Uncertainty Quantification in Deep Learning

Uncertainty Quantification in Deep Learning

Gianni FRANCHI

U2IS, ENSTA Paris

Presentation 2022

1/66

Uncertainty Quantification in Deep Learning

Plan

© Context

© Uncertainty and Deep learning

© Aleatoric loss

@ Mixture density network

© Calibration of Deep Neural Network

@ Learning loss

@ Bayesian Deep Neural Network and ensembling
© Experiments

© Adversarial Attacks

@ Bibliography

2/66

Uncertainty Quantification in Deep Learning
Context

What is uncertainty in machine/deep learning

@ We make observations using the sensors in the world (e.g. camera)

@ Based on the observations, we intend to learn a model that makes
decisions

@ Given the same observations, the decision should be the same

However,

@ The world changes, observations change, our sensors change, the
output should not change!

@ We would like to know how confident we can be about the decisions

3/66

Uncertainty Quantification in Deep Learning

Context

Why Uncertainty is importan

LeNet (1998) ResNet (2016)
CIFAR-100 CIFAR-100
1 1
L v
W 08 Loigllg gl g
< é)n::g £l é’l
g 0.6 S":E Q:”I gl
n °n 191
g 04 g [
8 s < 1<
1] 1
0.0
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
1.0
Il Outputs
0.8 1 Gap
)
8 06
E
;u) 0.4
0.2
0.0

.().0 02 04 0.6 08 1.0 0.0 02 04 06 08 1.0
Confidence

Figure: Confidence histograms (top) and reliability diagrams(bottom) for a
5-layer LeNet (left) and a 110-layer ResNet (right)on CIFAR-100. [1]

4/66

Uncertainty Quantification in Deep Learning
Context

Why Uncertainty is important?

Imagine an autonomous car with a perception system based on Deep
learning without Uncertainty:

Program: oncomifig'drive
Front camera

Real W Bclan Pedestrian

5/66

Uncertainty Quantification in Deep Learning
Context

Why Uncertainty is important?

Imagine a medical diagnostics based on Deep learning without
Uncertainty:

Why Uncertainty is important?

We build models for predictions, can
we trust them? Are they certain?

7/66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Deep Learning

Deep learning systems are neural network (or convolutional neural
network) models similar to those popular in the '80s and '90s, with
algorithmic inovations, software inovations, and larger data sets.

A

Wl | Al g
ot o : A&x

i w
v

8/66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Deep Learning notations

e Training/Testing sets are denoted respectively by D; = (x;, yi)™";,
D, = (xi, yi)i=;. Without loss of generality we consider the observed
samples {x;}7_; and the corresponding labels {y;}"_; as vectors.
Data in D; and D, are assumed to be i.i.d. distributed according to
their respective unknown joint distribution P; and P...

@ The Deep Neural Networks (DNN) are function parameterized by a
vector containing the K trainable weights w = {wi}£_;.

@ During training, w, is iteratively updated for each mini-batch and we
denote by w(t) the state of the DNN at iteration t of the
optimization algorithm, and following the random variable W/(t).

@ g represents the architecture of the DNN associated with these
weights and g,(+)(x;) its output at ¢.

9/66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Deep Learning optimization

We denote: L£(w(t),y;) the loss function used to measure the
dissimilarity between the output g,(+)(x;) of the DNN and the expected
output y;. One can use different loss functions.

We use can use a gradient descent to optimize w(t)

However, for large neural networks with a large training set, computing
the gradient is costly, and the loss is not convex.

10/ 66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Deep Learning optimization

For that, we consider stochastic gradient descent SGD algorithm on a
mini-batch in order to optimize the loss between two weight realizations.
The loss derivative with respect to a given weight w(t) on a mini-batch
B(t) is given by:

) DL(w(t —1).v,)
VLot = G = 2D Y1) 1
® lB(t)l(X,.,y,)ZEB(t) dn(E 1) W)

Weights wy(t) are then updated as follows:
wk(t) = wk(t — 1) — UV£wk(t) (2)

with 7 the learning rate.

11/66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Deep Learning optimization

Compute loss Gradients
— —

y y
outputs outputs 7
2 Z
| Sh
2 «;9

[5) hidden PR o

o z units ‘& Q
S 2 3
g & 011 4 2
n o e . < =)
puts o =) inputs M =)

X X

12 /66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Deep Learning optimization

VGG-56 VGG-110 ResNet-56

Figure: Visualizing the loss surfaces of modern DNN [3]

13 /66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Deep Learning testing

When we test a DNN on new data we just test with the optimal w(t*)
(one realisation W(t*))

14 /66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Types of Uncertainty

@ Aleatoric: Uncertainty inherent in the observation noise (problems
caused by sensor quality, natural randomness, that cannot be
explained by our data).

o Epistemic: Our ignorance about the correct model that generated
the data (lack of knowledge about the process that generated the
data).

15 /66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Aleatoric uncertainty

Aleatoric uncertainty captures noise inherent in the observations:
@ For example, sensor noise or motion noise result in uncertainty.
@ This uncertainty cannot be reduced with more data.
@ However, aleatoric could be reduced with better measurements.

16 /66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Aleatoric uncertainty

Aleatoric uncertainty can further be categorized into homoscedastic and
heteroscedastic uncertainties:
@ Homoscedastic uncertainty relates to the uncertainty that a
particular task might cause. It stays constant for different inputs.

@ Heteroscedastic uncertainty depends on the inputs to the model,
with some inputs potentially having more noisy outputs than others.

17 /66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Types of Uncertainty: Case 11

Let us consider a neural network model trained with several pictures of
dogs. We ask the model to decide on a dog using a photo of a cat. What
would you want the model to do?

1Credits: Gille Louppe
18 /66

Uncertainty Quantification in Deep Learning
Uncertainty and Deep learning

Types of Uncertainty: Case 22

We have three different types of images to classify, cat, dog, and cow,
some of which may be noisy due to the limitations of the acquisition
instrument.

2Credits: Gille Louppe
19/66

Uncertainty Quantification in Deep Learning
Aleatoric loss

Aleatoric loss[6]

We model aleatoric uncertainty in the output by modelling the conditional
distribution as a Normal distribution. We want the CNN to predic:

P(YIX,w) =N (u(X, w); o*(n(X, w)) (3)

where 1(X,w) and o?(u(X,w) are parametric functions to be learned by
a CNN. We do not wish to learn a just one function f(X,w) that would
only produce point estimates. If 02(u(X,w)) is indepent of x we deal
with the Homoscedastic uncertainty.

20/66

Uncertainty Quantification in Deep Learning
Aleatoric loss

Heteroscedastic loss[6]3

We train w such that (X, w) and o?(u(X,w)) optimize this loss

(i, w y:ll
L(Y|X,w) Z 202 (1. + log(o?(x;, w)) + Cst (4)

O
(D-lom

ol
o'

3Credits: Gille Louppe

21/66

Uncertainty Quantification in Deep Learning
Mixture density network

Mixture density network[12]*

A mixture density network is a neural network implementation of the
Gaussian mixture model

PUYIX) = 3wyl o) (5)

With0<pix <land)}, m =1

1.5\

o
S

4Credits: Gille Louppe

22/66

Uncertainty Quantification in Deep Learning
Calibration of Deep Neural Network

Calibration

The classical loss used is the cross entropy:
N
Lcross entropy(Dlv w) = fl/NZy,- log((xi, w)) (6)

@ y; is the ground truth label corresponding to probability density
expressed as one hot-vector

o f(x;,w) is the predicted class transformed into probability via
softmax

23/66

Uncertainty Quantification in Deep Learning
Calibration of Deep Neural Network

Calibration with temperature scaling

f(x;,w) € RX is the predicted class transformed into probability via
softmax let us write g(x;,w) € R¥ the logit just before the softmax.

exp(g(xi, w)i) .
Sk exp(g(xi, w)k) @

Temperature scaling is to use a scalar parameter T > 0 called the
temperature for all classe that soften the softmax:

f(X,', (.U)k =

o), P/ T) .
BN S expla e/) N

24 /66

Uncertainty Quantification in Deep Learning
Learning loss

Calibration

Some papers prefer to learn the loss or the confidence of the prediction.
o learning loss for active learning [7]

@ learning confidence for OOD detection [8]

25/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Bayesian approach and DNN

The Goal of DNN is to find P(Y|X,w), most of the classical approach
find w that maximize the likelihood.

w = arg max log P(D;|w)

w

ny
w = arg maxz log P(Y;| Xi, w)
“ =l

ny
w=argmax1l/n log P(Y;| X;, w
gr //’; g P(YilXi,w)
w = argmax Ex yyp(p) log P(Y|X,w)

w= argwmin H[P(D)), P(Y|X,w)]

With H the cross entropy.

26 /66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Bayesian approach and DNN

The Goal of DNN is to find P(Y|X,w). In the classical bayesian
approach we find w such that we have the maximum a posteriori (MAP).

w = arg maxlog P(w|Dy)

w = arg max log P(D,|w) + log P(w)

This leads to |12 regularization.

27 /66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Bayesian DNN

Bayesian DNN is based on marginalization instead of MAP optimization.

P(Y|X) = EwN'P(w|D/) (,P(Y‘X,UJ))
P(Y|X) = /P(Y|X,w)73(w|’D/)dw
In practice:

P(Y[X) =) (P(YIX,w))) with w; ~ P(w|D))

i

Different techniques to estimate P(w|D) .

28/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Variational inference

Variational inference approximates the posterior P(w|D;) with a family of
distributions gx(w/D;) The variational parameter X indexes the family of
distributions. For example, if g were Gaussian, it would be the mean and
variance of the latent variables for each datapoint Ay, = (s, 02)).
Question : How can we know how well our variational posterior
gx(w/D;) approximates the true posterior P(w|D;)?

20/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Variational inference

Question : How can we know how well our variational posterior
gx(w/D;) approximates the true posterior P(w|D;)?

We can use the Kullback-Leibler divergence, which measures the
information lost when using g to approximate P :

KL(q:(w/D) || P@ID) = |

w

_ qr(w/D))
= /w (qA(w/D,) log(P(D/)P(D/,w))) dw
= Eqllog gx(w/D))] — Eqllog P(w, Dy)] + log P(D;)

qr(w/D))
(QA(W/D/) |Og(73(w|D,))> dw

Our goal is to find the variational parameters A that minimize this
divergence. The optimal approximate posterior is thus

30/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Variational inference

The optimal approximate posterior is thus
gx(w/Dy) = argminyKL(gx(w/D)) [| P(w|Dy)).

This impossible to compute directly due to P(D;) that appears in the
divergence. So, we consider the following function:

ELBO(A) = Eqllog P(w. Dy)] — Eqllog g («/D)]
-/ (q,\(w/D/) log(%)) deo
— E,flog P(Di|w)] — KL(qx(ww/D1) || P(w)

Note that KIL(gx(w/Dy) || P(w|D))) = log P(D;) — ELBO()).

31/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Variational inference: Reparametrization trick

theorem: Let € be a random variable having a probability density given
by g(e) and let w = t(\, €). Suppose that gx(w/Dy), is such that
g(€)de = gr(w/D))dw. Then for a function f with derivatives in w:

3 Of (w,\) Ow Of (w,)
o Fonter20 (@A) = B | 5050 + o5

32/66

Uncertainty Quantification in Deep Learning

Bayesian Deep Neural Network and ensembling

Variational inference [9]

1
2
3
4
5

. Sample € ~ N(0,I).
. Letw = p + log(1 + exp(p)) oe.

. Let@ = (u, p).
. Let f(w,0) =logq(w|) — log P(w)P(D|w).
. Calculate the gradient with respect to the mean

~ Of(w,8) Of(w,0)
T 3)

. Calculate the gradient with respect to the standard de-

viation parameter p

_ Of(w,0) € af(w,0)
Ap = ow 1+ exp(—p) * dp “)

. Update the variational parameters:

B p—ald, (%)
pip—al, (6)

33/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Weight Uncertainty in Neural Networks [9]°

Standard Neural Network Bayesian Neural Network
X w, b, z z
[l e . + [T = [l m m = [AAI
Z L nn Z Z
) IEEIE — [AIAA
z W, b, Y Z w, bz Y
[-I-[-] - I+ O = [AN - (AT + A = [
Y re \H Y Y’ e Y

5Image credit: Eric Ma
34/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Dropout®

Dropout is an empirical technique that was proposed to avoit overfitting
in CNN.

At each training step (i.e., for each sample within a mini-batch)
@ Remove each node in the network with a probability p

o Update the weights of the remaining nodes with backpropagation.

(a) Standard Neural Net

(b) After applying dropont.

%Image credit: G. Louppe

35/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

MC dropout’

o]

Without dropout

2.0
' A AR AR AR
= \ W ly‘r\‘\'.\/ R A Xy

£ AR O A AN COAAR L AL
gs ; ‘ :
i With dropout

1.0

200000 400000 600000 800000 1000000
Number of weight updates

Why does dropout work?

7lmage credit: G. Louppe
36 /66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

MC dropout [4]®

Dropout does variational inference.

Let us split the weights w per layer w = {w1,...,w,} (L is the number
of Layer). Let us also further split each layer to unit w; = {wy1,wi q, }-
Variational parameters A are split similarly into A = {My,..., M}, with

My ={mj1,m g}
Then, the proposed q is :

L
ax(w/Di) = [[a(wi, M)
!

with g(w;, M)) = Hq wlumll

with g(w; i, m; ;) = pdo(wyi) + (1 = p)om,,(wi,i)

8lmage credit: G. Louppe
37/66

Uncertainty Quantification in Deep Learning

Bayesian Deep Neural Network and ensembling

MC dropout [4]

They [4] propose to average the predictions of several DNN where they
apply the dropout:

Nmodel

=) PO () o bx) ©

PO) =

with b/ a vector of the same size of w(t*) which is a realization of a
binomial distribution.

o
5854

XS
AN
XX

X
0
%

a) Standard Neural Net (b) After applying dropout.

38 /66

Uncertainty Quantification in Deep Learning

Bayesian Deep Neural Network and ensembling

Deep Ensembles|5]

They [5] propose to average the predictions of several DNN with different
initial seeds:

Nmodel

ZPy|wft)x) (10)

P(y*|x")

mode|

39/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Deep Ensembles[10]

4 . | . . \ . . .
o
[2K
24 U -
..
[
o] I
~ [
:% o °
-2 4 Py P L
2 glslect
& o ° %
-4 - .. ° L
... e
-6 ® @ trajectory 0 H "g L
® @ trajectory 1 L4
® @ trajectory 2
-8 T T T T T T T T

-2 -1 0 1 2 3 4 5 6 7
t-SNE axis 1

Figure: t-SNE plot of predictions from checkpoints corresponding to 3 different

randomly initialized trajectorie
40 /66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Deep Ensembles[10]

Runs & random,subspa

Runs & dropout subspaces

g ° 2 b
" w0
i - E
ESNE axs 1 FSNE axis 1
N Runs & diagonal normal subspaces Runs & low-rapk normal subspaces
*

ESNE axis 2

® @ triectory 0
15 . 1
-20 >

0 15 10 -

5 o 5 T 10
SNE axis 1 ESNE axis 1

Figure: Results using SimpleCNN on CIFAR-10: t-SNE plots of validation set
predictions for each trajectory along with four different subspace generation
methods 41/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

Deep Ensembles[10]

ResNet20v1 on CJFAR-10

Simple, CNN on CIFAR-10

Upper limit
- Lower limit
+ random subspace .

dropout subspace S
diagonal gaussian .
02| +++ rank4 gaussian \
ook independent optima \
00 Jok baseline optimum *

MediumCNN on CIFAR-10

Upper fimit
Lower limit
+ random subspace
dropout subspace
++. simple gaussian
Jokk independent optima
ook baseline optimum

Upper limit

Lower limit

+ random subspace
dropout subspace

« simple gaussian

- rank 4 gaussian

ok independent optima

ook baseline optimum

00 o1 o2 o5 07

03 o4 05
Validation accuracy

03 o4 05 06
Validation accuracy

02 08 10

04 06
Test accuracy

Figure: Diversity versus accuracy plots for 3 models trained on CIFAR-10

42/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

BatchEnsemble[14]

They [14] propose to approximate the average of the predictions of
several DNN with different initial seeds by using a DNN with two king of
weights. For simplicity is the w has two set of weight wSIOW | wiast

For simplicity let us consider a DNN with just one fully connected layer
and let us write w = {wj}J,-V:mf‘*" = {Vl/j}jN:"‘l°"°' and wSIOW = W and
wSlow — {FJ-}J.N:"‘f*'. We have W; = W - F = W - (1;s)

One shared multiplied by yields ensemble
weight matrix independent rank weight matrices for
(slow weight). one fast weights. ‘each member.

I s

i8]
[—]

-1 0 1
s
. N E o

oy

Figure: An illustration on how to generate the ensemble weights for two
ensemble members

43/66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

BatchEnsemble[14]

We have a set of weight W; = W - F = W - (rjsf) with W that sees all
images and (r;s/) that does not see all the same images. If we denote ¢
an activation function then when we apply the BatchEnsemble on an
image we perform:

y = (Wix) = (W (15))x) = ¢ (W(x - 1) - 5)
Similarly to Deep Ensembles, to perform inference we just perform
ensembling :

Nmodel

Z Py |w’(t"),x7) (11)

Ply*|x")

mode|

' —
- —

. -
. - E et

Figure: An illustration on how to generate the ensemble weights for two

44 /66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

TRADI

o w(0) is the initial set of weights {w,(0)}X_; following N (0,02),
where o2 are fixed as in [2].

o L(w(t),y;) is the loss function used to measure the dissimilarity
between the output g,)(x;) of the DNN and the expected output
yi- One can use different loss functions.

o Weights on different layers are assumed to be independent of one
another at all times.

o Each weight wi(t), k =1,..., K, follows a non-stationary Normal
distribution (e.g. Wi(t) ~ N (u(t), o2(t))) whose two parameters
are tracked.

45 /66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

TRADI

We had following state and measurement equations for the mean 1, (t):

pi(t) = p(t — 1) = VL (1) + €4
{ oet) = ie(t) + Y (12)

with €, being the state noise, and £, being the observation noise, as
realizations of A'(0,07) and N(0,57) respectively.

46 /66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

TRADI

The state and measurement equations for the variance oy are given by:

with &, being the state noise, and &, being the observation noise, as
realizations of NV'(0,02) and N(0,52), respectively.

47 /66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

TRADI

(Normal DNN) (Bayesian DNN)

48 /66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

TRADI

We sample new realizations of W(tx) using the following formula:

O(t*) = pu(t*) + Y2(t*) x my with X the covariance matrix. (14)

my is a realization of the multivariate Gaussian N(Ok, Ix). Then we take
the expectation over this distribution :

Nemodel

Zpylw’t), ") (15)

Ply*Ix*)

mocle|

w(o) W) W)

49 /66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

LP-BNN [15]

In classical BNN al

O OOQOOQO

[u o) \~\L latent

NN BNN LP-BNN

50 /66

Uncertainty Quantification in Deep Learning
Bayesian Deep Neural Network and ensembling

LP-BNN [15]

layer £ + 1
s s/
Wl = \\vl \\vg - Wg
>\r1 r-)/"“’
Ko Winare
|:| Z
rr T T
g

layer ¢

51/66

Uncertainty Quantification in Deep Learning
Experiments

Regression

MC dropout Deep Ensemble TRADI

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Figure: Results on a synthetic regression task with MC dropout, Deep
Ensembles and TRADI algorithm. x-axis: spatial coordinate of the Gaussian
process. Black lines: ground truth curve. Orange areas: estimated variance.
Blue points represents the training points.

52/66

Uncertainty Quantification in Deep Learning
Experiments

Classification

Table: Comparative results on image classification

MNIST CIFAR-10
NLL ACCU NLL ACCU

Deep Ensembles ‘ 0.035 98.88 0.173 95.67
MC Dropout | 0.065 9819 0.205 9527
TRADI ‘ 0.044 98.63 0.205 95.29

Method

53 /66

Uncertainty Quantification in Deep Learning
Experiments

Metrics[1]

First we group predictions into M bins, each of size 1/M. Let B, be the
set of indices of samples whose prediction confidence falls into the
interval I, =|m —1/M, m/M].

The accuracy of a set B, is defined as:

acc(Bm) = 1/|Bnm| Z oy, (Vi) (16)

i€Bp

The average confidence in B, is defined as:

conf(Bm) =1/Bm| Y _ Bi (17)

i€Bm

where p; is the confidence for sample /.

54 /66

Uncertainty Quantification in Deep Learning
Experiments

Metrics [1]

Expected Calibration Error (ECE) measures the difference in expected
accuracy and expected confidence. It is defined as:

M
ECE = " 1/|Byllacc(Bp) — conf(Bp)| (18)

55 /66

Uncertainty Quantification in Deep Learning
Experiments

Metrics[11]

The dataset is divided in two:
@ Out of distribution
@ in distribution

The confidence score p; for sample i p; is used to detect OOD data. To
eveluate the quality we can use :

@ Area Under the ROC Curve — AUC

@ Area Under the Average Precision Curve — AUPR

@ FPR at 95% TPR can be interpreted as the probability that a
negative (out-of-distribution)example is misclassified as positive
(in-distribution) when the true positive rate (TPR) is as high as
95%. True positive rate can be computed by TPR = TP /

(TP+FN) and , the false positive rate (FPR) can be computed by
FPR =FP / (FP+TN).

56 /66

Uncertainty Quantification in Deep Learning
Experiments

Results [11]

s
3
a
o
[a]

Autoencoder

Uncertainty Quantification in Deep Learning
Experiments

Out of distribution (Results on the CamVid experiments)

Figure: First row: input image and ground truth, second, third and fourth rows:
output and confidence score given by MC dropout, Deep Ensembles and our
TRADI, respectively.

58 /66

Uncertainty Quantification in Deep Learning
Experiments

Out of distribution

(a) input image

——

(c) Deep Ensembles confidence

,{“!-“f._ﬁ-"!_‘
(b) MC dropout confidence

il

(d) TRADI confidence

Figure: Zooms of the confidence results on the CamVid experiments. In the
bottom left of the input image (a), there is a human, hence a pixel region of an
unknown class for all the DNNs, since the pedestrian class was amongst the
ones marked as unlabeled. Yet, only the TRADI DNN (d) is consistent.

59 /66

Uncertainty Quantification in Deep Learning
Adversarial Attacks

Adversarial Attacks?

“airliner”

+0.005 x

9Credits: Gille Louppe
60 /66

Uncertainty Quantification in Deep Learning
Adversarial Attacks

Adversarial Attacks!®

(Left) Original images. (Middle) Adversarial noise. (Right) Modified images.
All are classified as 'Ostrich'.

https://www.youtube.com/watch?v=zQ_uMenoBCk

10Credits: Gille Louppe
61/66

https://www.youtube.com/watch?v=zQ_uMenoBCk

Uncertainty Quantification in Deep Learning
Adversarial Attacks

Adversarial Attacks!!

Train the network to remove adversarial perturbations before using
theinput

299:299

:a v
m
299x299

299x299

123
299x299 -—-— annso

2 991195

1 Credits: Gille Louppe
62 /66

Uncertainty Quantification in Deep Learning
Adversarial Attacks

Adversarial training [5]

Train the network with image x and X a version of x with adversarial
perturbations :

% = x — esign(—V, log softmax;(x, T)) (19)

New training loss :

X2

L(gw(%),y) + L(gw(x), ¥) (20)

63 /66

Uncertainty Quantification in Deep Learning
Bibliography

Bibliography:

1 Guo, Chuan, et al. "On calibration of modern neural networks."
Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 2017.

2 He, Kaiming, et al. "Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification." Proceedings of
the IEEE international conference on computer vision. 2015.

3 Li, Hao, et al. "Visualizing the loss landscape of neural nets."
Advances in Neural Information Processing Systems. 2018.

4 Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian
approximation: Representing model uncertainty in deep learning."
international conference on machine learning. 2016.

5 Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell.
"Simple and scalable predictive uncertainty estimation using deep
ensembles." Advances in neural information processing systems.
2017.

64 /66

Uncertainty Quantification in Deep Learning
Bibliography

Bibliography:

6 Kendall, Alex, and Yarin Gal. "What uncertainties do we need in
bayesian deep learning for computer vision?." Advances in neural
information processing systems. 2017.

7 Yoo, Donggeun, and In So Kweon. "Learning loss for active
learning." Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019.

8 Corbiere, Charles, et al. "Addressing Failure Prediction by Learning
Model Confidence." Advances in Neural Information Processing
Systems. 2019.

9 Blundell, Charles, et al. "Weight uncertainty in neural networks."
arXiv preprint arXiv:1505.05424 (2015).

10 Fort, Stanislav, Huiyi Hu, and Balaji Lakshminarayanan. "Deep
Ensembles: A Loss Landscape Perspective." arXiv preprint
arXiv:1912.02757 (2019).

11 Hendrycks, Dan, et al. "A Benchmark for Anomaly Segmentation.'
arXiv preprint arXiv:1911.11132 (2019).

65 /66

Uncertainty Quantification in Deep Learning
Bibliography

Bibliography:

12 Bishop, Christopher M. "Mixture density networks." (1994).
13 Liao et al, Defense against Adversarial Attacks Using High-Level
Representation Guided Denoiser, 2017

14 Wen, Yeming, Dustin Tran, and Jimmy Ba. "Batchensemble: an
alternative approach to efficient ensemble and lifelong learning."
arXiv preprint arXiv:2002.06715 (2020).

15 Franchi, G., Bursuc, A., Aldea, E., Dubuisson, S., & Bloch, I.
(2020). Encoding the latent posterior of Bayesian Neural Networks
for uncertainty quantification. arXiv preprint arXiv:2012.02818.

66 /66

	Context
	Uncertainty and Deep learning
	Aleatoric loss
	Mixture density network
	Calibration of Deep Neural Network
	Learning loss
	Bayesian Deep Neural Network and ensembling
	Experiments
	Adversarial Attacks
	Bibliography

