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The Way of Considering Bias & Fairness in AI Here
I Expertise: Statistical Machine Learning, Theory and Algorithms
I Scientific Goals

I Predictive issues cast asM-estimation problems:
I Classification
I Regression
I Density level set estimation
I ... and their numerous variants

I Complex data - Minimal assumptions on the distribution
I Algorithms: design feasibleM-estimators for specific criteria
I Many Questions - Theory/Computation/Applicability:

I Theoretical guarantees: optimal elements, consistency,
non-asymptotic excess risk bounds, fast rates of convergence,
oracle inequalities

I Practice: numerical optimization, convexification,
randomization, relaxation, scalability (distributed architectures,
real-time, memory, etc.)

I Applicability/acceptability: robustness/reliability, explainability,
privacy preservation, fairness...

2



Many applications of these concepts/methods
e.g. Facial Recognition



The Flagship Problem: Pattern Recognition
I (X, Y) random pair with unknown distribution P
I X ∈ X observation vector
I Y ∈ {−1,+1} binary label/class
I A posteriori probability∼ regression function

∀x ∈ X , η(x) = P{Y = 1 | X = x}

I g : X → {−1,+1} classifier that can be coded using amachine
I Performance measure = classification error

L(g) = P {g(X) 6= Y} → min
g

I Solution: Bayes rule

∀x ∈ X , g∗(x) = 2I{η(x) > 1/2} − 1

I Bayes error L∗ = L(g∗)
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Main Paradigm: Empirical Risk Minimization

I Training sample (X1, Y1), . . . , (Xn, Yn)with i.i.d. copies of (X, Y)

I Class G of classifiers (massive catalog)
I Empirical Risk Minimization principle

ĝn = arg min
g∈G

Ln(g) :=
1
n

n∑
i=1

I{g(Xi) 6= Yi}

I Mimic the best classifier in the class

ḡ = arg min
g∈G

L(g)
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Does the ERM principle works?

Predict labels of past data
vs

Predict labels of future data



Empirical Processes in Statistical Learning

I Bias-variance decomposition

L(ĝn)− L∗ ≤ (L(ĝn)− Ln(ĝn)) + (Ln(ḡ)− L(ḡ)) + (L(ḡ)− L∗)

≤ 2
(
sup
g∈G
| Ln(g)− L(g) |

)
+

(
inf
g∈G

L(g)− L∗
)

I Concentration inequality
With probability 1− δ:

sup
g∈G
| Ln(g)− L(g) |≤ E sup

g∈G
| Ln(g)− L(g) | +

√
2 log(1/δ)

n
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The ERM principle works!

With enough good training examples and computing power!



MS1M (Guo et al, 2016)LFW (Huang et al, 2007)

13K images, 5.7K people 5.2M images, 93.4K people

Machine Learning Implemented at Large Scale
In the Big Data era, massive datasets are available but... the acquisition
process may be poorly controlled.

In facial recognition (FR), public databases do not represent well
the target population in terms of ethnicity and gender.
FR systems performmuch better on certain segments of the
population

8



ROC (DET) Curve
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(Grother and Ngan, 2019)

FPR for t s.t. FPR   = 10MW
-3FPR FPR

M/F: Male/Female
W/B: White/Black 

FR systems are less accurate for certain social groups

In FR, theROC curve evaluates a similarity function s w.r.t. its ability to
separate positive and negative observations with thresholding s > t. (le�)

Recent reports of the NIST show discrepancies in error rates between
social groups for FR. (right)
At fixed t, 13×more FP for black females than white males.
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Deployment of Machine Learning - Threats

I In many situations, training data are ’easily available’ and ’Big’.
Poor control of the acquisition process of the training data!

I The generalization ability of predictive rules is established
when

Ptrain = Ptest

Otherwise? It requires novel versions of ML algorithms, new
dedicated analyses and auxiliary information about the data
acquisition process

I Many selection bias issues documented in the literature
’Women also Snowboard: Overcoming Bias in Captioning
Models’ in ECCV 2018, L.A. Hendricks et al.

I In the Big Data era, can the ideas of the Scarce Data era, survey
theory in particular, be of any help?



(Ganin et al, 2016)

Domain Adaptation - Transferring Deep Features

In computer vision, most of the
transfer learning work focuses
on Domain Adaptation (DA).

Most DA work seeks to correct for
covariate shi� (ptrain 6= ptest)
with invariant deep features,
and sometimes also models
di�erences in posterior distributions.
[?] [?]

In e.g. [?], an approach
to learn invariant deep features
between visual domains is proposed.
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How to apply ERM to biased data?
I Goal: minimize the risk

LP(θ) = EZ∼P[`(Z, θ)]

over the decision spaceΘ, where P is the test/target
distribution

I Training data available Z′1, . . . , Z′n
i.i.d.∼ P′, with P′ 6= P

I A specific transfer learning problem

I Heuristic: solve a minimization problem

min
θ∈Θ

L̂n,ω(θ),

where the objective is a weighted empirical risk

L̂n,ω(θ) =
n∑
i=1

ωi`(Z′i , θ).
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How to apply ERM to biased data?

I Ideally, pick the ωi’s, so that

sup
θ∈Θ

∣∣∣L̂n,ω(θ)− LP(θ)
∣∣∣ = OP(

√
log n/n)

I Challenges:
I Design methods/algorithms to build the debiasing weights
I Study the fluctuations of the nearly debiased risk

I Some auxiliary information about the biasing mechanism is
required!
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A First Go: Training from Survey Data

I Framework: original sample (Z1, . . . , ZN) viewed as a
superpopulation

I Sampling plan RN = probability distribution on the ensemble
of all nonempty subsets of {1, . . . , N}

I Let S ∼ RN and set εi = 1 if i ∈ S, εi = 0 otherwise
The vector (ε1, . . . , εn) fully describes the training sample S

I First and second order inclusion probabilities:

πi(RN) = P{i ∈ S} and πi,j(RN) = P{(i, j) ∈ S2}

I Do not rely on the raw empirical risk based on the sample S:
1

#S
∑

i∈S `(Zi, θ) is a biased estimate of LP(θ)
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Horvitz -Thompson theory
I Suppose that the inclusion probabilities are known
I Inverse Probability Weighting (IPW): Horvitz-Thompson
estimator of the empirical distribution of the Zi’s

1
N

N∑
i=1

εi
πi
δZi

I It is not a probability measure in general but yields an
unbiased estimate of the (empirical) risk

LRNN (θ) =
1
N

N∑
i=1

εi
πi
`(Zi, θ)

I The Horvitz Thompson empirical risk minimizer

arg min
θ∈Θ

LRNN (θ) = θ̂εN
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A functional non-asymptotic Horvitz -Thompson theory

I Due to the dependence structure of the terms averaged in the
HT risk, investigating the fluctuations of the supremum

sup
θ∈Θ

∣∣∣LRNN (θ)− L̂N(θ)
∣∣∣

is not straightforward!

I Many situations can be handled: when data are sampled from
I a Poisson scheme
I a survey plan such that the εi’s are negatively associated, e.g.
rejective sampling, Srinivasan sampling, Rao-Sampford
sampling, Successive sampling, Pareto sampling, Post-stratified
sampling ...

I any plan that can be tightly coupledwith one of the schemes
above
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On the use of survey schemes for machine-learning
Tominimize L̂N(θ), rather than implementing SGD based on
mini-batches selected by simple sampling without replacement,
use a Poisson scheme with inclusion probabilities positively
correlated to

π∗i (θ) = N0
||H−1/2N ∇`(Zi, θ)||∑N
j=1 ||H

−1/2
N ∇`(Zi, θ)||

,

with HN = ∇2L̂N(θ∗N) to drastically reduce the asymptotic variance

0 500 1000 1500 2000 2500 3000

0
10

00
20

00
30

00
40

00

More in Bertail, Chautru, Clémençon & Papa (2018)
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Biased training data with known inclusion probabilities:
done!

I It works for successive sampling, post-stratified sampling, etc.

I When the πi’s are known, the IPWmethod applied to ERM
produces predictive rules with the same performance as that
attained by ERM based on unbiased data

More in e.g. Bertail, Clémençon & Papa (2016), Bertail, Chautru
& Clémençon (2016, 2018)

I Well ... but what if the inclusion probabilities are unknown?

Youmay estimate themwhen you have some knowledge of the
biasing mechanism...
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ERM under Random Censorship
I Regression framework: predict a random duration Y ≥ 0 based
on a random vector X through f(x), so as to minimize

LP(f) = E[(Y − f(X))2]

I Right censored output data: n independent copies (Xi, Ỹi, δi) of

X, Ỹ = min{Y, C}, δ = I{Y ≤ C},

assuming that Y and C are conditionally independent given X
I Applying ERM to the (Xi, Ỹi)’s would naturally lead to severe
underestimation

I Set SC(t | X) = P{C > t | X} and rewrite the risk as

LP(f) = E
[
δ(Ỹ − f(X))2

SC(Ỹ− | X)

]
17



ERMwith IP(C)W

I Inverse of Probability of Censoring Weights: minimize

L̃n(f) def
=

1
n

n∑
i=1

δi

ŜC(Ỹi− | Xi)
(
Ỹi − f(Xi)

)2
I The probability of censoring can be estimated by the
Kaplan-Meier method

I The concentration properties of the process {L̃n(f)− LP(f)}f∈F
can be established by means of linearization techniques

I Neglecting the bias error due to the plug-in step, the classic
learning rate OP(

√
log n/n) is attained by ERMwith IPCW

More in Ausset, Clémençon & Portier (2019)
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ERMwith approximate IPCWworks!
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But you need to know something about the selection bias process
or to learn it from extra data!
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Weighted ERM beyond IPW

I Assume P << P′. LetΦ = dP/dP′

I Weights and Importance Sampling

1
n

n∑
i=1

Φ(Z′i)`(Z
′
i , θ)

is an unbiased estimate of LP(θ)

I In various cases (e.g. covariate shi�, positive-unlabeled
learning, availability of several biased training samples),Φ can
be estimated by means of the Z′i ’s and auxiliary information
about the target population

More in e.g. Clémençon and Laforgue (2019), Achab, Clémençon,
Tillier and Vogel (2019) and Bertail, Clémençon, Guyonvarch & Noiry
(2021)
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Learning the ERMWeights - Unknown Poisson Sampling

I Assume P << P′ andmacro-information about P is known
(e.g. moments)

I A two-stage learning procedure:
1. learn the weights ωi so as to reproduce the macro-information
2. solve the weighted ERM problem

I Under appropriate conditions, one gets the same learning
rate as if the sampling schemewas known

I If the macro-information is rich enough, this an be extended
even if P << P′ does not hold

More in Bertail, Clémençon, Guyonvarch & Noiry (2021) and in
Clémençon, Guyonvarch & Noiry (2024)
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Assessing Selection Bias - a ML approach

I How to test that P 6= P′? High-dimensional two-sample
problem.

I If selection bias is significant, what kind of information is
required to correct it?

I A novel ML approach based on bipartite ranking

More in Clémençon, Limnios & Vayatis (2021, 24)
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In Facial Recognition, reweighting may be insu�icient!
Certain learning subproblems can bemuch harder than others,
possibly causing a great accuracy disparity.

See e.g. Bharadwaj et a. (2020)
Fairness constraints must be incorporated to the ERM program.
Why facial recognition algorithms can’t be perfectly fair? Clémençon &
Maxwell (the Conversation, 2020).
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Fair Machine Learning, beyond Biometrics

Algorithmic decisions are increasingly used in many domains:
Banking (e.g. loans) Recruting (e.g., hiring)
Insurance (e.g. cars) Judiciary (e.g., bail)

Recently, the fairness of algorithms has gathered lots of attention.
05/2016: The COMPAS system predicts recidivism likelihood for US courts.

Algorithms are designed for the interest of some party,
fairness in ML suggests confronting those to the law.
“Predictive models are really just opinions embedded in math.” C. O’Neil.

Lack of fairness is not always a consequence of selection bias.
An illustration is given by age performance gaps in biometrics.
See e.g. Achab, Clémençon, Tillié & Vogel (2020).
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Fairness Definitions in Binary Classification

A lot of recent works considered fairness in binary classification,
with two sensitive groups.
[?, ?, ?]

They add a sensitive variable Z ∈ {0, 1} to the usual binary
classification model (X, Y), and learn g(X) from:

Dn = {(X1, Y1, Z1), . . . , (Xn, Yn, Zn)}.

Many definitions of fairness exist, and apply to specific use-cases.
· Treatment: g(X, Z) = g(X) a.s.
· Impact: P{g(X) = +1 | Z = 0} = P{g(X) = +1 | Z = 1}
· Error: P{g(X) 6= Y | Z = 0} = P{g(X) 6= Y | Z = 1}
· FPR: P{g(X) = +1 | Y = −1, Z = 0} = P{g(X) = +1 | Y = −1, Z = 1}
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On the Design of Fair Scoring Rules

I True positive rate:

1− Gs(t) = P{s(X) ≥ t | Y = 1}

I False positive rate:

1−Hs(t) = P{s(X) ≥ t | Y = −1}

ROC curve: t 7→ (1− Hs(t), 1− Gs(t))

AUC = Area Under the ROC Curve

Fairness issues concern specific FPR ranges.



ROCG(0)
s ,G(1)

s

Learning with PointwiseROC Constraints
Bellet, Clémençon, Vogel (2021)

Tomeasure the di�erence between cdfs for Z = 0 and Z = 1:

∆H,α(s) = ROC H(0)
s ,H(1)

s
(α)−α and ∆G,α(s) = ROC G(0)

s ,G(1)
s

(α)−α.

IncorporatemH pointwise constraints for∆H,· andmG for∆G,· as a
penalization, andmaximize LΛ in S , where:

LΛ(s) := AUC Hs,Gs −
mH∑
k=1

λ
(k)
H |∆H,α(k)

H
(s)| −

mG∑
k=1

λ
(k)
G |∆G,α(k)

G
(s)|.

Finite-sample generalization bounds of
order OP(n−1/2) have been proved.
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Accuracy vs Fairness: Satisfactory trade-o�s?
German Credit Dataset (German) in [?, ?, ?, ?]. Sensitive variable: gender.
Bank Marketing Dataset (Bank) in [?]: predict whether a client shall subscribe to a
term deposit. Sensitive variable: age.

Manuscript under review by AISTATS 2021
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Figure 10: ROC curves for Bank and German for a score learned without and with fairness constraints. On all
plots, dashed and solid lines represent respectively training and test sets. Black curves represent ROCHs,Gs

, and
above the curves we report the corresponding ranking performance AUCHs,Gs

.

Figure 11: ROC curves for Adult and Compas for a score learned without and with fairness constraints. On all
plots, dashed and solid lines represent respectively training and test sets. Black curves represent ROCHs,Gs , and
above the curves we report the corresponding ranking performance AUCHs,Gs .
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