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A. Filoche, D. Béréziat (LIP6, Sorbonne University)

November 21, 2022

Context

Variational data assimilation and deep learning share many algorithmic aspects in common. While the former
focuses on system state estimation, the latter provides great inductive biases to learn complex relationships. It
has already been argued that both methods can benefit from each other [6, 5]. Data assimilation provides a
proper Bayesian framework to combine sparse and noisy data with physics-based knowledge while deep learning
can leverage a collection of data extracting complex relationships from it. Hybrid methods have already been
developed either to correct model error [3, 2], to jointly estimate parameters and system state [1], or to fasten
the assimilation process [7]. Most of these algorithms rely on iterative optimization schemes alternating data
assimilation and machine learning steps.

Following a previous work [4], we propose a hybrid architecture learning the assimilation task directly from
partial and noisy observations, using the mechanistic constraint of the 4DVAR algorithm. Preliminary experiments
on the Lorenz96 system show that the proposed method was able to learn the desired inversion with interesting
regularizing and computational properties. The aim of this internship is to adapt the algorithm to higher-
dimensional systems involving motion fields.

Algorithm

The proposed architecture bridges a neural network and a mechanistic model to directly learn system state
estimation from a collection of partial and noisy observations. The optimization is done only in one step using
the variational assimilation loss function. Here is a schematic view of the hybrid architecture learning the 4DVAR
inversion.
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Dataset – Geophysical Motion

The internship will focus on applying this algorithm using shallow water and advection models. Numerical
schemes are already coded in differentiable software (PyTorch). The assimilation goal is to recover the motion
field.

Potential experiments

• Baseline: 4DVAR, iterative approach (learning over 4DVAR)

• Sensitivity to noise/sparsity

• Accounting for uncertainty quantification with generative models

Administrative stuffs

The internship is funded by SCAI for a duration of 5-6 months. It will be held in LIP6 laboratory (Sorbonne
University) located in the center of Paris.
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