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Some references

(a) (b) (c)

(a) :Hartley, Richard, and Andrew Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 200
(b) : Luong, Quang-Tuan, and O. D. Faugeras. "The geometry of
multiple images." MIT Press, Boston 2.3 (2001): 4-5.
(c) : Forsyth, David A., and Jean Ponce. Computer vision: a modern
approach. Prentice Hall Professional Technical Reference, 2002.
Most of these slides comes from Marc Pollefeys course :
https://www.cs.unc.edu/ marc/mvg/slides.html
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Pinhole camera

- A box with an infinitesimal small hole
- Camera center is the intersection of the rays
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Camera and World Geometry
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Length and area are not preserved
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Vanishing points and lines

8 / 83



3D Vision an introduction
Introduction

Camera and World Geometry

Lines on the real world are preserved in the image
Angles on the real world are not preserved in the image
The size of the object on the real world are not preserved in the
image since they depends on their position
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Information loss caused by the camera projection

A camera projects from the 3D world to a 2D image
this causes a loss of information
3D information can only be recovered if additional information is
available (multiple images, details about the camera, known size of
objects, ...)
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Motivations

The Euclidean geometry has difficulties to describe an infinity point
at a give direction
The Euclidean geometry is subotimal to describe central projection
The mathematic of Euclidean geometry can get complicated

Projective geometry is an alternative
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Homogeneous Coordinates (HC)

The Homogeneous Coordinates are a system of coordinates used in
Projective geometry
The formulas involving Homogeneous Coordinates are often simpler
The point at infinity can be represented in the Homogeneous
Coordinates with finite coordinates
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Notations

Point X
in Homogeneous coordinates x
in Euclidean coordinates x

Line L
in Homogeneous coordinates l

Plane A
in Homogeneous coordinates A
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Homogeneous coordinates 2D points

Definition:
The representation x of a geometric object is homogeneous if and only
if x and λx represent the same object for λ 6= 0.
Example:

x = λx︸ ︷︷ ︸
Homogeneous

x 6= λx︸ ︷︷ ︸
Euclidean
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Homogeneous coordinates 2D points

Homogeneous coordinates use a n+1 dimensional vector to represent
the same (n-dim. point)
Example R2 → P2

x =

[
x1
x2

]
→ x =

x1
x2
1


x =

uv
w

 =

u/wv/w
1

 =

x1
x2
1


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Homogeneous coordinates 2D points

Definition:
Homogeneous coordinates of a point X in the plane R2 is a 3 dimension

vector different of

00
0


Definition:

to represent a point at infinity we add zero on the last coordinate

x1
x2
0


except

00
0

.
Definition:
The origin of the Euclidean Coordinate in the Homogeneous coordinates

are given by

00
1

.
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Homogeneous coordinates
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Homogeneous coordinates 3D points

Analogous for point in 3D Euclidian space R3
u
v
w
t

 =


u/t
v/t
w/t
1


︸ ︷︷ ︸
Homogeneous

→

u/tv/t
w/t


︸ ︷︷ ︸
Euclidean
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Homogeneous coordinates 2D Lines

In the Euclidian coordinates we represent line by :
Hesse normal form (angle φ, distance d):

x cos(φ) + y sin(φ)− d = 0

Standard (Implicit) form :

xa + yb + c = 0

...
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Homogeneous coordinates 2D Lines

In the Homogeneous coordinates we represent line by :
Point

x =

xy
1


line

l =

ab
c


Equation of the line is:

ltx = xt l = 0
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Homogeneous coordinates 2D Lines

Definition:
Homogeneous Coordinates of a line L in a plane is a 3 dimensional vector

L : l =

l1l2
l3

 with ||l||2 = l21 + l22 + l23 6= 0

It correponds to the Euclidian equation :

l1x + l2y + l3 = 0

How can we easily check if a point is in a line?
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Homogeneous coordinates 2D Lines

To check if x =

xy
1

 intesect with the line L : l =

l1l2
l3

 we just eveluate

if the inner product equal zero. xt l = 0.
How can we find the intesection of two lines?
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Homogeneous coordinates 2D Lines

Let us define two lines l =

l1l2
l3

 and m =

m1
m2
m3


A point x intersects if [

ltx
mtx

]
=

[
0
0

]
This can be rewritten : [

l1x + l2y
m1x + m2y

]
=

[
−l3
−m3

]
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Homogeneous coordinates 2D Lines

A system of linear equations can solved via Cramer’s rule. If we have:

Ax = b

then the coordinate i of x is

xi =
det(Ai )

det(A)

with Ai being matrix A where the ith column replaced by b.
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Homogeneous coordinates 2D Lines

The Solution of [
l1x + l2y

m1x + m2y

]
=

[
−l3
−m3

]
is

x =
l2m3 − l3m2

l1m2 − l2m1
y =

l3m1 − l1m3

l1m2 − l2m1
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Homogeneous coordinates 2D Lines

the cross product u ∧ v of two vectors u =
[
ux , uy , uz

]t and
v =

[
vx , vy , vz

]t is a vector :

u ∧ v = ‖u‖‖v‖ sin(θ)n

with n a unit vector perpendicular to the plane that contains v and u,
and θ the angle between u and v.
Trick to calculate it:
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Homogeneous coordinates 2D Lines

The Solution of [
l1x + l2y

m1x + m2y

]
=

[
−l3
−m3

]
is

x =
l2m3 − l3m2

l1m2 − l2m1
y =

l3m1 − l1m3

l1m2 − l2m1

Then using the cross product we have :

x = l ∧m

A simple way for computing the intersection of 2 lines using HC
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Homogeneous coordinates 2D Lines

Let us define two points x =

x1
x2
x3

 and y =

y1
y2
y3


How can we find the lines that go in these two points?
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Homogeneous coordinates 2D Lines

Let us definetwo points x =

x1
x2
x3

 and y =

y1
y2
y3


A line l intersects the 2 points if[

ltx
lty

]
=

[
0
0

]
This can be rewritten : [

l1x1 + l2x2
l1y1 + l2y2

]
=

[
−l3x3
−l3y3

]
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Homogeneous coordinates 2D Lines

Based on the following system :[
l1x1 + l2x2
l1y1 + l2y2

]
=

[
−l3x3
−l3y3

]
we can apply the Cramer’s rule:

l1 =
l3(x2y3 − y2x3)

x1y2 − x2y1
l2 =

l3(x3y1 − y3x1)

x1y2 − x2y1

Then using the cross product we have :

l = x ∧ y
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Summary

A point lies on a line if :
xt l = 0

A point of the intersection of two lines is :

x = l ∧m

A lines through two give points is :

l = x ∧ y
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Points at Infinity

It is possible to explicity model infinitively distant points with finite
coordinates :

x∞ =

x1
x2
0


We can keep the direction of one infinitively distant point
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Intersection at Infinity

All lines l pass through a point at infinity x∞ if : xt∞l = 0

This hold for any lines l =
[
l1, l2, ∗

]t
What conclusion comes from these slides?
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Intersection at Infinity

All lines l pass through a point at infinity x∞ if : xt∞l = 0

this hold for any lines l =
[
l1, l2, ∗

]t
What conclusion comes from these slides?

→ All parallel lines meet at one point at infinity!

x =

 a
b
c1

×
 a
b
c2

 =

bc2 − bc1
ac1 − ac2

0


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Points and lines at Infinity

Infinitively distant point

x∞ =

x1
x2
0


Infinitively distant line is :

l∞ =

00
1


all the points at infinity lie at l∞
l∞ can be interpreted as the horizon
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Projective Transformations

Definition Projective Transformations:
A projectivity is an invertible mapping h from P2 to itself such that three
points x1, x2, x3 lie on the same line if and only if h(x1), h(x2), h(x3) do.
Theorem of Projective Geometry :
A mapping h : P2 → P2 is a projectivity if and only if there exist a
non-singular 3× 3 matrix H such that for any point in P2 reprented by a
vector x it is true that h(x) = Hx .
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Projective Transformations : Translation

General projective mapping:

x’ = Hx

Translation: 2 Parameters

H = λ

[
I t
0t 1

]

with I =

[
1 0
0 1

]
t =

[
t1
t2

]
and 0 =

[
0
0

]
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2D Transformations : Isometries (Class I)

(iso=same, metric=measure)

x’ =

x ′y ′
1

 =

ε cos(θ) − sin(θ) tx
ε sin(θ) cos(θ) ty

0 0 1

xy
1

 with ε = ±1

orientation preserving: ε = 1
orientation reversing: ε = −1
3DOF (1 rotation, 2 translation)
special cases: pure rotation, pure translation
Invariants: length, angle, area
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2D Transformations : Similarities (Class II)

(isometry + scale)

x’ =

x ′y ′
1

 =

s cos(θ) −s sin(θ) tx
s sin(θ) s cos(θ) ty

0 0 1

xy
1


also know as equi - form (shape preserving)
4DOF (1 scale, 1 rotation, 2 translation)
Invariants: ratios of length, angle, ratios of areas, parallel lines
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2D Transformations : Affine transformations (Class III)

x’ =

x ′y ′
1

 =

a11 a12 tx
a21 a22 ty
0 0 1

xy
1



6DOF (2 scale, 2 rotation, 2 translation)
Invariants: parallel lines, ratios of parallel lengths, ratios of areas
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2D Transformations : Projective transformations (Class
IV)

x’ =

x ′y ′
1

 =

a11 a12 tx
a21 a22 ty
v1 v2 ν

xy
1



8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity)
Action non-homogeneous over the plane

Invariants: cross-ratio of four points on a line (ratio of ratio)
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Action of affinities and projectivities on line at infinity

Let us consider an infinite line l∞ =
[
l1 l2 0

]t
Let us apply an Affine transformation on l∞a11 a12 tx

a21 a22 ty
0 0 ν

l1l2
0

 =

l1a11 + l2a12
l1a21 + l2a22

0


Hence, a line at infinity stays at infinity, but points move along line.
Let us apply an Projective transformation on l∞a11 a12 tx

a21 a22 ty
v1 v2 ν

l1l2
0

 =

l1a11 + l2a12
l1a21 + l2a22
l1v1 + l2v2


Hence, a line at infinity becomes finite, allows to observe vanishing
points, horizon,
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Decomposition of projective transformations

Let us consider that we can decompose the transformation into HS a
similarity, HA and affine projection, and projective transformations HP ,
then the final transformation can calculated:

H = HS × HA × HP
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Homography estimation

Parameters estimation

x ′y ′
1

 =

a11 a12 tx
a21 a22 tx
v1 v2 ν

xy
1


How many points are needed?
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Homography estimation

Parameters estimation

x ′y ′
1

 =

a11 a12 tx
a21 a22 tx
v1 v2 ν

xy
1


How many points are needed?
At least as many independent equations as degrees of freedom required
2 independent equations / point
We need at least 4 points.
8 degrees of freedom
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Homography estimation

Parameters estimation

Minimal solution : 4 points yield an exact solution for H
More points :

No exact solution, because measurements are inexact ("noise")
Search for "best" according to some cost function
Algebraic or geometric/statistical cost
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Homography estimation

Estimation by Direct Linear Transformation (DLT)

Let us rearrange the equationx ′y ′
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

xy
1


we use auxiliary variables A,B and C.

x’ =

At

Bt

Ct

 x
u′v ′
w ′

 =

Atx
Btx
Ctx


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Homography estimation

Estimation by Direct Linear Transformation (DLT)

x ′y ′
1

 =

u′v ′
w ′

 =

Atx
Btx
Ctx


x ′ =

u′

w ′
=

Atx
Ctx

y ′ =
v ′

w ′
=

Btx
Ctx
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Homography estimation

Estimation by Direct Linear Transformation (DLT)

We can rewrite the equations:{
−Atx +x ′xCt = 0

−Btx +y ′xCt = 0

we want to estimate A, B and C
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Homography estimation

Estimation by Direct Linear Transformation (DLT)

Let us write P =
[
A B C

]t . P is a vector of size 9× 1.
We can rewrite the previous system with P.{

atxP = 0
atyP = 0

with
atx =

[
−xt 0t x ′xt

]
atx =

[
−x −y −1 0 0 0 x ′x x ′y x ′

]
aty =

[
0t −xt y ′xt

]
aty =

[
0 0 0 −x −y −1 y ′x y ′y y ′

]
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Homography estimation

Estimation by Direct Linear Transformation (DLT)

Now let us consider that we have multiple paires of points indexed by i

atxi =
[
−xti 0t x ′i x

t
i

]
atyi =

[
0t −xti y ′i x

t
i

]
We can rewrite the previous system for the N paires of points :

atx1P = 0
aty1P = 0
...
atxNP = 0
atyNP = 0

Collecting everything together we have:

M︸︷︷︸
2N×9

P︸︷︷︸
9×1

= 0︸︷︷︸
9×1
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Homography estimation

Estimation by Direct Linear Transformation (DLT)

if we use N = 4 then we have an exact solution
if we use N > 4 then we have an over-determined solution. There
are no exact solution, hence we need to find approximate solution.
Additional constraint needed to avoid 0, e.g. ‖P‖22 = 1
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Homography estimation

Estimation of P

In the case of redundant observations we get constradicitons (due to the
noise).
Let us write MP = w.
Our goal is to find P such that:

P̂ = arg min
P

wtw

P̂ = arg min
P

PtMtMP

with ‖P‖22 =
∑

i p
2
i = 1

How do we minimize the loss?
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Homography estimation

Estimation of P

The eigenvector belonging to the smallest eigenvalue of M solves the
system of linear equations.

M︸︷︷︸
2N×9

= U︸︷︷︸
2N×9

S︸︷︷︸
9×9

V︸︷︷︸
9×9

=
9∑

i=1

siuivti

with UtU = I9 and VtV = I9
The vector vi are orthonormal since

viv
t
j =

{
0 if i 6= j
1 if i = j

So, P is equal to v9 with s9 the smallest eigen value.
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Homography estimation

Estimation of P

The estimate of P i given by

P̂ =

ÂB̂
Ĉ

 = v9

This leads to the estimated projection matrix.
No solution if all point x are on a line.

55 / 83



3D Vision an introduction
Transformations in the Homogeneous Coordinates

Homography estimation

DLT algorithm

Objective:
Given N ≥ 4 2D to 2D point correspondences (xi , x′i ), determine the 2D
homography matrix H such that x′i = Hxi .
Algorithm:

For each correspondence (xi , x′i ) compute Mi . Usually only two first
rows needed.
Assemble N 2× 9 matrices Mi into a single 2N × 9 matrix M
Obtain SVD of M. Solution for h is the last column of V
Determine H from h

56 / 83



3D Vision an introduction
Transformations in the Homogeneous Coordinates

Homography estimation

Estimation of P

Mt
x =

[
−x −y −1 0 0 0 x ′x x ′y x ′

0 0 0 −x −y −1 y ′x y ′y y ′

]
102 102 1 102 102 1 104 104 102

Illustration of distributed errors whose repartition respectively depends,
and does depends on the dimensions on the left and the right image.
How do we transform all the coordinates so that the coordinate are

between [−1, 1]?
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Homography estimation

Estimation of P
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Homography estimation

Normalized DLT algorithm

Objective:
Given N ≥ 4 2D to 2D point correspondences (xi , x′i ), determine the 2D
homography matrix H such that x′i = Hxi .
Algorithm:

Apply the normalization x̃i = Tnormxi and x̃′i = Tnormx′i
apply DLT with (x̃i , x̃′i )
Denomalize the homography: H = T−1

normH̃Tnorm
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Homography estimation

Homography estimation different cost function

Algebraic Distance : This is a metric can minimized by DLT.
Geometric Distance : The goal is to minimize the Reprojection error:

D(x,H−1x′)2 + D(x′,Hx)2
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Ransac

Estimation of homography by Ransac

What if set of matches contains outliers?
We need to perform a Robust estimation.
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Ransac

Estimation of homography by Ransac

Extract features
Compute putative matches e.g. "closest descriptor"
Loop:

Hypothesize transformation T from some matches
Verify transformation (search for other matches consistent with T)

apply T
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Ransac

Estimation of homography by Ransac

Algorithm:
Sample(randomly) the number of points required to fit the model
Solve for model parameters using sample
Score by the fraction of inliers within a present threshold of the
model
Repeat 1-3 until the best model is found with high confidence
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Ransac

Estimation of homography by Ransac

Algorithm:
Sample(randomly) the number of points required to fit the model
Solve for model parameters using sample
Score by the fraction of inliers within a present threshold of the
model
Repeat 1-3 until the best model is found with high confidence
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Ransac

Estimation of homography by Ransac

Algorithm:
Sample(randomly) the number of points required to fit the model
Solve for model parameters using sample
Score by the fraction of inliers within a present threshold of the
model
Repeat 1-3 until the best model is found with high confidence
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Ransac

Estimation of homography by Ransac

Algorithm:
Sample(randomly) the number of points required to fit the model
Solve for model parameters using sample
Score by the fraction of inliers within a present threshold of the
model
Repeat 1-3 until the best model is found with high confidence
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Ransac

Estimation of homography by Ransac

Algorithm:
Sample(randomly) the number of points required to fit the model
Solve for model parameters using sample
Score by the fraction of inliers within a present threshold of the
model
Repeat 1-3 until the best model is found with high confidence
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Ransac

Estimation of homography by Ransac

Algorithm:
Sample(randomly) the number of points required to fit the model
Solve for model parameters using sample
Score by the fraction of inliers within a present threshold of the
model
Repeat 1-3 until the best model is found with high confidence
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Ransac

Estimation of homography by Ransac

Algorithm:
Sample(randomly) the number of points required to fit the model
Solve for model parameters using sample
Score by the fraction of inliers within a present threshold of the
model
Repeat 1-3 until the best model is found with high confidence

More support implies better fit
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Ransac

Ransac 1 algorithm

Objective:
Robust fit of model to data set S which contains outliers
Algorithm:

Randomly select a sample of s data points from S and instantiate
the model from this subset.
Determine the set of data points Si which are within a distance
threshold t of the model. The set Si is the consensus set of samples
and defines the inliers of S .
If the subset of Si is greater than some threshold T , reestimate the
model using all the points in Si and terminate
If the size of Si is less than T , select a new subset and repeat the
above.
After N trials the largest consensus set Si is selected, and the model
is reestimated using all the points in the subset Si

1Martin A. Fischler and Robert C. Bolles, " Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Automated
Cartography"
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Ransac

Ransac Parameters

The size of the subset (minimum size to define the model)
Typically minimum number needed to fit the model
Error tolerence threshold δ
Minimum consensus Threshold w

Number of iteration k

It is important to know the proportion of inlier w . The Error tolerence
threshold δ is related to the gaussian error in inliers.
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Ransac

number of iteration k

Let us write P(inlier) = w the probability of choosing an inlier.
Then for Subset of size n : P(a Subset with no outlier) = wn.
So, a subset of size n has a probability
P(a Subset with outlier(s) ) = 1− wn.
So, the probability of choosing a subset with outliers in all k repetitions is
: P(k Subset with outlier(s) ) = (1− wn)k.
So the probability of successful run is P(sucess) = 1− (1− wn)k.

k =
log(1− P(sucess))

log(1− wn)
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Ransac

number of iteration k with P(sucess) = 0.99
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Pinhole cameras

Each point on the 3D object emits multiple rays of light outwards.
Without a barrier in place, every point on the film will be influenced by

light rays emitted from every point on the 3D object.
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Pinhole cameras

The aperture is referred to as the pinhole O or center of the camera
The distance between the image plane and the pinhole O is the focal
length f .

Let us write P =
[
x y z

]t a point in the 3D world.
Let P ′ =

[
x ′ y ′

]t be its projection on Π′. Using geometry we have:

P ′ =
[
f x
z f y

z

]t
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Modern cameras

Thanks to the lens all rays of light that are emitted by some point P are
refracted by the lens such that they converge to a single point P ′

Let us write P =
[
x y z

]t a point in the 3D world.
Let P′ =

[
x ′ y ′

]t be its projection on Π′. Using geometrical optics we
have:

P′ =
[
z ′ xz z ′ yz

]t
with z ′ the distance between the lens and the film.
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Digital image space

This R3 → R2 mapping is referred to as a projective transformation.
Note that the image coordinates have their origin C ′ at the image center
where the k axis intersects the image plane.
Digital images typically have their origin at the lower-left corner of the
image. We need to do a translation with the vector

[
cx cx

]t . So the
new coordinate are:

P′ =

[
z ′ xz + cx
z ′ yz + cy

]t

78 / 83



3D Vision an introduction
Camera Estrinsics and Intrisics

Digital image space

The next effect we must account for is that the points in digital images
are expressed in pixels, while points in image plane are represented in
physical measurements (e.g. centimeters).
So we need to change of the units in the two axes of the image plane.
So the new coordinate are:

P′ =

[
z ′k x

z + cx
z ′l yz + cy

]t
=

[
α x

z + cx
β y

z + cy

]t
k and l may be different because the aspect ratio of the unit element is
not guaranteed to be one
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Digital image space

Using homogeneous coordinates, we can formulate :

P′ =

α 0 cx 0
0 β cy 0
0 0 1 0

P =

α 0 cx
0 β cy
0 0 1

 [I3 03,1
]
P

So
P′ = K

[
I3 03,1

]
P

The matrix K is often referred to as the camera matrix. To parameters
are missing : skewness and distortion. But it goes beyond the scope of
this course. K is linked to intrinsic parameters.
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Digital image space

So far, we have described a mapping between a point P in the 3D
camera reference system to a pointP′ in the 2D image plane. But what
if the information about the 3D world is available in a different
coordinate system?
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Digital image space

Then, we need to include an additional transformation that relates points
from the world reference Pw system to the camera reference system P.
This transformation is captured by a rotation matrix R and translation
vector T.

P =

[
R T
0 1

]
Pw

R and T are the extrinsic
parameters.
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Digital image space

P′ = K
[
R T

]
Pw = MPw

The extrinsic paramters include the rotation and translation, which do
not depend on the camera’s build.
M is a 3× 4 projection matrix with 11 degrees of freedom: 5 from the
intrinsic camera matrix, 3 from extrinsic rotation, and 3 from extrinsic
translation.
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