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HM&Co
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• Hydrology	Meteorology	and	Complexity	
• geophysics/environment	to	be	investigated	as	a	complex	
system	

• HM&Co	moto:	strong	variability/heterogeneity	of	natural	
and	man-made	environments	over	a	wide	range	of	scales	

• not	only	applications:	this	inspires/requires	new	
complexity	concepts	and	techniques	
• cascades	
• multifractals	
• complex	networks	
• scaling	anisotropy	

• more	and	more	data	of	higher	quality	and	resolution



Millenium problem of turbulence  !

Art piece ‘Windswept’ (Ch. 
Sowers, 2012): 612 freely rotating 
wind direction indicators to help a 
large public to understand the 
complexity of environment near 
the Earth surface

Polarimetric radar observations of heavy 
rainfalls over Paris region  during 2016 
spring (100 m resolution): 
- heaviest rain cells are much smaller 

than moderate ones 
- complex dynamics of their aggregation 

into a large front
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How many scales and voxels? 
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Computing brute force 
sufficient?  
It requires N cubes of mm3 

to reach the viscous scale 
(≈1mm): 
N ≈ 107(1010)2 =1027  >> 
NA=1023 
whereas Neffective≈107- 106 

==> statistics or stochastics ?



Phenomenology: multiplicative cascades
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• Richardson’s	quatrain	(1922)	:		
Big whirls have little whirls that feed on their velocit and little whirls have lesser have lesser whirls 

and so on to viscosity… 
in the molecular sense. 

• discrete	multiplicative	cascade	processes	(Yaglom	1966,	Mandelbrot	1974…)	
• From	dead/alive	alternative	(β-model)	to	weak/strong	infinite	hierarchy	of	intensities	
• supported	by	an	infinite	hierarchy	of	fractals,		

• i.e.	these	fields	are	in	general	MULTIFRACTAL	

• however,	multiplicative	processes	are	not	indispensable	!



Universal Multifractals (UM)
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• Multifractals:	increasing	variability	clusters	on	smaller	and	
smaller	space-time	fractions,	in	fact	fractal	subsets	

• =>	multi-scaling:	 ,		the		scaling	
function	 	is	nonlinear	for	a	wide	range	of	
resolutions	 	

• Universal	Multifractals	(UM):	stable	and	attractive	multifractal	

processes:		 	

• :	mean	intermittency,	also	the	singularity	of	
the	mean	field.	The	field	is	homogeneous	for	 	

• :	multifractality	index,	measures	the	
increase	of	the	intermittency	with	deviation	from	the	
mean.	The	field	is	monofractal	for	 ,	lognormal	
for	 .	

• Non-conservative	fields:	 	introduces	the	non-
conservative	parameter	H,	e.g.	order	of	fractional	integration/
derivation.

< εq
λ > ≈ λK(q)

K(q)
λ = L /ℓ

K(q) = C1
α − 1 (qα − q)

0 < C1
C1 = 0

0 ≤ α ≤ 2

α = 0
α = 2

φλ =d ελλ−H



Varenna summer school (1983)

ξ(p) = pH + θ(p − α)(1 − p/α)
Fig.1	from	S+L	(1984)	

H = 1/3, α = 5, 5.5, 6

Homogeneous	
or	monofractal
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Wind	tunnel	data	

Anselmet	&al,	1983

• primary	version	of	the	multifractal	formalism	of	Parisi	and	Frisch	(1985)	presented	
at	“Turbulence	and	Predictability	in	Geophysical	Fluid	Dynamics”	organised	by		M.	
Ghil,	R.	Benzi	et	G.	Parisi		

• clustering	of	higher	activity	on	smaller	spacetime	fractions	
• but:	“Still	the	multifractal	model	appears	to	be	somewhat	more	restrictive	than	
Mandelbrot’s	weighted-curdling	model	which	does	include	the	logrnormal	case”.	

• 	the	conference	proceedings	(1985)	refers	to	S+L	(1984)):		
• a	small	perturbation	of	the	ß-model	is	no	longer	limited	to	a	unique	
dimension	 	

• the	divergence	of	higher	order	moments	is	rather	generic	in	cascade	models		
• the	later	introduces	spurious	scaling,	an	analytical	approximation	depending	
on	a	unique	scaling	exponent	H	and	the	critical	order		 			was	proposed:		

• it	was	shown	to	fit	the	experimental	points	from	Anselmet	et	al.	(1983),	see	
fig.	1	with:

(α−model)

α



Butterfly effect and ensemble predictions
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Scheme of the evolution of the empirical pdf evolution of an Ensemble  
Prediction System (EPS), according to Palmer,1999:  from the phase space 
region occupied by the initial ensemble (a), to (b) linear growth phase,  
to (c) nonlinear growth phase, to (d) loss of predictability



Spectral analysis of space-time predictability
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ec (x,t) = u2(x,t).u1(x,t)

eΔ (x, t) = 1
2 u2 (x, t) − u1( x, t)( )2

Lorenz (1969) 
Leith and Kraichnan(1972) 
Metais and Lesieur (1986)

  

€ 

ℓ c =1/kc ≈ t
3 / 2

Flux from correlated eC to 
decorrelated energy eΔ

Similar results with 
turbulence phenomenology: ℓ ≈ ε̄1/2t3/2; ε̄ ≈ 10−3m2s−3, η = 10−3m



Multifractal Predictability
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L

L/λ(t)

L/Λ

A and B strongly dependent

A and B strongly independent

Cascade A Cascade B

Rough idea:  
i) relaxation of (common) past structures ==> flux of the past
ii)   (new) independent structures ==> flux of the future

40



11

•Power law divergence between the realizations A and B,     
=> irrelevance of the finite dimensional ‘LE + MET’ scenario !     
•Drastic loss of variability of forecast C with deterministic sub-grid  
modeling (based on the conservation  of the flux) => ‘baby theorem’:  
stochastic sub-grid modeling does much better than deterministic one!

(Schertzer and Lovejoy,Physica A 2004)

Multifractal Predictability



Rainfall time series prediction: VMD-RNN
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(Zhou et al, 2022)



Rainfall time series prediction: VMD-RNN
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Rainfall time series prediction: VMD-RNN
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Methodologies: multifractal time series analyses
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Rainfall time series prediction: VMD-RNN
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Methodologies: LSTM and ConvLSTM
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Methodologies: Generative Adversarial Networks (GAN) model

18

• Generative:	generate	synthetic	data		
• Adversarial:	a	generator	and	a	discriminator	compete	against	each	other,	zero-sum	
game	

• the	generator	produces	samples	and	try	to	fool	discriminator	
• the	discriminator	distinguishes	real	and	generated	data	

• Networks:	convolutional	neural	network,	ConvLSTM,	fully	connected	network



Precipitation nowcasting: dataset
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• Data	source:	Météo-France1	
• Accumulated	precipitation	(ACRR):	the	5-minute	rainfall	in	1/100	
mm	

• Resolution:	5	min,	1	km

1	thanks	to	Thibaut	Montmerle	
	and	Yu	Nan	for	suggestions	and	guidance



Precipitation nowcasting: UM-GAN model process
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Precipitation nowcasting: results analysis– Event 12/06/2020
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Precipitation nowcasting: Categorical scores – Event 12/06/2020
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Precipitation nowcasting: UM results– Event 12/06/2020
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Conclusions and prospects
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• Conclusions	
• VMD	is	effective	for	time	series	prediction	(LSTM,	GRU	and	
bidirectional	variants),	but	still	underestimates	extremes	

• GAN-based	models	have	better	MAE	and	RMSE	scores,	and	
higher	prediction	accuracy	in	comparison	to	the	ConvLSTM	
without	adversarial	training	or	linear	regression	

• stronger	performance	of	UM-GAN	in	POD	and	CSI	scores,	and		
bias,particularly	for	thresholds	of	10,	20,	30	(1/100	mm	/5’)	

• UM	parameters	from	ConvLSTM	have	a	larger	dispersion	



Conclusions and prospects
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• Prospects	
• increase	accuracy	of	mean	intermittency	(C1)	for	longer	lead	times	
• nowcasting	of	other	geophysical	fields	
• multifractal	prediction	vs.	RNN	prediction	(beyond	GAN)	
• neural	networks	and	complex/climate	networks	
• ensemble	predictions,	or	probalistic	versions

Thomas	et	al.,	EGU	Letters.	2024


