

AI/DL and Nowcasting of Extremely Variable Fields

<u>Daniel Schertzer</u>, Hai Zhou, Ioulia Tchiguirinskaia

École nationale des ponts et chaussées | Institut Polytechnique de Paris

USP-PPI workshop 111 March 2025

HM&Co

Hydrology Meteorology and Complexity

- geophysics/environment to be investigated as a complex system
 - HM&Co moto: **strong variability/heterogeneity** of natural and man-made environments **over a wide range of scales**
 - not only applications: this inspires/requires new complexity concepts and techniques
 - cascades
 - multifractals
 - complex networks
 - scaling anisotropy
 - more and more data of higher quality and resolution

Millenium problem of turbulence !

Art piece 'Windswept' (Ch.

Sowers, 2012): 612 freely rotating wind direction indicators to help a large public to understand the complexity of environment near the Earth surface

DPSRI (dBR) 15:00 / 13-May-2016 **50DX ENPC Paris** +100.0 mm/h 25.1 mm/h 6.3 mm/h 1.6 mm/h 0.4 mm/h 0.1 mm/h DP 50km 1km A200 B150 400pix.dpsri Pdf File IIRDoppler 6 Clutter Filter: Time sampling:4096 1200 Hz 50 km Range: 0.250 km/pixel Resolution Ala type: SRI 1.0 km SRI H: Radar Data Data: Rainbow® Selex ES GmbH

Polarimetric radar observations of heavy rainfalls over Paris region during 2016 spring (100 m resolution):

- heaviest rain cells are much smaller than moderate ones
- **complex dynamics** of their aggregation into a large front

How many scales and voxels?

Computing brute force sufficient? It requires N cubes of mm³ to reach the viscous scale (≈1mm): $N \approx 10^{7} (10^{10})^2 = 10^{27} >>$ $N_{\rm A} = 10^{23}$ whereas $N_{\text{effective}} \approx 10^7 - 10^6$

==> statistics or stochastics ?

Phenomenology: multiplicative cascades

multiplication by 4 independent random (multiplicative) increments

multiplication by 16 independent random (multiplicative) increments

Universal Multifractals (UM)

A schematic illustration of a multifractal field analysed over a scale ratio λ , with two scaling thresholds, λ^{γ_1} and λ^{γ_2} , corresponding to two orders of singularity: $\gamma_2 > \gamma_1$. • **Multifractals**: increasing **variability clusters** on smaller and smaller space-time fractions, in fact **fractal subsets**

- => multi-scaling: $< \varepsilon_{\lambda}^{q} > \approx \lambda^{K(q)}$, the scaling function K(q) is nonlinear for a wide range of resolutions $\lambda = L/\ell$
- Universal Multifractals (UM): stable and attractive multifractal processes: $K(q) = \frac{C_1}{\alpha 1}(q^{\alpha} q)$
 - $0 < C_1$: mean intermittency, also the singularity of the mean field. The field is homogeneous for $C_1 = 0$
 - $0 \le \alpha \le 2$: multifractality index, measures the increase of the intermittency with deviation from the mean. The field is monofractal for $\alpha = 0$, lognormal for $\alpha = 2$.
- Non-conservative fields: $\varphi_{\lambda} =^{d} \varepsilon_{\lambda} \lambda^{-H}$ introduces the nonconservative parameter *H*, e.g. order of fractional integration/ derivation.

Varenna summer school (1983)

- primary version of the multifractal formalism of Parisi and Frisch (1985) presented at "Turbulence and Predictability in Geophysical Fluid Dynamics" organised by M. Ghil, R. Benzi et G. Parisi
- clustering of higher activity on smaller spacetime fractions
- but: "Still the multifractal model appears to be somewhat more restrictive than Mandelbrot's weighted-curdling model which does include the logrnormal case".
- the conference proceedings (1985) refers to S+L (1984)):
 - a small perturbation of the ß-model is no longer limited to a unique dimension (α -model)
 - the divergence of higher order moments is rather generic in cascade models
 - the later introduces spurious scaling, an analytical approximation depending on a unique scaling exponent H and the critical order α was proposed:
 - it was shown to fit the experimental points from Anselmet et al. (1983), see fig. 1 with:

$$\xi(p) = pH + \theta(p - \alpha)(1 - p/\alpha)$$
 $H = 1/3, \alpha = 5, 5.5, 6$

Scheme of the evolution of the empirical pdf evolution of an Ensemble Prediction System (EPS), according to Palmer,1999: from the phase space region occupied by the initial ensemble (a), to (b) linear growth phase, to (c) nonlinear growth phase, to (d) loss of predictability

Spectral analysis of space-time predictability

Flux from correlated e^{C} to decorrelated energy e^{Δ}

Similar results with turbulence phenomenology:

$$\ell_c = 1/k_c \approx t^{3/2}$$

Lorenz (1969) Leith and Kraichnan(1972) Metais and Lesieur (1986)

$$e^{c}(\underline{x},t) = \underline{u}^{2}(\underline{x},t) \underline{u}^{1}(\underline{x},t)$$
$$e^{\Delta}(\underline{x},t) = \frac{1}{2} \Big(\underline{u}^{2}(\underline{x},t) - \underline{u}^{1}(\underline{x},t) \Big)^{2}$$

 $\ell \approx \bar{\varepsilon}^{1/2} t^{3/2}; \ \bar{\varepsilon} \approx 10^{-3} m^2 s^{-3}, \eta = 10^{-3} m$

Multifractal Predictability

Rough idea:

- i) relaxation of (common) past structures ==> flux of the past
- ii) (new) independent structures ==> flux of the future

Multifractal Predictability

Rain simulation (α =1.5, C₁=0.2, H=0.1 on log scale. Realizations A, B are identical until t=0, then they diverge.

Top: Realization A. Middle: Realization B. Bottom, forecast

•Power law divergence between the realizations A and B,
=> irrelevance of the finite dimensional 'LE + MET' scenario !
•Drastic loss of variability of forecast C with deterministic sub-grid modeling (based on the conservation of the flux) => 'baby theorem': stochastic sub-grid modeling does much better than deterministic one!

(Schertzer and Lovejoy, Physica A 2004)

IP PARIS

Step1: Divide the original rainfall time series into a training set and a nontraining set.

Step2: Decompose the training set into K sub-sequences using VMD.

Step3: Sequentially append the non-training data to the training set to generate new appended sequences and repeat decompose each append sequence into K sets of appended sub-sequences.

Step4: Exact the last sample of each set of appended sub-sequences as a non-training sample.

Step5: For each sub-sequences, train four variant RNN models and tune hyperparameters to find an ideal predicting model with optimal parameters.

Step6: For each sub-sequences, input testing samples into the correspond predicting models, and obtain individual predicted results $y_i(t)$.

Step7: Aggregate the predicting results of each sub-sequences to generate the final predicted result $y(t) = \sum_{i=k}^{K} y_i(t)$.

Step8: Use the framework of UM to analyze the predicted and actual time series in the testing samples.

Figure 26: The comparison between predicted and actual daily rainfall values

Tuble 4. Frediction errors for daily time series in the testing set				
	MAE	RMSE	MAPE	
VMD-RNN	0.726	0.852	9.853	
LSTM	6.825	2.612	10.475	
LR	9.239	3.040	18.923	

Table A: Prediction arrors for daily time series in the testing set

- VMD-RNN model has better performance ٠ in predicting high and low values, compared with the pure LSTM and linear regression
- VMD-RNN model has lowest prediction ٠ errors in MAE, RMSE, MAPE

🛞 IP PARIS

Figure 23: PSD of the corresponding last sub-sequence when K from 5 to 10

Methodologies: multifractal time series analyses

- > Trace Moment (TM):
- i. Calculate the empirical statistical moment $\langle \varepsilon_{\lambda}^{q} \rangle$
- ii. Plot the logarithm of $\langle \varepsilon_{\lambda}^{q} \rangle$ versus the logarithm of λ
- iii. Perform linear regression to obtain K(q)
- *iv.* $K'(1) = C_1$ and $K''(1) = \alpha C_1$

Figure 17: Illustration of the Trace Moment technique (Image source: Gires, 2012)

> Double Trace Moment (DTM):

- *i.* $\varepsilon_{\lambda}^{(\eta)}$ is renormalized by upscaling the η -power of the field at maximum resolution
- *ii.* $\left\langle \varepsilon_{\lambda}^{(\eta)q} \right\rangle \approx \lambda^{K(q,\eta)}, K(q,\eta) = \eta^{\alpha}K(q)$
- *iii.* C_1 and α are obtained by the slope and intercept of the linear portion of the log-log plot of $K(q, \eta)$ vs η

Figure 18: Illustration of the Double Trace Moment technique (Image source: Gires, 2012)

IP PARIS

Methodologies: LSTM and ConvLSTM

- Generative: generate synthetic data
- Adversarial: a generator and a discriminator compete against each other, zero-sum game
 - the generator produces samples and try to fool discriminator
 - the discriminator distinguishes real and generated data
- Networks: convolutional neural network, ConvLSTM, fully connected network

Precipitation nowcasting: dataset

- Data source: Météo-France¹
- Accumulated precipitation (ACRR): the 5-minute rainfall in 1/100 mm
- Resolution: 5 min, 1 km

Dataset	Period	Samples
Training	2018/01/01 - 2019/10/17	14014
Validation	2019/10/17 - 2019/12/24	3640

¹ thanks to Thibaut Montmerle and Yu Nan for suggestions and guidance

Precipitation nowcasting: UM-GAN model process

ten 1. Ilan unturn

Step1: Use universal multifractals to obtain three parameters in space and time.

Step2: Generate space-time data with 18 timesteps by continuous-in-scale multiplicative cascades, then to pick the 2D noise data at the lead times at 5min, 30min and 60min.

Step3: **Define UM-GAN architecture** based on the application of space-time nowcasting.

Step4: **Train the generator** to create predictions that try to fool two discriminators.

Step5: Train the spatial discriminator and temporal discriminator to distinguish real data from generated data in space and time.

Step 6: **Continue training** two discriminators and a generator alternately for multiple epochs.

Step7: Save the best generator model for creating predictions in the testing set.

Precipitation nowcasting: results analysis– Event 12/06/2020

Description: the thunderstorm with moderate rain due to a jet stream

Input : previous 6 steps of historical data (14:30, 14:35, 14:40, 14:45, 14:50, 14:55); additional noise data generated by continuous-in-scale multiplicative cascades

Output: (15:00, 15:25, 15:55)

The historical data from six previous time steps

Precipitation nowcasts by three different models and targets at the lead times of 5, 30 and 60 minutes

Precipitation nowcasting: Categorical scores – Event 12/06/2020

22

Precipitation nowcasting: UM results– Event 12/06/2020

E IP PARIS

Conclusions and prospects

Conclusions

- VMD is effective for time series prediction (LSTM, GRU and bidirectional variants), but still underestimates extremes
- GAN-based models have better MAE and RMSE scores, and higher prediction accuracy in comparison to the ConvLSTM without adversarial training or linear regression
- stronger performance of UM-GAN in POD and CSI scores, and bias, particularly for thresholds of 10, 20, 30 (1/100 mm /5')
- UM parameters from ConvLSTM have a larger dispersion

Conclusions and prospects

• Prospects

- increase accuracy of mean intermittency (C₁) for longer lead times
- nowcasting of other geophysical fields
- multifractal prediction vs. RNN prediction (beyond GAN)
- neural networks and complex/climate networks
- ensemble predictions, or probalistic versions

Thomas et al., EGU Letters. 2024