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Context : Parkinson’s Disease (PD)
• Second most common neurodegenerative disease

• Affects 1% of people over 60 years 

• Impact on Central Nervous System
• Destruction of dopaminergic neurons in the substantia nigra
• Causes Motor deficits

• Rigidity, bradykinesia, rest tremor

• Causes non-motor symptoms
• Depression, anxiety, dysautonomia

• Delayed Onset of Symptoms
• Symptoms occur years after disease onset
• 60% of dopaminergic neurons already lost by diagnosis

• Importance of Early-stage Detection
• Allows testing of treatments before irreversible brain damage
• Slows down or halts disease progression
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Motivation and Objectives
• Hypomimia, known as Facial bradykinesia, 

Masked Face   
• Common early-stage symptom of Parkinson's Disease   
• Characterized by 

• Decrease in facial movement 
• Loss of emotional expression in the face

• Dysarthria
• Speech disorder when the muscles a person uses to 

speak become weakened
• Dysphonia, impairment in the ability to speak 

normally due to muscle tightenss
• harsh, weak or breathy quality of voice

• Negative Social Consequences 
• Lack of facial expressions may lead to social rejection by 

others 
Objective

• Parkinson's disease assessment based on hypomimia 
using face & Audio videos
• DIGIPD project : Validating DIGItal biomarkers for better 

personalized treatment of PD 3

IEEE int. Conference on Bioinformatics and Biomedicine 2017
PdAssist: Objective and quantified symptom assessment of 
Parkinson's disease via smartphone
Yiqiang ChenXiaodong YangBiao ChenC. MiaoHanchao Yu

https://www.semanticscholar.org/paper/PdAssist%3A-Objective-and-quantified-symptom-of-via-Chen-Yang/a4b19c16fd53f540bc1126251eac7a5a813986f8
https://www.semanticscholar.org/paper/PdAssist%3A-Objective-and-quantified-symptom-of-via-Chen-Yang/a4b19c16fd53f540bc1126251eac7a5a813986f8
https://www.semanticscholar.org/author/Yiqiang-Chen/2155140947
https://www.semanticscholar.org/author/Xiaodong-Yang/9264739
https://www.semanticscholar.org/author/Biao-Chen/2146712337
https://www.semanticscholar.org/author/C.-Miao/1679209
https://www.semanticscholar.org/author/Hanchao-Yu/3273556


▪ ERA PerMed : ERA-Net Cofund, supported by 32 partners from 23 countries, cofunded by the EU

• Joint European Transnational Call for collaborative innovative research projects in Personalised Medicine

▪ ERA PerMed DIGIPD: Validating DIGItal biomarkers for better personalized treatment of Parkinson 

Disease’s (PD)

▪ Partners

• IP Paris / Telecom SudParis France
• ICM - Brain Paris institute France
• Fraunhofer Society Germany
• University Hospital Erlangen Germany
• Portabiles Healthcare Technologies Germany
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• Université de Namur Belgium

• Association Parkinson Madrid Spain

https://www.digipd.eu/

DIGIPD project



Audio and Face Digital Markers (DM) based on Machine Learning & Deep 
Learning (DL) Foundation Models

Research Team
▪ Institut Polytechnique de Paris, Telecom SudParis

• Anas Filali Razzouki (Face Digital Markers), Quang Dao Vu (Voice Digital Markers), Dijana 
Petrovska-Delacrétaz, Mounîm  El-Yacoubi

▪ ICM - Paris Brain Institute, Sorbonne Université, Inserm, CNRS, APHP, Hôpital Pitié-
Salpêtrière, Paris, France

• Laetitia Jeancolas, Graziella Mangone, Sara Sambin, Alizé Chalançon, Manon Gomes, Stéphane 
Lehéricy , Jean-Christophe Corvol, Marie Vidailhet, Isabelle Arnulf

IP Paris / TSP Contributions to DIGIPD



Outline
• ICEBERG Dataset 

• PD assessment based on facial AUs 
• Feature extraction-based on facial AUs
• PD vs. HC classification
• Interpretability (feature importance)
• PD sex effect analysis 
• Longitudinal analysis 
• Correlation between AUs with clinical scores and DAT-scan

• Face-based PD assessment based on Vision Foundation Models
• Optical flow extraction 
• Foundation Models based Video Vision Transformers (FM-ViViTs) 
• Classification of PD vs.  HC
• Interpretability
• Fusion foundation models and AU-based classifiers for PD classification

• Voice-based PD assessment based on Speech Foundation Models

• Perspectives
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ICEBERG Dataset

• ICEBERG Protocol
• Longitudinal study at the Paris Brain Institute (ICM)

• Aim to identify and validate biomarkers of PD

• Participants
• Early-stage PD patients (disease duration < 4 years)

• HC subjects had no neurological disorders

• Participants visited the hospital once a year for 5 years

• Participants underwent several tests 
• Neurological examination, motor and cognitive tests

• biological sampling, brain Scans

• and audiovisual recordings
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PD HC

Biological sex Male Female Male Female

No. of 
videos (294) 126 77 58 33

No. of 
subjects (154) 70 39 26 19

Age 
(years) 64.2 ± 9.4 65.6 ± 8.6 63.4 ± 9.5 63.1 ± 8.5

Hoehn yahr 1.9 ± 0.3 1.86 ± 0.55 - -

MDS-UPDRS  III
 total 33.9 ± 6.9 28.9 ± 8.3 3.9 ± 2.7 5.5 ± 3.3

MDS-UPDRS III 
face item 1.1 ± 0.5 0.9 ± 0.4 - -

ICEBERG Video-Feb2023 dataset recordings



ICEBERG Audio-Visual Database
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ICEBERG : initially designed to detect PD from speech
• Recording Details

• The recording session lasts 15 to 20 minutes 
• Participants perform 25 speech tasks

• Rapid repetitions of syllables :
• /pa/,/pou/, /kou/, /poupa/, /pakou/, /pataka/, /bagada/, 

/patikou/, /pabikou/,/padikou/
• Maintain sound /a/ for as long as possible
• Pronounce sound /a/ like a siren
• Monologue, reading (text, dialogue)
• Repetitions of short sentences
• Repeat the syllables /pa/, /kou/, and /pa kou/ slowly
• Silence

• Webcam characteristics
• Frame rate = 24 fps 
• Resolution = 1920 * 1080 pixels 

PD subject performing 
3 selected speech tasks



PD Analysis based on Facial Action Units 

• Handcrafted features: based action units signal derivatives

➔Fed as input  to XGBoost classifier to detect hypomimia 

• Interpretability: reveal facial regions linked to hypomimia 

• Effect of sex and longitudinal analysis

• Correlation between AUs and Clinical Scores and DatScan
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Facial Action Units (AUs) 

• Action Units (AUs) 

• Developed by Carl-Herman Hjortsjö, and later adopted 

by Paul Ekman and Wallace V. Friesen

• AUs = basic movements of facial muscles

• Extracted at each frame with intensity from 0 to 5

• Compact representation 

• Each AU =  specific movement pattern in the face

10Visualization Reference: iMotions.com



Feature Extraction 
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• Video Global representation: 28 Statistical measures are calculated across the AUs or Δ𝑘AUs frames
• Including basic descriptive statistics (e.g., mean, percentiles, etc.), entropy measures, frequency domain measures

• Advantage over local representation enhances robustness, captures temporal patterns, allows for simpler explainability and correlation analysis

• We use the OpenFace software that extracts 17 AUs out of 44 for each frame

• Movement encoding : Derivative of AUs with step 𝑘 : 𝛥𝑘𝐴𝑈(𝑖) = 𝐼𝑛𝐴𝑈(𝐹𝑟𝑎𝑚𝑒(𝑖 + 𝑘)) − 𝐼𝑛𝐴𝑈(𝐹𝑟𝑎𝑚𝑒(𝑖))

• Step 𝑘 tuned according video frame rate and speech task

A video is represented as time series of AUs or Δ𝒌AUs 



Experiments: PD vs. HC Classification

• For each video task, Δ𝑘AUs calculated with step 𝑘 from 1 to 20

• For each 𝑘, Δ𝑘AUs are input to XGBoost

• XGBoost ➔ better adapted to tabular features & imbalanced class distribution

• Validation : 5-fold nested cross-validation (CV)

• Nested CV ➔ splits data into 5 outer folds for testing, with 5 inner folds for training and validation

• Validation : XGBoost hyperparameters + step 𝑘 optimization + classification threshold 

• Test: acts as a blind tests (unbiased estimate of performance)

• Evaluation Metrics: Area Under the Curve (AUC), Balanced Accuracy (BA)

• AUC ➔ threshold independence, frequently employed in clinical studies

• BA➔ proficiency in addressing class imbalance

• Optimal 𝑘 (𝑘*) ⇒ highest average AUC on the validation sets 

• Subject prediction = Mean classification scores across visits
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Results: Optimal Step 𝒌 (𝒌*) for DDK Tasks

• DKK (Diadochokinesi) 

• Rapid repetition of syllables

• The graphs exhibit a periodic pattern 

• characteristic of syllable repetition

• Graph period (P) ≈ average duration (in 

frames) of an expression

• The more syllables, longer the period:

• For /pataka/ or /bagada/, P = 10, 𝑘* = 6

• For /pakou/, P = 7, 𝑘* = 4 

• For /pa/, P = 4, 𝑘* = 1

• AUC of Δk*AUs >> AUC of AUs (𝑘 = 0) 
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Results: Optimal Step 𝒌 (𝒌*) for Other Tasks

• The graphs exhibit an aperiodic pattern 

• The AUC with Δ𝑘AUs for 𝑘>0 better than 𝑘=0

• 𝑘 = 0, only AU intensities are used

• Silence task (no mouth movement)

• Movement is captured in the eye region
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Task Signals Best 
Statistical Measure (𝑺𝑴)

AUC (%) BA (%)

VB SB VB SB

/pataka/

Δk*=6 AUs

signal power 79 82,4 ± 3,3 73,6 76,8 ± 3,8

absolute variance 78,7 83,9 ± 3,1 71,6 74,4 ± 4,0

absolute histogram entropy 77,9 81,3 ± 3,4 72,2 74,5 ± 3,9

AUs
total power (spectral density) 76,8 81,4 ± 3,4 69,1 74,6 ± 4,0

histogram entropy 76,4 82,9 ± 3,3 67,5 75,0 ± 3,9

/bagada/

Δk*=6 AUs
absolute median 80,1 86,6 ± 2,9 69,8 73,9 ± 4,0

absolute fourth moment 74,5 78,7 ± 3,7 72,8 70,7 ± 4,1

AUs
75 percentile 74,6 80,6 ± 3,5 68,3 70,6 ± 4,1

max 71,9 76,6 ± 3,9 69,3 69,4 ± 4,1

Monologue

Δk*=10 AUs
absolute histogram entropy 78,4 80,8 ± 3,5 70,2 71,0 ± 4,1

absolute 75 percentile 76,5 79,1 ± 3,6 69,5 67,9 ± 4,2

AUs
range 76,8 79,1 ± 3,6 69,2 70,6 ± 4,1

max 76,4 75,5 ± 3,9 70,3 69,4 ± 4,1

Tasks 
fusion

Δk* AUs SMs Combined 87,4 91,4 ± 2,2 77,2 78,9 ± 3,8

AUs SMs Combined 84,7 87,3 ± 2,8 70 76,3 ± 3,9

Results: PD vs. HC Classification

• Best 𝑆𝑀s for classification:

• Basic descriptive statistics

• e.g., variance, median, maximum, range

• Signal power : average energy of the signal

• Total power : overall energy across frequencies

• Histogram entropy: measuring signal’s  complexity

• AUC of 91.4% for PD vs. HC 

➔Effective hypomimia detection in PD 

• AUC : Δ
𝑘∗

AUs > AUs

[] Anas Filali Razzouki, M.A. El-Yacoubi, et al. (2024) “Leveraging Action Unit Derivatives for Early-Stage 
Parkinson's Disease Detection” Innovation and Research in BioMedical engineering (IRBM).



Interpretability with 
𝑨𝒃𝒔𝑽𝒂𝒓(𝚫𝒌𝑨𝑼𝒔) Based 

Model SHAP Technique 

• Task = \pataka\

• Each dot = one AU feature for a video

• Lower feature values favor  PD prediction

• Higher feature values favor HC prediction

✓ Consistent with hypomimia definition

• Top 7 AUs:

• AU12, AU15, AU1, AU17, AU7, AU25, AU26

• Importance score > (1/17) = 0.058 = random score

• Discriminate more PD vs. HC 

• Mostly located in the mouth region 

• Except AU1 (inner brow raiser), AU7 (lid tightener)

✓ Consistent with speech task scenario

Favors PD Favors HC 
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Visualization of Important AUs on the ICEBERG Database
• Dynamic automatic encoding of AUs across frames 

• Arrow length = Intensity of AU
• Higher Intensity of AU ~  
• Lower Intensity of  AU ~ 

Healthy PersonPD Person

Important AUs found by SHAP
• AU12 : Lip Corner Puller
• AU01 : Inner brow raiser
• AU17 : Chin raiser

• Healthy person has higher intensity activation of important AUs compared to PD person 

Higher AU 
Intensities

Lower AU 
Intensities
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Shap values calculated for 4 individual examples

sex
age at 

V0
Statut wc/mc pr(PD)

UPDRS

3

Hahn 

Yahr

mds

face

a : 

238_V0
M 71 PD wc 0.98 35 2 1

b : 

182_V1
M 41 HC wc 0.02 4 0 0

c : 

247_V0
M 73 PD mc 0.02 28 2 1

d:

218_V1
M 59 HC mc 0.98 0 0 0
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Sex Effect and  Longitudinal Analysis
• Sex Effect

• Multivariate Analysis (XGBoost)
• Males and females have similar AUCs of ~ 84%

• Males have 9% higher recall than females

• Avg. MDS-UPDRS3 is 5 points higher for males

• Univariate Analysis 
• Linear mixed model (factors: PD and Sex)

• 7 AUs significantly linked to PD

• Mouth: AU14 (dimpler), AU25 (lips part), AU26 (jaw drop)

• Eye: AU45 (blink), AU7 (lid tightener), AU4 (brow lowerer) 

• AU45 (blink), AU14 (dimpler) significantly linked to sex
• Well known in the literature

• No significant interaction between disease & sex

• PD effect on AUs is sex-neutral

• PD Left-onset women blink less than right-onset

• side-onset = Side of first motor symptoms appear

• Longitudinal Analysis
• Multivariate Analysis (XGBoost)

• AUC at V0 and Vf are similar AUCs of ~ 78%

• Recall at V0 is 7% higher than at Vf

• Avg. MDS-UPDRS3 decrease from V0 to Vf (3 points)

• Univariate Analysis 
• ANOVA at V0 and Vf (separately)
• 4 AUs significantly linked to PD at V0, not Vf

➔ PD detection harder at Vf than V0 (not significantly) 
• Patients’ Levodopa dosage rose by 60% from V0 to Vf
• Patients were recorded while ON medication state
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V0 : Initial Visit, Vf : Final Visit

[] Anas Filali Razzouki, M.A. El-Yacoubi, et al. (2025) “Clinical Interpretability of Parkinson disease's detection based on Facial Action Units” npj
Parkinson's Disease Journal.



Correlation between AUs and Clinical & DATScan scores
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Motor Clinical Items Agility Rigidity Bradykinesia Total 
MDS-UPDRS3

Limb Side Left  Right Upper Left Upper Right Lower Right Neck All All

AUs

AU17
(Chin raiser)

AU15 
(Lip corner) 
depressor

AU17
(Chin raiser)

AU07 
(Lid tightener)

AU07 
(Lid tightener)

AU25
(Lips part)

AU01 (Inner 
brow raiser)

AU01 (Inner 
brow raiser)

Spearman (r)
OFF Med state -0.34 -0.42 -0.34 -0.38 -0.32 -0.3 -0.37 -0.31

ON Med state - - - -0.37 - - -0.31 -

• Negative significant correlations (𝑝 < 0.05) between key AUs and some clinical scores
• AUs  strongly significant with clinical scores include important AUs found by SHAP for PD vs. HC
• AUs show stronger and more correlations OFF state compared to ON state

• Patients recorded within 12 hours of morning medication intake
➔This may reduce the consistency of ON-state measures, while offering OFF-state measures a stable baseline

• No statistical significance between the 17 AUs and DATScan or MDS-face
• For Dat-scan, possibly due to only 18 PD patients considered 
• For MDS-face, may be due to dominant class being 1

• AU features = 𝐴𝑏𝑠𝑉𝑎𝑟(Δ𝑘𝐴𝑈𝑠) from /pataka/

• The clinical score are measured in both the OFF and ON state 



Relationship Between MDS-Face Scores and PD Predictions
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MDS-UPDRS3 
face item

No. 
Videos

Detection 
Rate Detection probability 

3 (moderate hypomimia) 3 100% > 0.75

2 (mild hypomimia) 30 83% Most detections > 0.65

1 (minimal hypomimia) 147 76% Mixed range of values

0 (no hypomimia) 21 62% Mixed range of values

• MDS-UPDRS3 Face item (mds_3_2) used by clinicians to assess the degree of hypomimia

• 0 : Normal (no hypomimia)                                              2 : Mild: decreased blinking frequency + mask-like facies in the face lower part

• 1 : Minimal (only decreased blinking frequency)  3 : Moderate: Mask-like facies with sometimes separated lips when rested mouth

Observations

• Trend observed: detection rates increases as MDS-face scores increase
• MDS-Face Score = 0 (no hypomimia): detection rate of 62%

• 𝐴𝑏𝑠𝑉_Δ𝑘∗𝐴𝑈s encode subtle muscles movements at very early stage 

• Ability to detect hypomimia even for MDS-UPDRS3 face item = 0
➔ Potential of our scheme to support clinicians for early-stage detection of hypomimia

PD detectedPD not detected



Vision Foundation Models for PD Analysis 

• Automatic features based on transformers and optical flow (OF)

• Combined RGB and OF modalities for robust  PD analysis

• Explainability: link auto-extracted features to AUs

• Fusion of AUs, OF-based and RGB-based transformer classifiers 
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Optical Flow Extraction
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• Movement Encoding: Optical flow between 𝐹𝑟𝑎𝑚𝑒(𝑖) and 𝐹𝑟𝑎𝑚𝑒 𝑖 + 𝑘
• The movement is encoded at the pixel levels rather than within specific regions, as seen with (𝛥𝑘𝐴𝑈(𝑖))
• Optimal step 𝑘∗ found with the previous experiments based 𝛥𝑘𝐴𝑈(𝑖)

Liong et al. [20] 



Visualization of Optical Flow Extraction for the ICEBERG data
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Optical FlowRGB

• Video of PD patient performing /pataka/ speech task
• The optical flow is calculated with step 𝑘 = 𝑘∗ = 6

• 𝑘∗ = 6 was the optimal step found with /pataka/ speech task with 𝛥𝑘𝐴𝑈

• Optical flow components : 
• Vertical component (𝑣) : green channel 
• Horizontal component (𝑢) : blue channel
• Subtle deformation from 𝑢 and 𝑣 : red channel



Self-Supervised Video Pre-training (SSVP)
• Masked Autoencoding: A technique to reconstruct masked or corrupted inputs

• Applications:
• NLP: Predicts masked words (e.g., BERT)
• Computer Vision 

• Image Pre-Training: Learns spatial patterns by reconstructing masked image regions
• Video Pre-Training: Self-Supervised Video Pre-Training (SSVP)

• Self-Supervised Video Pre-Training (SSVP)
• Key Idea: Captures spatial and temporal patterns by masking and reconstructing video cubes
• Advantages:

• Uses unlabeled video data
• Captures temporal & spatial patterns

• Prominent Foundation Models-based SSVP Method
• VideoMAE: Video Masked Auto Encoder
• MARLIN: Masked Autoencoder for facial video Representation LearnINg
• V-JEPA: Video-based Joint-Embedding Predictive Architecture
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Video Masked Auto Encoder (VideoMAE) Model
• Foundation Model-based Video Vision Transformer (Encoder-Decoder Architecture)

• Masks and reconstructs tubes within videos to learn temporal and spatial dynamics

• VideoMAE is pre-trained on 409,000 videos from two datasets:
• Kinetics-400 dataset: Contains 400 action classes
• Something-Something V2 dataset: Contains 174 motion-centric action classes

• VideoMAE ranked among the top 5 state-of-the-art models for action recognition
• Action recognition datasets: HMDB-51, Something-Something V2, UCF101, and AVA v2.2 datasets

Feature Embeddings Down stream tasks (classification,  etc.)



Feature Extraction based on Foundation Models with Vision  

• Video Decomposition: each video is decomposed into non-overlapping chunks
• Each chunk with dimension 16×224×224×3, consisting of optical flow (OF) or RGB images (224×224×3)

• Feature Extraction:
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Embedding dimension = 768 for VideoMAE and MARLIN 
Embedding dimension = 1024 for V-JEPA

1 RGB chunk = 16 RGB images, 
each with size (224,224,3)

Self Supervised 
Transformer 

Encoder 
d-dim features XGBoost to 

classify PD vs HC

1 OF chunk = 16 OF images, 
each with size (224,224,3)

Self Supervised 
Transformer 

Encoder 
d-dim features XGBoost to 

classify PD vs HC

• Evaluation metrics: Area under the curve (AUC), balanced accuracy (BA)

• Validation technique: 5-fold nested cross-validation



Results: PD vs. HC Classification Based on Self Supervised Transformer 
Encoder-Based Optical Flow or RGB
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Task FM-ViViT Type
Optical Flow (OF) RGB

AUC (%) BA (%) AUC (%) BA (%)

/pataka/

V-JEPA
VB 73,4 70 62 61,7
SB 78.6 ± 3.7 73.2 ± 4.0 65.6 ± 4.6 62.6 ± 4.3

MARLIN
VB 73 66,5 65,5 60,4
SB 75.2 ± 4.0 68.7 ± 4.1 65.5 ± 4.6 60.5 ± 4.3

VideoMAE
VB 74,6 69,3 65,2 59,5
SB 79.1 ± 3.6 75.1 ± 3.8 69.6 ± 4.4 62.0 ± 4.2

/bagada/

V-JEPA
VB 73 66,4 65,2 61,5
SB 79.2 ± 3.6 70.8 ± 3.9 68.8 ± 4.4 62.4 ± 4.1

MARLIN
VB 68,3 62 61,9 56,6
SB 70.5 ± 4.3 64.5 ± 4.2 66.1 ± 4.6 63.5 ± 4.1

VideoMAE
VB 70,4 64 66,9 61,9
SB 74.2 ± 4.0 67.3 ± 4.1 69.4 ± 4.4 59.3 ± 4.3

Monologue

V-JEPA
VB 74,6 65,8 75,7 69,3
SB 78.6 ± 3.7 73.8 ± 3.9 79.2 ± 3.6 72.0 ± 4.0

MARLIN
VB 78,7 71,1 68,7 65,7
SB 81.8 ± 3.4 75.5 ± 3.9 74.7 ± 4.0 69.4 ± 3.9

VideoMAE
VB 78,8 72,4 78 75,5
SB 82.2 ± 3.3 76.1 ± 3.8 81.8 ± 3.4 78.4 ± 3.2

• Classifier: XGBoost

• Features

• RGB local embedding features from FM-ViViTs

• OF  local embedding features from FM-ViViTs

Results

• /pataka/ & /bagada/: OF achieved 10% higher AUC than RGB

• Monologue: OF and RGB achieved a similar AUC of 82%

• RGB: Monologue achieved 10% higher AUC than DDK tasks

• Monologue provides: 
• 2.5x more training data than /pataka/

• 4.5x more training data than /bagada/

➔advantageous given the high dimensionality of the training data

• VideoMAE outperforms V-JEPA and MARLIN
➔Continue working only with VideoMAE



Interpretability with 
Embedding Features with SHAP 

Technique for PD vs. HC

• Task = Monologue

• Features: Global embedding-based VideoMAE from OF

• Classifier: XGBoost

• Each dot = one embedding value of video

Sperman Correlation (p<0.05)

𝑨𝒃𝒔𝑽𝒂𝒓(𝚫𝒌𝑨𝑼𝒔) Emb_601 Emb_113 Emb_147

AU26 (jaw drop) -0,64 -0,6 --

AU23 (lip tightener) -0,62 -0,53 --

AU06 (nose wrinkler) -0,55 -0,48 -0.22

• Emb_601 and Emb_113 correlate negatively with AUs
• Higher Feature Values (lower movement) favors  PD prediction
• Lower Feature Values (higher movement) favors HC prediction
✓ Consistent with hypomimia definition 29

Favors PD Favors HC 

Results

• Top 2 features: Emb_601 and Emb_113



Fine-tuning the Foundation Model
• Task: Monologue, Modality: Optical Flow 

• VideoMAE Encoder Fine-Tuning:
• Add classification layer with 2 classes to VideoMAE encoder
• 86M total parameters; we finetune only half (42M)

• Preliminary Findings: Fine-tuning half of the layers performs better than other fine-tuning strategies

• Validation technique: cross-validation with 100 epochs, without any optimization
• Time Constraints: Training 100 epochs takes 17 hours per model on the cluster; nested CV not feasible
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• Fine-tuning improved AUC by 2.5% over XGBoost with extracted embeddings

• Potential Improvement: Use nested CV with 5 validation folds for better optimization

Method Modality AUC (%) BA (%) Rec (%) Spe (%)

Finetune
half the layers

VB 79 74,2 68,3 80

SB 84.6 ± 3.1 79.4 ± 3.4 74.3 ± 4.2 84.4 ± 5.4

Extracted 
Features +  
XGBoost

VB 78,8 72,4 74,8 70

SB 82.2 ± 3.3 76.1 ± 3.8 78.9 ± 3.9 73.3 ± 6.6



Fusion of AUs, OF-Based & RGB-Based VideoMAE Classifiers
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Approach Type AUC (%) BA (%) Recall (%) Specificity (%)

1) Δk* AUs
VB 80.7 73.7 80.7 66.7

SB 82.9 ± 3.3 76.4 ± 3.9 81.7 ± 3.7 71.1 ± 6.8

2) VideoMAE 
(OF & RGB)

VB 79.8 69.1 78.2 60

SB 84.6 ± 3.1 75.7 ± 3.9 82.6 ± 3.6 68.9 ± 6.9

Fusion
of (1) and (2)

VB 82.6 71.3 79.2 63.3

SB 85.9 ± 2.9 78.4 ± 3.7 83.5 ± 3.6 73.3 ± 6.6

• Task : Monologue

• AUs-based experiment
• Fusion of 2 global features-based classifiers: 𝐻𝑖𝑠𝑡_𝑒𝑛𝑡𝑟𝑜𝑝𝑦(Abs(𝚫𝒌*𝑨𝑼𝒔))     and    75_𝑝𝑒𝑟𝑐𝑒𝑛(Abs(𝚫𝒌*𝑨𝑼𝒔))

• OF-Based and RGB-Based VideoMAE experiment
• Fusion of 2 global features-based classifiers : RGB-Based VideoMAE and     OF-Based VideoMAE

• Fusion Experiment (based on averaged probabilities across both approaches)

• AUs Experiment
• Achieved AUC: 82.9%

• VideoMAE (OF & RGB) Experiment
• Achieved AUC: 84.6%

• Fusion Experiment:
• Achieved AUC : 85.9 % 



ICEBERG subset for DM based on DL

• With high quality recordings in hospital

• ICEBERG subset until july-2022 (355 subjects)

• 2 labels: healthy and Parkinson (281 subjects)

• Keep only subjects who have at least 1 session with enough speech tasks ➔ 267 subjects 

• Use all good quality sessions for training 

• Data: 

- 156 males, 111 females 

- 156 Parkinson, 111 healthy

- Split subjects into 5 folds for cross validation

Audio Digital Markers (DM) for PD Detection based on 
Deep Learning (DL) Foundation Models



Deep-learning based acoustic features: SOTA Speech 
Foundation Models

• Speech Foundation models

• Harnessed in 2 ways
• To extract deep feature representations, taken then as input to Machine Learning classifiers

• Finetuned on PD/HC Datasets to act as standalone classifiers

• Foundation models considered in our work
• Wav2vec2.0 (Meta)

• Whisper (OpenAI)

• SeamlessM4T (Meta)

• [1] Baevski A, Zhou Y, Mohamed A, Auli M (2020), « wav2vec 2.0: A framework for self-supervised learning of speech representations. » Adv Neural Inf Process Syst (NeurIPS) 

33:12449–12460 

• [2] A. Radford, J. W. Kim, et al. (2022) , “Robust speech recognition via large-scale weak supervision,” Tech. Rep., OpenAI.

• [3] Barrault, Loïc, et al. (2023) "SeamlessM4T-Massively Multilingual & Multimodal Machine Translation." arXiv preprint arXiv:2308.11596



Speech Foundation Models
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■ Wav2vec2.0
- Pretrained on 53k hours of unlabeled data
- Use raw waveform as input
- Consists of 1DCNN feature encoder and Transformer context 
network

■ Whisper [2]
- Pretrained on 680k hours of labeled data
- Use Log-Mel spectrogram as input
- Encoder-Decoder Transformer architecture

■ SeamlessM4T
- First foundation model for speech.
- Pretrained on 1 millions hours of unlabeled 
speech data
- Finetuned to do multiple speech-related tasks



Finetuning foundation models on the Iceberg dataset for PD classification

• With a large enough dataset such as ICEBERG, it is possible to finetune a foundation DL 

model for better results on PD classification  

• Classification performance for males is generally better than for females

Model Train data Validation data Gender AUC Precision Recall F1
wav2vec2.0 finetuned speech tasks speech tasks all 89.41 83.66 86.49 85.05

wav2vec2.0 finetuned speech tasks speech tasks male 91.76 85.15 92.47 88.66

wav2vec2.0 finetuned speech tasks speech tasks female 85.38 80.77 76.36 78.5

wav2vec2.0 pretrained + SVM speech tasks speech tasks all 88.53 75.86 89.19 81.99

[] Dao, Q., & El-Yacoubi, M. A. , et al. (2025). Detection of Early Parkinson’s Disease by Leveraging Speech Foundation Models. IEEE Journal of Biomedical 
and Health Informatics (JBHI) (pp. 1–10). https://doi.org/10.1109/jbhi.2025.3548917



Future Directions
• Short-Term:

• Develop a dual-stream FM-ViViT architecture combining OF and RGB
• Integrate facial AUs into FM-ViViT for enhanced performance
• Facial AUs to analyze hypomimia in iRBD patients (at risk of developing PD)
• Fusion Facial and Audio Digital Markers

• Mid-Term:
• Incorporate medication timing and dosage into models

• Allows of  finer modeling of PD severity    

• Long-Term:
• Stratify patients based on disease progression using AUs

• Not feasible with current database (PD patients, on average had only 2 videos visits over 5 years)
• Necessity to have more participants’  longitudinal video recordings

• Vision for Clinical Impact:
• Develop clinician-friendly tools and software for early diagnosis and monitoring
• Integrate technology into telemedicine platforms to enhance remote PD management

36



Thank you 

Any questions ?
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