1}$, μ close to some λ_i :

• $\sigma_i := (\lambda_j - \mu)^{-1}$ an eigenvalue of $(A - \mu I)^{-1}$ with same eigenvector q_j ; moreover

 $\begin{array}{c|c} |\mu - \lambda_j| < |\mu - \lambda_i| \ (i \neq j) \implies |\sigma_j| > |\sigma_i| \ (i \neq j) \end{array} \\ \bullet \text{ Power iterations on } (A - \mu I)^{-1} \implies (\sigma_j, q_j) \implies \lambda_j = \sigma_i^{-1} + \mu \end{array}$

Finds eigenvalue closest to μ

Algorithm 10 Inverse iteration

 $A \in \mathbb{K}^{n \times n}$ Hermitian (input), $x^{(0)} \in \mathbb{K}^n$ with $||x^{(0)}|| = 1$ (initialization), $\mu \in \mathbb{R}$ close to λ_i for k = 1, 2, ... do solve $(A - \mu I)x^{(k)} = x^{(k-1)}$ $(apply (A - \mu I)^{-1} to x^{(k-1)})$ $x^{(k)} = x^{(k)} / ||x^{(k)}||$ (next normalized iterate) $\lambda_{i}^{(k)} = (x^{(k)})^{\mathsf{H}} A x^{(k)}$ (Rayleigh quotient) **Stop** if convergence, set $\lambda_i = \lambda_i^{(k)}$, $q = x^{(k)}$ end for

$$|\lambda_j^{(k)} - \lambda_j| = O\Big(\frac{|\lambda_j - \mu|}{|\lambda_\ell - \mu|}\Big)^{2k}, \qquad \|\pm x_k - q_j\| = O\Big(\frac{|\lambda_j - \mu|}{|\lambda_\ell - \mu|}\Big)^k$$

(similarly to power iterations)

Computation of isolated eigenvalues: Rayleigh quotient iterations

- Power iterations yield eigenvectors
- Inverse iterations yield eigenvalues
- Combine both: Rayleigh quotient iterations (set shift μ to current eigenvalue estimate)

Algorithm 11 Rayleigh quotient iteration

 $\begin{array}{ll} A \in \mathbb{K}^{n \times n} \text{ Hermitian (input), } x^{(0)} \in \mathbb{K}^n \text{ with } \|x_0\| = 1 \text{ (initialization)} \\ \lambda^{(0)} = (x^{(0)})^{\text{H}} A x^{(0)} & (\text{Initialize Rayleigh quotient)} \\ \text{for } k = 1, 2, \dots \text{ do} \\ \text{ solve } (A - \lambda^{(k-1)}I) x^{(k)} = x^{(k-1)} & (\text{apply } (A - \lambda^{(k-1)}I)^{-1} \text{ to } x^{(k-1)}) \\ x^{(k)} = x^{(k)} / \|x^{(k)}\| & (\text{next normalized iterate}) \\ \lambda^{(k)} = (x^{(k)})^{\text{H}} A x^{(k)} & (\text{Rayleigh quotient}) \\ \text{ Stop if convergence, set } \lambda = \lambda^{(k)}, \ q = x^{(k)} \\ \text{end for} \end{array}$

Convergence of Rayleigh quotient iterations

Rayleigh iterations converge for almost all starting vectors $x^{(0)}$. Assume (normalized) $x^{(0)}$ close to eigenvector q_i . Then:

$$|\lambda^{(k+1)} - \lambda_j| = O(|\lambda^{(k)} - \lambda_j|^3), \qquad \|\pm x^{(k+1)} - q_j\| = O(\|\pm x^{(k)} - q_j\|^3) \quad (k \to \infty).$$

Computation of isolated eigenvalues: example

 $A \in \mathbb{R}^{10 \times 10}$ a random real symmetric matrix.

1. Power iterations for $\lambda_1 \approx 10.681$. Tolerance: $|\lambda^{(k+1)} - \lambda^{(k)}| \le 10^{-10}$

k	$ \lambda^{(k)} - \lambda_1 $	$(\lambda_2/\lambda_1)^{2k}$	$\ q^{(k)}-q_1\ $	$(\lambda_2/\lambda_1)^k$
1	2.5383e+00	3.9667e-02	5.1770e-01	1.9916e-01
2	4.4221e-02	1.5734e-03	6.6508e-02	3.9667e-02
3	9.2950e-04	6.2413e-05	9.6536e-03	7.9002e-03
4	2.5329e-05	2.4757e-06	1.5871e-03	1.5734e-03
5	7.8583e-07	9.8202e-08	2.7731e-04	3.1337e-04
6	2.5948e-08	3.8953e-09	4.9888e-05	6.2413e-05
7	8.8738e-10	1.5451e-10	9.1258e-06	1.2430e-05
8	3.1084e-11	6.1290e-12	1.6892e-06	2.4757e-06
9	1.1084e-12	2.4312e-13	3.1567e-07	4.9307e-07

Computation of isolated eigenvalues: example

1. Inverse iterations $((A - \mu I)^{-1}$ with $\mu = 0.4$ close to $\lambda_5 \approx 0.46740$).

k	$ \lambda^{(k)} - \lambda_5 $	$\left \frac{\lambda_5-\mu}{\lambda_4-\mu}\right ^{2k}$	$\ q^{(k)}-q_5\ $	$\left \frac{\lambda_5-\mu}{\lambda_4-\mu}\right ^k$
1	3.2395e-01	9.9940e-02	1.0111e+00	3.1613e-01
2	8.1309e-03	9.9880e-03	1.3554e-01	9.9940e-02
3	3.8992e-05	9.9819e-04	1.3551e-02	3.1594e-02
4	6.6151e-07	9.9759e-05	2.7233e-03	9.9880e-03
5	9.4566e-08	9.9699e-06	8.1688e-04	3.1575e-03
6	9.6321e-09	9.9639e-07	2.5726e-04	9.9819e-04
7	9.6379e-10	9.9579e-08	8.1308e-05	3.1556e-04
8	9.6329e-11	9.9519e-09	2.5704e-05	9.9759e-05
9	9.6276e-12	9.9459e-10	8.1257e-06	3.1537e-05

2. Rayleigh iterations for $\lambda_5 \approx 0.46740$.

k	$ \lambda^{(k)} - \lambda_5 $
1	6.6642e-03
2	7.0746e-07
3	4.9960e-16

Extension: generalized symmetric eigenvalue problems

Many engineering applications (e.g. vibrations, forced dynamical motions) involve

Find λ , x such that $Kx = \lambda Mx$.

 $K, M \in \mathbb{R}^{n \times n}$: (symmetric, positive) stiffness and mass matrices.

- Usually, lower part of spectrum (for which FE model most accurate) sought
- Assume M SPD (true for dynamics/vibrations), set $M = GG^{T}$ (Cholesky); then: $K_X - \lambda M_X = G(A - \lambda I)G^{\mathsf{T}}X, \qquad A = G^{-1}KG^{-\mathsf{T}}$
- Equivalent symmetric eigenvalue problem:

Find λ, x such that $Ay = \lambda y$, $G^{\mathsf{T}}x = y$.

Do not actually evaluate $A = G^{-1} K G^{-T}$; reinterpret algorithms for standard eigenvalue pbs.

Algorithm 12 Inverse iteration for structural vibrations

 $K, M \in \mathbb{R}^{n \times n}$ (stiffness / mass matrices), $x^{(0)} \in \mathbb{R}^n$, $||x^{(0)}|| = 1$ (initialization), $\mu \in \mathbb{R}$ close to λ_i for k = 1, 2, ... do solve $(K - \mu M)x^{(k)} = Mx^{(k-1)}$ (solve forced vibration problem with $Mx^{(k-1)}$ as load) $x^{(k)} = x^{(k)} / \sqrt{x^{(k) \top} M x^{(k)}}$ (next mass-normalized iterate) $\lambda_{i}^{(k)} = (x^{(k)})^{\mathsf{H}} K x^{(k)}$ (Rayleigh quotient) **Stop** if convergence, set $\lambda_i = \lambda_i^{(k)}$, $q = x^{(k)}$ end for

Plan général, organisation

 Partie 1: Généralités

 Partie 2: Méthodes directes

 Partie 3: Méthodes itératives

 Partie 4: Problèmes aux valeurs et vecteurs propres

 Séance 5a: Généralités, Puissances itérées, puissances inverses

 Séance 6a: Itérations orthogonales et algorithme QR

Partie 5: Systèmes linéaires mal conditionnés

Computation of matrix spectra

General approach: use invariance of eigenvalues under similarity transformations:

 Let A ∈ K^{n×n}, let X ∈ K^{n×n} invertible, set T := X⁻¹AX. Then P_A(λ) = P_T(λ) (same eigenvalues and multiplicities).

Matrix spectra computations: find similarity decomposition $A = XTX^{-1}$ where eigenvalues of T "easy" to compute.

- Factorizations for direct methods (e.g. LU, Cholesky) not appropriate For instance: A = LU reveals eigenvalues of L, U, but no connection to eigenvalues of A.
- In fact, we know LU etc cannot work (since direct eigenvalue algorithms inpossible)

Better starting point: the Schur decomposition of A:

- Any A ∈ K^{n×n} has a Schur decomposition A = QTQ^H (Q ∈ K^{n×n} unitary, T ∈ K^{n×n} upper triangular)
- Schur decomposition is a similarity transformation of A (so $P_A(\lambda) = P_T(\lambda)$)
- Since T triangular, diag(T) holds the eigenvalues of A.
- Even if $A \in \mathbb{R}^{n \times n}$, $Q, T \in \mathbb{C}^{n \times n}$ in general (as real matrices may have complex eigenvalues).
- If A is Hermitian, T is real and diagonal.

Computation of matrix spectra: a possible outline

Ideal general approach: compute eigenvalues by finding Schur decomposition of A.

Towards finding $A = QTQ^{H}$: introduce zeros in lower triangle of A (again!), but note carefully:

- Let *F* unitary; assume *FA* puts zeros in whole 1st column under diagonal. Then, similarity needs forming *FAF*^H, but right multiplication undoes zeroing-out (try with Householder reflector)
- Remedy: use instead (e.g. Householder) transformations such that (for Hermitian A)

$$F_1A =$$
 $F_1AF_1^H =$ $\dots FAF^H =$

A Hermitian \implies FAF^H tridiagonal

• For non-Hermitian *A*, can reach *FAF*^H upper Hessenberg:

$$F_1A =$$
 $F_1AF_1^H =$ $\dots FAF^H =$

- This is not yet the Schur decomposition (but we get closer)
- Reduction to tridiagonal/Hessenberg takes fixed computational work (direct step) Then, the rest (e.g. tridiagonal/Hessenberg to Schur) is iterative
- Finding $A = QTQ^{H}$ may need complex arithmetic even if A real (but then we prefer real arithmetic).

Computation of matrix spectra: orthogonal iterations

- Assume $|\lambda_1| > |\lambda_2| > \ldots |\lambda_n|$, with corresponding eigenvectors Q_1, \ldots, q_n .
- Starting idea: apply power iterations to a set of p vectors $X_p = [x_1, \ldots, x_p] \in \mathbb{K}^{n \times p}$:

$$X_{p}^{(0)} = X, \ X_{p}^{(1)} = AX_{p}^{(0)}, \dots \ X_{p}^{(k)} = AX_{p}^{(k-1)}$$
.

Then $E_{\rho}^{(k)} := \operatorname{span}\left(x_1^{(k)}, \ldots, x_{\rho}^{(k)}\right) \rightarrow E_{\rho} := \operatorname{span}\left(q_1, \ldots, q_{\rho}\right)$

- Conceivably: (a) run k iterations (until convergence of span(x₁^(k),...,x_p^(k))),
 (b) diagonalize smaller matrix A_p^(k) := (X^(k))^HAX^(k) ∈ K^{p×p}.
- However, vectors of $X_p^{(k)}$ increasingly collinear
- Remedy: orthogonalization (again!), i.e. find next iterate $X_p^{(k)}$ via

 $X_{\rho}^{(k)}R^{(k)} = AX_{\rho}^{(k-1)}$ use QR decomposition on $AX_{\rho}^{(k-1)}$

Algorithm 13 Orthogonal iterations

1: $A \in \mathbb{K}^{n \times n}$ Hermitian, $X_p^{(0)} = [x_1^{(0)}, \dots, x_p^{(0)}] \in \mathbb{K}^{n \times p}$ with orthonormal columns (initialization) 2: for $k = 1, 2, \dots$ do 3: $Z^{(k)} = AX_p^{(k-1)}$ (apply A) 4: $X_p^{(k)}R_p^{(k)} = Z^{(k)}$ (compute reduced QR decomposition of $Z^{(k)} \in \mathbb{K}^{n \times p}$) 5: Stop if convergence, set $\lambda_i = (x_i^{(k)})^{\mathsf{H}}Aq_i^{(k)}, q_i = x_i^{(k)}$ 6: end for

How and why orthogonal iterations work

Focus on case p = 2 (recall p = 1 is standard power iteration):

$$AX_{p}^{(k-1)} = X_{p}^{(k)}R^{(k)} \quad \text{with } R^{(k)} = \begin{bmatrix} r_{11}^{(k)} & r_{12}^{(k)} \\ 0 & r_{22}^{(k)} \end{bmatrix} \quad \text{i.e. } \begin{cases} (a) & r_{11}^{(k)}x_{1}^{(k)} = Ax_{1}^{(k-1)}, \\ (b) & r_{12}^{(k)}x_{1}^{(k)} + r_{22}^{(k)}x_{2}^{(k)} = Ax_{2}^{(k-1)}, \end{cases}$$

(a)
$$x_1^{(1)}, x_1^{(1)}, x_1^{(2)}, \dots x_1^{(k)}, \dots$$
 generated by power iterations, hence $x_1^{(k)} \to q_1$.
(b) Write $x_1^{(k)} = q_1 + \varepsilon_1^{(k)}$ with $\|\varepsilon_1^{(k)}\| \to 0$, then set
 $\widehat{A} = (I - q_1 q_1^H)^H A(I - q_1 q_1^H)$
 $= A - \lambda_1 q_1 q_1^H \implies \widehat{A} q_1 = 0, \ \widehat{A} q_i = A q_i \ (i \ge 2)$

Consequently:

$$\begin{aligned} \widehat{A}x_{2}^{(k-1)} &= Ax_{2}^{(k-1)} &- \lambda_{1}(q_{1}^{\mathsf{H}}x_{2}^{(k-1)})q_{1} & r_{12}^{(k)} &= (x_{1}^{(k)})^{\mathsf{H}}Ax_{2}^{(k-1)} \\ &= r_{12}^{(k)}x_{1}^{(k)} + r_{22}^{(k)}x_{2}^{(k)} - \lambda_{1}(q_{1}^{\mathsf{H}}x_{2}^{(k-1)})q_{1} &= (q_{1} + \varepsilon_{1}^{(k)})^{\mathsf{H}}Ax_{2}^{(k-1)} \\ &= \lambda_{1}(q_{1}^{\mathsf{H}}x_{2}^{(k-1)}) + (\varepsilon_{1}^{(k)})^{\mathsf{H}}Ax_{2}^{(k-1)} \end{aligned}$$

$$\begin{aligned} \widehat{A}x_{2}^{(k-1)} &= r_{22}^{(k)}x_{2}^{(k)} + \left(q_{1}^{\mathsf{H}}x_{2}^{(k-1)}\right)\varepsilon_{1}^{(k)} + \left(\left(\varepsilon_{1}^{(k)}\right)^{\mathsf{H}}Ax_{2}^{(k-1)}\right)x_{1}^{(k)} \\ &= r_{22}^{(k)}x_{2}^{(k)} + \left(\varepsilon_{1}^{(k)}\right) \end{aligned}$$

 $x_2^{(0)}, x_2^{(1)}, x_2^{(2)}, \dots, x_2^{(k)}$... generated by power iterations for \widehat{A} .

Convergence of orthogonal iterations

Let $A \in \mathbb{K}^{n \times n}$ Hermitian with $|\lambda_1| > |\lambda_2| > \dots |\lambda_p|$. Assume all leading submatrices $(Q_p^H X_p^{(0)})_{1:q,1:q}$ $(1 \le q \le p)$ of $Q_p^H X_p^{(0)} \in \mathbb{K}^{p \times p}$ are nonsingular. Let $X_p^{(k)} = [x_1^{(0)}, \dots, x_p^{(0)}]$: set of orthonormal vectors produced by k orthogonal iterations. Then: $||x_i^{(k)} \pm q_i|| = O(C^k)$, with $C := \max_{1 \le i \le p} |\lambda_{j+1}|/|\lambda_j| < 1$.

Computation of matrix spectra: QR iterations

- Adapt orthogonal iterations to complete spectrum of $A \in \mathbb{K}^{n \times n}$ (Hermitian);
- Remove restriction $|\lambda_1| > |\lambda_2| > \dots |\lambda_p| > \dots$

Focus on $T^{(k)} := X^{(k)H}AX^{(k)}$ (note $T^{(k)} \rightarrow \text{diag}(\lambda_1, \dots, \lambda_n)$):

 $T^{(k-1)} = X^{(k-1)H} A X^{(k-1)} = X^{(k-1)H} X^{(k)} R^{(k)}$ (QR decomposition of $A X^{(k-1)}$) $T^{(k)} = X^{(k)H} A X^{(k)} = X^{(k)H} A X^{(k-1)} X^{(k-1)H} X^{(k)} = X^{(k)H} X^{(k)} R^{(k)} X^{(k-1)H} X^{(k)}$ $= R^{(k)} X^{(k-1)H} X^{(k)},$

Reformulate:

(a)
$$T^{(k-1)} = Q^{(k)}R^{(k)}$$
, (b) $T^{(k)} = R^{(k)}Q^{(k)}$, $Q^{(k)} := X^{(k-1)H}X^{(k)}$ unitary.

Algorithm 14 Basic QR iterations

1: $A \in \mathbb{K}^{n \times n}$ Hermitian, $T^{(0)} = A$ (initialization) 2: for k = 1, 2, ... do 3: $Q^{(k)}R^{(k)} = T^{(k-1)}$ (compute QR decomposition of $T^{(k-1)} \in \mathbb{K}^{n \times p}$) 4: $T^{(k)} = R^{(k)}Q^{(k)}$ (update $T^{(k)}$) 5: Stop if convergence, diag $(T^{(k)})$ contains the eigenvalues of A 6: end for

Computation of matrix spectra: shortcomings of basic QR iterations

Basic QR iterations are workable (in particular backward stable) but lack efficiency:

- Each QR factorization costs $O(n^3)$ operations (see lecture 2)
- Expect O(n) QR iterations needed, so $O(n^4)$ computing work overall.
- Rate of convergence of eigenvalues depends on their distribution
- Convergence may fail if $|\lambda_j| = |\lambda_{j+1}|$ for some *j*.

Two major improvements adresss these issues:

- First put A in tridiagonal form (needs $O(n^3)$ work). QR decompositions of a tridiagonal matrix then take $O(n^2)$ work $\implies O(n^3)$ overall work.
- Accelerate convergence using a shifted form of QR algorithm

Computation of matrix spectra: reduction to tridiagonal form

Method 1: symmetric application of Householder reflectors

$$F_1A =$$
 $F_1AF_1^{\mathrm{H}} =$ $\dots FAF^{\mathrm{H}} =$

- Requires storage of A
- Proved stability

Method 2: Lanczos orthogonalization iterations

• Recall Arnoldi iterations (used for GMRES):

 $A = QHQ^{H}$ Q unitary, H upper Hessenberg

Here, A Hermitian \implies H tridiagonal.

- Specialize Arnoldi iterations to A Hermitian (so H tridiagonal) \rightarrow Lanczos iterations
- Only requires matrix-vector products $q \mapsto Aq$, i.e. suitable for large sparse matrices

Lanczos iterations

Column-by-column enforcement of equality (starting with q_1 arbitrary unit vector)

$$A[q_{1} \dots q_{k}] = [q_{1} \dots q_{k}, q_{k+1}] \begin{bmatrix} \alpha_{1} & \beta_{1} & 0 & \dots & 0 \\ \beta_{1} & \alpha_{2} & & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & & \ddots & \beta_{n-1} \\ 0 & \dots & 0 & \beta_{n-1} & \alpha_{n} \end{bmatrix}$$

column 1: $Aq_{1} = \alpha_{1}q_{1} + \beta_{1}q_{2} \implies \alpha_{1}, \beta_{1}, q_{2}$
 $(q_{1}^{H}q_{2} = 0, ||q_{2}|| = 1)$
column 2: $Aq_{2} = \beta_{1}q_{1} + \alpha_{2}q_{2} + \beta_{2}q_{3} \implies \alpha_{2}, \beta_{2}, q_{3}$
 $(q_{1}^{H}q_{3} = q_{2}^{H}q_{3} = 0, ||q_{3}|| = 1)$
column k: $Aq_{k} = \beta_{k-1}q_{k-1} + \alpha_{k}q_{k} + \beta_{k}q_{k+1} \implies \alpha_{k}, \beta_{k}, q_{k+1}$
 $(q_{1}^{H}, q_{2} = 0, ||q_{2}|| = 0, ||q_{2}|| = 1)$

 $(q_{k-1}^{\mathsf{H}}q_{k+1} = q_{k}^{\mathsf{H}}q_{k+1} = 0, ||q_{k+1}|| = 1)...$

column *n*: $Aq_n = \beta_{n-k1}q_{n-1} + \alpha_n q_n$

 $\implies \alpha_n$

By induction: $q_k \in \text{span}(q_1, Aq_1, \ldots, A^{k-1}q_1)$ for $k = 1, 2, 3 \ldots$ $\operatorname{span}(q_1, q_2, \ldots, q_k) = \operatorname{span}(q_1, Aq_1, \ldots, A^{k-1}q_1) = \mathcal{K}_k(A, b)$

Inverse-iteration interpretation of the QR algorithm

- Generic orthogonal iteration at root of basic QR algorithm: $X^{(k)}R^{(k)} = AX^{(k-1)H} \implies A = X^{(k)}R^{(k)}X^{(k-1)H}$
- Evaluate $A^{-1} = (A^{-1})^{H}$ (since A Hermitian):

$$A^{-1} = X^{(k-1)}(R^{(k)})^{-1}X^{(k)H} = X^{(k)}(R^{(k)})^{-H}X^{(k-1)H}$$

Rewrite using "flipped identity" P (properties: $P^2 = I$, $P[x_1, \ldots, x_n] = [x_n, \ldots, x_1]$):

$$A^{-1} = (X^{(k)}P) (P(R^{(k)})^{-H}P) (X^{(k-1)}P)^{H},$$

$$\frac{\left[\left(X^{(k)}P\right)\left(P(R^{(k)})^{-H}P\right)\left(X^{(k-1)}P\right)^{H}\right]}{\left[\left(X^{(k-1)}P\right)^{H}\right]} \quad P := \begin{bmatrix} 0 & \dots & 1 \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ 1 & \dots & 0 \end{bmatrix}$$

• Observe (i) $X^{(k-1)}P$, $X^{(k)}P$ unitary; (ii) $P(R^{(k)})^{-H}P$ upper triangular.

Orthogonal iteration for A on $X^{(k)}$ equivalent to orthogonal iteration for A^{-1} on $X^{(k)}P$

In particular, 1st column of $X^{(k)}P$, i.e. $x_n^{(k)}$, undergoes inverse iteration (without shift).

Computation of matrix spectra: shifted QR algorithm

Inverse-iteration interpretation suggests using a shift $\mu^{(k)}$; main steps become

(a) $T^{(k-1)} - \mu^{(k)}I = Q^{(k)}R^{(k)}$ and (b) $T^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$.

How to (adaptively) choose shifts?

- $\rightarrow \mu^{(k)} := t_{nn}^{(k-1)}$ natural choice (Rayleigh quotient for $q_n^{(k-1)}$), but known to fail on some "nice" matrices.
- \rightarrow Wilkinson shift (eigenvalue of bottom rightmost 2 × 2 block of $T^{(k-1)}$ closest to $t_{nn}^{(k-1)}$)

Algorithm 15 Shifted QR iterations

1:	$A \in \mathbb{K}^{n imes n}$ Hermitian	(data)			
2:	$(Q^{(0)})^{H} T^{(0)} Q^{(0)} = A$	(Tridiagonalization of A)			
3:	for $k = 1, 2,$ do				
4:	Choose $\mu^{(k)}$	(shift value, e.g. use the Wilkinson shift)			
5:	$Q^{(k)}R^{(k)} = T^{(k-1)} - \mu^{(k)}I$	(compute QR factorization of $T^{(k-1)} - \mu^{(k)}I \in \mathbb{K}^{n \times p}$)			
6:	$T^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$	(update $T^{(k)}$)			
7:	If any off-diagonal entry $t_{i,j+1}^{(k)}$ is s	ufficiently small,			
	set $t_{j,j+1}^{(k)} = t_{j+1,j}^{(k)} = 0$ to obtain	ain $\mathcal{T}^{(k)} = \begin{bmatrix} \mathcal{T}_1^{(k)} & 0\\ 0 & \mathcal{T}_2^{(k)} \end{bmatrix}$.			
	From now, apply the QR algorithm separately to $T_1^{(k)}$ and $T_2^{(k)}$ ("deflation")				
 8: Stop if convergence, diag(T^(k)) contains the eigenvalues of A 9: end for 					

Computation of matrix spectra: example

Stopping criterion of QR iterations:

$$\frac{T^{(k+1)} - T^{(k)}\|}{\|T^{(k)}\|} \le 10^{-12}$$

- Deflation (here not fully implemented) dramatically reduces iteration count
- Very high accuracy on whole spectrum achievable (note however: comparison spectrum also numerical ← eig(A))

Computation of matrix spectra: extension to unsymmetric problems

 $(A - \lambda I)x = 0$, A unsymmetric

• Set *A* in upper Hessenberg form (e.g. using Householder reflectors):

$$A = QHQ^{\mathsf{H}}, \qquad H = \begin{bmatrix} \times & \times & \times & \dots & \times \\ \times & \times & & & \times \\ 0 & \times & \times & & \times \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \times & \times \end{bmatrix}$$

Spectra of A and H coincide.

• (shifted) QR iterations applicable to H:

 $T^{(0)} = H$, then (a) $T^{(k-1)} - \mu^{(k)}I = Q^{(k)}R^{(k)}$ and (b) $T^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$.

- If $A \in \mathbb{C}^{n \times n}$, $T^{(k)} \to T$ upper triangular;
- If A ∈ ℝ^{n×n} and QR algorithm in real arithmetic, T^(k) → T "almost upper triangular" (2×2 diagonal blocks → pairs of conjugate complex eigenvalues);