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3d Reconstruction from Videos

Reconstructing the scene geometry from videos is useful in many applications: Robot
navigation (obstacle detection), Metrology, 3d Cartography, Medicine...

+ It is a cheap and flexible approach: One single passive camera, Adaptive baseline,...

− It strongly relies on scene structure (texture) and precise camera positioning.
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Principles of Analytical Methods

The geometry of the camera
(intrinsic parameters) identifies the
projection line of any point in the
focal plane.
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Principles of Analytical Methods

Another position of the
camera (extrinsic parameters)
allows to recover the 3d
position of a point projected
on the two focal planes:

ΩP = ΩΩ′
sin Ω̂′

sin P̂

Ω′P = ΩΩ′
sin Ω̂

sin P̂
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Principles of Analytical Methods

The epipolar constraints may
reduce the search area for
matching points. It is
expressed by the fundamental
matrix F in the projective
geometry framework:
Qt

2FQ1 = 0.

FQ1: epipolar line n.2.

Qt
2F: epipolar line n.1.
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In-plane Ideal Stereovision

Ideal or Rectified or Plenoptic (Single-Lens) Stereovision
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Scale Ambiguity
Without knowledge of focal and baseline, depth can at best be estimated up to scale factor!
(But look at the contextual clues...):

Aerial view of Chambord Castle and 1/30-scale model miniature model in La France Miniature

From [PhD C. Pinard 2019]
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Projective Geometry in P2: Reminder
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Projective Geometry in P2: Reminder
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Projective Geometry in P3

R3 ↔ P3: (X ,Y ,Z )→ (X ,Y ,Z , 1) ; (u/h, v/h,w/h)← (u, v ,w , h)

Duality point / plane: M = (X ,Y ,Z , 1)t / Π = (a, b, c , d).

Lines are defined from 2 points or from 2 planes!

P3 allows to express
linearly affine
transformations:
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Camera (Calibration) Matrix: Intrinsics
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Projection and Back-Projection Matrices

M = (X ,Y ,Z )t ∈ R3

m = (x , y)t ∈ R2, and m̃ = (x , y , 1)t ∈ P2

Camera (Projection) Matrix

m = π(M) =
(
f X
Z + cx , f

X
Z + cx

)
Equivalent to:

m̃ = KM

with: K =

f 0 cx
0 f cy
0 0 1



Back-Projection Matrix

M = π−1(m,Z ) =
(
Z x−cx

f ,Z
y−cy
f ,Z

)
Equivalent to:

M = Z︸︷︷︸
Depth

K−1m̃︸ ︷︷ ︸
Direction

with: K−1 =

1
f 0 − cx

f
0 1

f − cy
f

0 0 1
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Displacement Matrix: Extrinsics

A. Manzanera (ENSTA Paris) 3d Reconstruction 16 / 76



Presentation Outline

1 Introduction to analytical methods

2 Projective Geometry and Camera Matrices

3 Epipolar Geometry and the Fundamental Matrix

4 Depth Estimation and Epipolar Flow

5 Learning based depth prediction

A. Manzanera (ENSTA Paris) 3d Reconstruction 17 / 76



Epipolar Geometry

Ω, m, M, m′ and Ω′ are coplanar.

The epipolar plane cuts each focal plane through the epipolar line.

Each point M has its own epipolar plane.

All epipolar planes (epipolar pencil) intersect at the baseline (ΩΩ′)
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Epipolar Geometry

The right (resp. left) epipole is the projection of the left (resp. right) optical centre on
the right (resp. left) focal plane.

All epipolar lines intersect at the epipole.
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Example 1: Converging Cameras

Figure from [Hartley and Zissermann 2003]
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Example 2: In-Focal-Plane Moving Camera

Figure from [Hartley and Zissermann 2003]
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Example 3: Radially Moving Camera

Figure from [Hartley and Zissermann 2003]
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Fundamental matrix derived from a plane
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Fundamental matrix derived from the camera matrices
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Fundamental matrix from the camera matrices - Essential matrix

Starting from the equation F = [e ′]×P
′P+
λ , if we consider one single moving camera with

projection matrix K , and right pose given by displacement matrix R, we use e ′ = KRΩ,
P ′ = KR, and P+

λ = K−1m, and then:

l ′ = [KRΩ]×KRK
−1m

= (KR)−t [Ω]×K
−1m

And so:
F = (KR)−t [Ω]×K

−1

In the calibrated case (i.e. when K is known beforehand), we can use the essential matrix,
which only depends on the displacement of the camera, and is defined as:

E = K tFK = R−t [Ω]×
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Fundamental Matrix Summary

For 2 images captured by cameras with distinct optical centres, the fundamental matrix is
the unique 3× 3 rank 2 matrix F that satisfies m′tFm = 0, for all corresponding pairs of

points (m,m′).

Epipolar lines: l ′ = Fm and l = m′tF are the right and left epipolar lines respectively.

Epipoles: Since e ′ ∈ l ′, we have ∀m, e ′tFm = 0. Then e ′tF = 0. Similarly, Fe = 0.

Rank: F is an homogeneous (8 DoF) 3× 3 matrix, and has rank 2 (detF = 0), so it
actually has 7 DoF.
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Estimation of Fundamental Matrix F
Each correspondence m↔ m′ provides one scalar equation:

m′tFm = 0

The developed equation writes:

xx ′f11 + x ′yf12 + x ′f13 + y ′xf21 + yy ′f22 + y ′f23 + xf31 + yf32 + f33 = 0

Or, by separating data and unknowns:(
x ′x x ′y x ′ y ′x y ′y y ′ x y 1

)t︸ ︷︷ ︸
d

(
f11 f12 f13 f21 f22 f23 f31 f32 f33

)︸ ︷︷ ︸
f

= 0

And, by using N correspondence pairs {mi ↔ m′i}1≤i≤N :

Df =

d1
...

dN

 f = ON
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Estimation of Fundamental Matrix F

The system Df = ON is solved using SVD.

Since the columns of D range over several order of magnitudes, it is better to normalise
the data, for numerical stability purposes.

Once F is estimated, it is usually imposed that: e ′tF = 0, Fe = 0, and rank(F ) = 2.
I This is done by finding F ′ such that F ′ = arg min

G ;rank(G)=2
||F − G ||F

RANSAC is used to minimise the number of outliers in the N correspondences
{mi ↔ m′i}1≤i≤N .
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Estimation of Fundamental Matrix F - Rank Constraint

Once F is estimated, it is usually imposed that: e ′tF = 0, Fe = 0, and rank(F ) = 2.
I This is done by finding F ′ such that F ′ = arg min

G ;rank(G)=2
||F − G ||F

Rank 3 Rank 2
Figure from [Hartley and Zissermann 2003]
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Estimation of Fundamental Matrix F - RANSAC

From [Hartley and Zissermann 2003] - There are ≈ 500 keypoints on each image.
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Estimation of Fundamental Matrix F - RANSAC

RANSAC is used to minimise the number of outliers in the N correspondences
{mi ↔ m′i}1≤i≤N .

188 Matches (<< 500!) 89 Outliers 99 Inliers
Figure from [Hartley and Zissermann 2003]
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Stereo Rectification

From [Pollefeys 2002]

Objective: come back to the ideal stereo case.

Find the homography H that makes epipolar lines parallel.

H transfers the epipole to infinity: He =
(
1 0 0

)t
.

Numerical problems when e is close to (or inside!) the image.
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Polar Rectification (Pollefeys et al 1999)

Solution: Polar re-parameterization of the two images around their epipoles.

Original Rectified
From [Pollefeys 2002]
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Polar Rectification (Pollefeys et al 1999)

From [Pollefeys 2002]
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Disparity and Depth estimation

Rectify the two images.

Compute the dense correspondence between the two images along each epipolar line.

The horizontal shift between the two images is the disparity.

The depth is inversely proportional to the disparity.

Left Disparity Right
From [Pollefeys 2004]
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Epipolar Flow Estimation

[Garrigues 17]
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Epipolar Flow Estimation

[Garrigues 17]:

Real-Time semi-dense optical flow and
relative depth estimation.

Was ranked #1 on Kitti 2012 Optical
Flow dataset (on sparse optical flow
category).
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Conclusion: Limitations of analytical methods

Estimation strongly relies on local structure (texture), then depth estimation on
textureless areas depends on complicated regularization methods.

Depth calculation depends on the apparent displacement (speed) of a point with respect
to the epipole (i.e. the Focus of Expansion FoE, that indicates the translation direction
of the camera). Such calculation turns undetermined when the point gets close to the
FoE.
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DNN for 3d reconstruction

Like Optical Flow, Depth can benefit from Deep Networks dense prediction capabilities.

Training can be easily done on synthetic or real RGB-d data, and loss function is also
relatively straightforward.

One determining benefit of DNN is their ability to exploit potentially all the depth
indices: parallax, perspective, size and texture gradients, shading,...
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Monocular Depth Cues? Occlusions!

Giotto - Pentecoste
(circa 1305)
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Monocular Depth Cues? Object sizes!

Georges Seurat -
Un après-midi à
l’̂ıle de la Grande
Jatte (1884-1886)
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Monocular Depth Cues? Object sizes, Perspective, and Texture Gradients!

Gustave Caillebotte -
Rue de Paris, temps de
pluie (1877)
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Monocular Depth Cues? Perspective, Horizon and Vanishing Points!

Gustave Caillebotte -
Rue de Paris, temps de
pluie (1877)
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Monocular Depth Cues? Horizon and Camera Pose!
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Depth inference from single view!

CNN based Depth estimation from single view [Eigen 14] works well on a particular context!
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One very particular context...

Colonoscopy images [Ruano 19]
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Monocular Depth Cues? Shading!

Self shadowing is a strong but ambiguous depth
cue (light source position vs concavity).
Without shape prior, the concavity is determined
by a prior of top lighting (right image).

When the shape prior is strong (face then
convex), the concavity prior dominates the
lighting prior (top-down effect, animation
on the left).
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Learning Shape from Shading for Automated Colonoscopy

Images from synthetic videos are used to train a CNN using a loss function based on the
ground truth depthmap [Ruano 19]
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Curriculum Learning Shape from Shading for Automated Colonoscopy

Synthetic exploration videos are created from a hierarchy of synthetic colons of increasing
complexity [Ruano 19]
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Curriculum Learning Shape from Shading for Automated Colonoscopy

The training is performed with progressive complexity [Ruano 19]
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SfSNet on Synthetic Videos

ShapeFromShadingNet on Synthetic Test Videos [Ruano 19]
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SfSNet on Real Videos

ShapeFromShadingNet on Real Videos [Ruano 19]. Single images seem to be sufficient in such particular context!
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What about UAV’s context?
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Non photorealistic synthesis for learning SfM

Supervised learning of depth from synthetic sequences

[Pinard 17a]

Network is based on FlowNet S

Unrealistic scenes ↔
Abstraction of the context

Focus on geometry / motion,
not on appearance /context

Trained on rotationless
movement, at a constant speed
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Baseline adaptation using multiple image pairs

At the inference time, the depth which is relative to the trained speed, is scaled with
respect to the actual velocity.

Adaptable precision is achieved by dynamically adapting the image pairs (baselines) to
the depth distribution.

Adaptation of the baselines to the depth distribution [Pinard 17b]
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Supervised DepthNet

Supervised DepthNet results [Pinard 17a]: See

https://perso.ensta-paris.fr/~manzaner/Download/ECMR2017/DepthNetResults.mp4
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Unsupervised depth estimation CNN

Re-training on real/operative context is still
essential.

But data are rarely annotated.

Self-supervised learning is then necessary.

Photometric loss function can be used, that
compares a pair of registered images,
knowing the depth and the camera pose.

Camera pose then needs to be known, or
predicted!

[Zhou 17]
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Photometric Loss (1): Back-projection from first image
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Photometric Loss (2): Re-projection onto second image
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Photometric Loss (3): Interpolation within second image
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Photometric Loss: Occlusion issue

A. Manzanera (ENSTA Paris) 3d Reconstruction 63 / 76



Photometric Loss: Un-occlusion issue
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Examples of reprojected images

[PhD Marwane Hariat]
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Unsupervised depth estimation CNN

[Zhou 17]
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Unsupervised DepthNet

Unsupervised re-learning of Structure from Motion with adaptive baseline [Pinard 18]
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Unsupervised DepthNet

Unsupervised DepthNet real fly demo [Pinard 18]: See https://www.youtube.com/watch?v=ZDgWAWTwU7U
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Photometric Loss: Moving objects issue
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CoopNet: Joint training of Optical Flow, Odometry and Depth

CoopNet [Hariat 23]

By estimating (or predicting) the optical flow, moving objects can also be predicted by
comparing the optical flow with the rigid flow, which is the apparent velocity field under rigid
assumption scene (i.e. only due to camera motion), defined as:

[K|O4] [R|t]D0(m)×K−1m−m
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CoopNet: Joint training of Optical Flow, Odometry and Depth

CoopNet [Hariat 23]

The CoopNet network is trained based on the difference between the photometric losses from
the optical flow and from the depth networks:

∆(m) = Ldepth,odometry
photo − Lflow

photo
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Conclusion on Learning-based methods

Learning optical flow and depth from videos has many advantages:
I Globally addressing the context
I Multi-cues depth inference
I Natural regularization of ill-posed problem

The main issues to adress are the hard dependence to the learned context, and the
difficulties inherent to online learning. The current work perspectives are:

I Domain adaptation: ground robotics, medical robotics,...
I Incremental and online learning...
I Explainability and Reliability...
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