3D Vision an introduction ENSTA Paris

Gianni Franchi

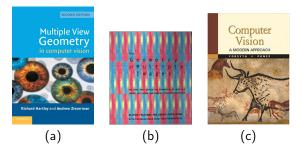
03/12/2021

Plan

- 2 Homogeneous Coordinates
- 3 Transformations in the Homogeneous Coordinates
 - Homography estimation
 - Ransac

- 2 Homogeneous Coordinates
- 3 Transformations in the Homogeneous Coordinates
- 4 Camera Estrinsics and Intrisics

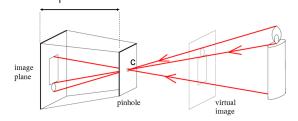
Some references



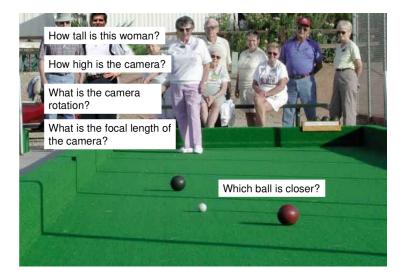
(a) :Hartley, Richard, and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge university press, 200
(b) : Luong, Quang-Tuan, and O. D. Faugeras. "The geometry of multiple images." MIT Press, Boston 2.3 (2001): 4-5.
(c) : Forsyth, David A., and Jean Ponce. Computer vision: a modern approach. Prentice Hall Professional Technical Reference, 2002. Most of these slides comes from Marc Pollefeys course : https://www.cs.unc.edu/ marc/mvg/slides.html

Pinhole camera

- A box with an infinitesimal small hole
- Camera center is the intersection of the rays

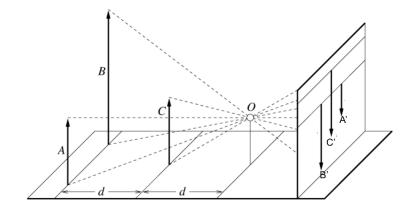


Camera and World Geometry

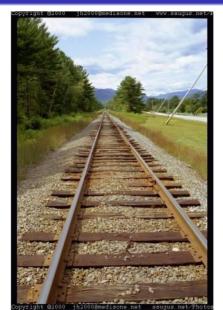


3D Vision an introduction Introduction

Length and area are not preserved



Vanishing points and lines



Camera and World Geometry

- Lines on the real world are preserved in the image
- Angles on the real world are not preserved in the image
- The size of the object on the real world are not preserved in the image since they depends on their position

Information loss caused by the camera projection

- A camera projects from the 3D world to a 2D image
- this causes a loss of information
- 3D information can only be recovered if additional information is available (multiple images, details about the camera, known size of objects, ...)

Motivations

- The Euclidean geometry has difficulties to describe an infinity point at a give direction
- The Euclidean geometry is subotimal to describe central projection
- The mathematic of Euclidean geometry can get complicated

Projective geometry is an alternative

Homogeneous Coordinates (HC)

- The Homogeneous Coordinates are a system of coordinates used in Projective geometry
- The formulas involving Homogeneous Coordinates are often simpler
- The point at infinity can be represented in the Homogeneous Coordinates with finite coordinates

Notations

 $\mathsf{Point}\ \mathcal{X}$

- in Homogeneous coordinates x
- in Euclidean coordinates x

 $\mathsf{Line}\ \mathcal{L}$

• in Homogeneous coordinates I

 $\mathsf{Plane}\ \mathcal{A}$

• in Homogeneous coordinates A

Definition:

The representation **x** of a geometric object is **homogeneous** if and only if **x** and λ **x** represent the same object for $\lambda \neq 0$. **Example:**

- Homogeneous coordinates use a n+1 dimensional vector to represent the same (n-dim. point)
- Example $\mathbb{R}^2 \to \mathbb{P}^2$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \to \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} u/w \\ v/w \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

Definition:

Homogeneous coordinates of a point $\mathcal X$ in the plane $\mathbb R^2$ is a 3 dimension vector different of 0

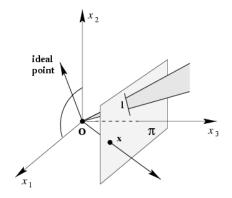
Definition:

to represent a point at infinity we add zero on the last coordinate $\begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$

except $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$. Definition: The origin of the Euclidean Coordinate in the Homogeneous coordinates are given by $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

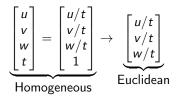
3D Vision an introduction Homogeneous Coordinates

Homogeneous coordinates



Homogeneous coordinates 3D points

Analogous for point in 3D Euclidian space \mathbb{R}^3



In the Euclidian coordinates we represent line by :

• Hesse normal form (angle ϕ , distance d):

$$x\cos(\phi) + y\sin(\phi) - d = 0$$

• Standard (Implicit) form :

$$xa + yb + c = 0$$

...

In the Homogeneous coordinates we represent line by : Point $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

line

$$\begin{bmatrix} 1 \\ b \\ c \end{bmatrix}$$

Equation of the line is:

$$\mathbf{I}^t \mathbf{x} = \mathbf{x}^t \mathbf{I} = \mathbf{0}$$

Definition:

Homogeneous Coordinates of a line $\ensuremath{\mathcal{L}}$ in a plane is a 3 dimensional vector

$$\mathcal{L}: \mathbf{I} = \begin{bmatrix} l_1 \\ l_2 \\ l_3 \end{bmatrix} \text{ with } ||\mathbf{I}||^2 = l_1^2 + l_2^2 + l_3^2 \neq 0$$

It correponds to the Euclidian equation :

$$l_1x + l_2y + l_3 = 0$$

How can we easily check if a point is in a line?

To check if
$$\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 intesect with the line $\mathcal{L} : \mathbf{I} = \begin{bmatrix} l_1 \\ l_2 \\ l_3 \end{bmatrix}$ we just eveluate if the inner product equal zero. $\mathbf{x}^t \mathbf{I} = 0$.
How can we find the intesection of two lines?

Let us define two lines
$$\mathbf{I} = \begin{bmatrix} l_1 \\ l_2 \\ l_3 \end{bmatrix}$$
 and $\mathbf{m} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix}$
A point **x** intersects if $\begin{bmatrix} \mathbf{I}^t \mathbf{x} \\ \mathbf{m}^t \mathbf{x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

This can be rewritten :

$$\begin{bmatrix} l_1 x + l_2 y \\ m_1 x + m_2 y \end{bmatrix} = \begin{bmatrix} -l_3 \\ -m_3 \end{bmatrix}$$

A system of linear equations can solved via Cramer's rule. If we have:

$A\mathbf{x} = \mathbf{b}$

then the coordinate i of x is

$$x_i = \frac{\det(A_i)}{\det(A)}$$

with A_i being matrix A where the ith column replaced by b.

The Solution of

$$\begin{bmatrix} l_1 x + l_2 y \\ m_1 x + m_2 y \end{bmatrix} = \begin{bmatrix} -l_3 \\ -m_3 \end{bmatrix}$$

is

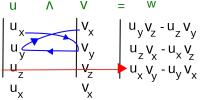
$$x = \frac{l_2 m_3 - l_3 m_2}{l_1 m_2 - l_2 m_1} \ y = \frac{l_3 m_1 - l_1 m_3}{l_1 m_2 - l_2 m_1}$$

the cross product $\mathbf{u} \wedge \mathbf{v}$ of two vectors $\mathbf{u} = [u_x, u_y, u_z]^t$ and $\mathbf{v} = [v_x, v_y, v_z]^t$ is a vector :

$$\mathbf{u} \wedge \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \sin(\theta)\mathbf{n}$$

with **n** a unit vector perpendicular to the plane that contains **v** and **u**, and θ the angle between **u** and **v**.

Trick to calculate it:



The Solution of

$$\begin{bmatrix} l_1 x + l_2 y \\ m_1 x + m_2 y \end{bmatrix} = \begin{bmatrix} -l_3 \\ -m_3 \end{bmatrix}$$

is

$$x = \frac{l_2 m_3 - l_3 m_2}{l_1 m_2 - l_2 m_1} \ y = \frac{l_3 m_1 - l_1 m_3}{l_1 m_2 - l_2 m_1}$$

Then using the cross product we have :

$$\mathbf{x} = \mathbf{I} \wedge \mathbf{m}$$

A simple way for computing the intersection of 2 lines using HC

Let us define two points
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$
How can we find the lines that go in these two points?

Let us define two points
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$
A line I intersects the 2 points if

$$\begin{bmatrix} \mathbf{I}^t \mathbf{x} \\ \mathbf{I}^t \mathbf{y} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This can be rewritten :

$$\begin{bmatrix} l_1 x_1 + l_2 x_2 \\ l_1 y_1 + l_2 y_2 \end{bmatrix} = \begin{bmatrix} -l_3 x_3 \\ -l_3 y_3 \end{bmatrix}$$

Based on the following system :

$$\begin{bmatrix} l_1 x_1 + l_2 x_2 \\ l_1 y_1 + l_2 y_2 \end{bmatrix} = \begin{bmatrix} -l_3 x_3 \\ -l_3 y_3 \end{bmatrix}$$

we can apply the Cramer's rule:

$$l_1 = \frac{l_3(x_2y_3 - y_2x_3)}{x_1y_2 - x_2y_1} \ l_2 = \frac{l_3(x_3y_1 - y_3x_1)}{x_1y_2 - x_2y_1}$$

Then using the cross product we have :

$$\mathbf{I} = \mathbf{x} \wedge \mathbf{y}$$

Summary

• A point lies on a line if :

$$\mathbf{x}^t \mathbf{I} = 0$$

• A point of the intersection of two lines is :

 $\mathbf{x} = \mathbf{I} \wedge \mathbf{m}$

• A lines through two give points is :

 $\mathbf{I}=\mathbf{x}\wedge\mathbf{y}$

Points at Infinity

• It is possible to **explicity** model infinitively distant points with finite coordinates :

$$\mathbf{x}_{\infty} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

• We can keep the direction of one infinitively distant point

3D Vision an introduction Homogeneous Coordinates

Intersection at Infinity

- \bullet All lines I pass through a point at infinity \textbf{x}_{∞} if : $\textbf{x}_{\infty}^{t}\textbf{I}=0$
- This hold for any lines $I = [I_1, I_2, *]^t$

What conclusion comes from these slides?

Intersection at Infinity

- All lines I pass through a point at infinity \mathbf{x}_{∞} if : $\mathbf{x}_{\infty}^{t} \mathbf{I} = \mathbf{0}$
- this hold for any lines $\mathbf{I} = \begin{bmatrix} I_1, I_2, * \end{bmatrix}^t$

What conclusion comes from these slides?

 \rightarrow All parallel lines meet at one point at infinity!

$$\mathbf{x} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c}_1 \end{bmatrix} \times \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c}_2 \end{bmatrix} = \begin{bmatrix} b\mathbf{c}_2 - b\mathbf{c}_1 \\ \mathbf{a}\mathbf{c}_1 - \mathbf{a}\mathbf{c}_2 \\ \mathbf{0} \end{bmatrix}$$

Points and lines at Infinity

• Infinitively distant point

$$\mathbf{x}_{\infty} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

• Infinitively distant line is :

$$\mathbf{I}_{\infty} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

- $\bullet\,$ all the points at infinity lie at I_∞
- $\bullet~I_\infty$ can be interpreted as the horizon

Projective Transformations

Definition Projective Transformations:

A projectivity is an invertible mapping h from P^2 to itself such that three points x_1, x_2, x_3 lie on the same line if and only if $h(x_1), h(x_2), h(x_3)$ do. **Theorem of Projective Geometry :**

A mapping $h: P^2 \to P^2$ is a projectivity if and only if there exist a non-singular 3×3 matrix H such that for any point in P^2 represented by a vector x it is true that h(x) = Hx.

Projective Transformations : Translation

• General projective mapping:

$$\mathbf{x'} = H\mathbf{x}$$

• Translation: 2 Parameters

$$H = \lambda \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0}^t & \mathbf{1} \end{bmatrix}$$
with $\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$ and $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

2D Transformations : Isometries (Class I)

(iso=same, metric=measure)

$$\mathbf{x'} = \begin{bmatrix} x'\\ y'\\ 1 \end{bmatrix} = \begin{bmatrix} \epsilon \cos(\theta) & -\sin(\theta) & t_x\\ \epsilon \sin(\theta) & \cos(\theta) & t_y\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ 1 \end{bmatrix} \text{ with } \epsilon = \pm 1$$

orientation preserving: $\epsilon = 1$ orientation reversing: $\epsilon = -1$ **3DOF (1 rotation, 2 translation) special cases:** pure rotation, pure translation **Invariants:** length, angle, area

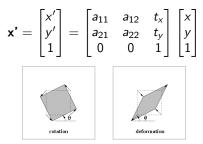
2D Transformations : Similarities (Class II)

(isometry + scale)

$$\mathbf{x'} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s\cos(\theta) & -s\sin(\theta) & t_x \\ s\sin(\theta) & s\cos(\theta) & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

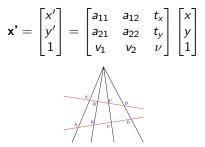
also know as equi - form (shape preserving) 4DOF (1 scale, 1 rotation, 2 translation) Invariants: ratios of length, angle, ratios of areas, parallel lines

2D Transformations : Affine transformations (Class III)



6DOF (2 scale, 2 rotation, 2 translation) Invariants: parallel lines, ratios of parallel lengths, ratios of areas

2D Transformations : Projective transformations (Class IV)



8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity) Action non-homogeneous over the plane Invariants: cross-ratio of four points on a line (ratio of ratio)

Action of affinities and projectivities on line at infinity

Let us consider an infinite line $I_{\infty} = \begin{bmatrix} l_1 & l_2 & 0 \end{bmatrix}^t$ Let us apply an Affine transformation on I_{∞}

$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & \nu \end{bmatrix} \begin{bmatrix} l_1 \\ l_2 \\ 0 \end{bmatrix} = \begin{bmatrix} l_1 a_{11} + l_2 a_{12} \\ l_1 a_{21} + l_2 a_{22} \\ 0 \end{bmatrix}$$

Hence, a line at infinity stays at infinity, but points move along line. Let us apply an Projective transformation on I_∞

$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ v_1 & v_2 & \nu \end{bmatrix} \begin{bmatrix} l_1 \\ l_2 \\ 0 \end{bmatrix} = \begin{bmatrix} l_1 a_{11} + l_2 a_{12} \\ l_1 a_{21} + l_2 a_{22} \\ l_1 v_1 + l_2 v_2 \end{bmatrix}$$

Hence, a line at infinity becomes finite, allows to observe vanishing points, horizon,

Decomposition of projective transformations

Let us consider that we can decompose the transformation into H_S a similarity, H_A and affine projection, and projective transformations H_P , then the final transformation can calculated:

 $H = H_S \times H_A \times H_P$

Parameters estimation

$$\begin{bmatrix} x'\\y'\\1\end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x\\a_{21} & a_{22} & t_x\\v_1 & v_2 & \nu\end{bmatrix} \begin{bmatrix} x\\y\\1\end{bmatrix}$$

How many points are needed?

Parameters estimation

$$\begin{bmatrix} x'\\y'\\1\end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x\\a_{21} & a_{22} & t_x\\v_1 & v_2 & \nu \end{bmatrix} \begin{bmatrix} x\\y\\1\end{bmatrix}$$

How many points are needed?

At least as many independent equations as degrees of freedom required 2 independent equations / point We need at least 4 points. 8 degrees of freedom

Parameters estimation

- Minimal solution : 4 points yield an exact solution for H
- More points :
 - No exact solution, because measurements are inexact ("noise")
 - Search for "best" according to some cost function
 - Algebraic or geometric/statistical cost

Estimation by Direct Linear Transformation (DLT)

Let us rearrange the equation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

we use auxiliary variables A,B and C.

$$\mathbf{x'} = \begin{bmatrix} \mathbf{A}^t \\ \mathbf{B}^t \\ \mathbf{C}^t \end{bmatrix} \mathbf{x}$$
$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} \mathbf{A}^t \mathbf{x} \\ \mathbf{B}^t \mathbf{x} \\ \mathbf{C}^t \mathbf{x} \end{bmatrix}$$

Estimation by Direct Linear Transformation (DLT)

$$\begin{bmatrix} x'\\ y'\\ 1 \end{bmatrix} = \begin{bmatrix} u'\\ v'\\ w' \end{bmatrix} = \begin{bmatrix} \mathbf{A}^{t}\mathbf{x}\\ \mathbf{B}^{t}\mathbf{x}\\ \mathbf{C}^{t}\mathbf{x} \end{bmatrix}$$
$$\mathbf{x}' = \frac{u'}{w'} = \frac{\mathbf{A}^{t}\mathbf{x}}{\mathbf{C}^{t}\mathbf{x}}$$
$$\mathbf{y}' = \frac{v'}{w'} = \frac{\mathbf{B}^{t}\mathbf{x}}{\mathbf{C}^{t}\mathbf{x}}$$

Estimation by Direct Linear Transformation (DLT)

We can rewrite the equations:

$$\begin{pmatrix} -\mathbf{A}^t \mathbf{x} & +x' \mathbf{x} \mathbf{C}^t = 0 \\ -\mathbf{B}^t \mathbf{x} & +y' \mathbf{x} \mathbf{C}^t = 0 \end{pmatrix}$$

we want to estimate A, B and C

Estimation by Direct Linear Transformation (DLT)

Let us write $\mathbf{P} = \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{bmatrix}^{t}$. *P* is a vector of size 9×1 . We can rewrite the previous system with \mathbf{P} .

$$\begin{cases} \mathbf{a}_x^t \mathbf{P} = \mathbf{0} \\ \mathbf{a}_y^t \mathbf{P} = \mathbf{0} \end{cases}$$

with

$$\mathbf{a}_{x}^{t} = \begin{bmatrix} -\mathbf{x}^{t} & \mathbf{0}^{t} & x'\mathbf{x}^{t} \end{bmatrix}$$

$$\mathbf{a}_{x}^{t} = \begin{bmatrix} -x & -y & -1 & 0 & 0 & 0 & x'x & x'y & x' \end{bmatrix}$$
$$\mathbf{a}_{y}^{t} = \begin{bmatrix} \mathbf{0}^{t} & -\mathbf{x}^{t} & y'\mathbf{x}^{t} \end{bmatrix}$$

 $\mathbf{a}_y^t = \begin{bmatrix} 0 & 0 & 0 & -x & -y & -1 & y'x & y'y & y' \end{bmatrix}$

Estimation by Direct Linear Transformation (DLT)

Now let us consider that we have multiple paires of points indexed by i

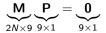
$$\mathbf{a}_{x_i}^t = \begin{bmatrix} -\mathbf{x}_i^t & \mathbf{0}^t & x_i'\mathbf{x}_i^t \end{bmatrix}$$

$$\mathbf{a}_{y_i}^t = egin{bmatrix} \mathbf{0}^t & -\mathbf{x}_i^t & y_i'\mathbf{x}_i^t \end{bmatrix}$$

We can rewrite the previous system for the N paires of points :

$$\begin{cases} \mathbf{a}_{x_1}^t \mathbf{P} = 0\\ \mathbf{a}_{y_1}^t \mathbf{P} = 0\\ \vdots\\ \mathbf{a}_{x_N}^t \mathbf{P} = 0\\ \mathbf{a}_{y_N}^t \mathbf{P} = 0 \end{cases}$$

Collecting everything together we have:



Estimation by Direct Linear Transformation (DLT)

- if we use N = 4 then we have an exact solution
- if we use N > 4 then we have an over-determined solution. There are no exact solution, hence we need to find approximate solution. Additional constraint needed to avoid 0, e.g. ||P||₂² = 1

Estimation of P

In the case of redundant observations we get constradicitons (due to the noise).

Let us write $\mathbf{MP} = \mathbf{w}$. Our goal is to find \mathbf{P} such that:

$$\hat{\mathbf{P}} = \operatorname*{arg\,min}_{\mathbf{P}} \mathbf{w}^{t} \mathbf{w}$$

$$\hat{\mathbf{P}} = \operatorname*{arg\,min}_{\mathbf{P}} \mathbf{P}^{t} \mathbf{M}^{t} \mathbf{M} \mathbf{P}$$

$$= \sum_{i} p_{i}^{2} = 1$$

with $||P||_2^2 = \sum_i p_i^2 = 1$ How do we minimize the loss?

Estimation of P

The eigenvector belonging to the smallest eigenvalue of M solves the system of linear equations.

$$\underbrace{\mathsf{M}}_{2N\times9} = \underbrace{\mathsf{U}}_{2N\times9} \underbrace{\mathsf{S}}_{9\times9} \underbrace{\mathsf{V}}_{9\times9} = \sum_{i=1}^{9} s_i \mathsf{u}_i \mathsf{v}_i^t$$

with $\mathbf{U}^t \mathbf{U} = \mathbf{I}_9$ and $\mathbf{V}^t \mathbf{V} = \mathbf{I}_9$ The vector v_i are orthonormal since

$$v_i v_j^t = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j \end{cases}$$

So, **P** is equal to v_9 with s_9 the smallest eigen value.

Estimation of P

The estimate of \mathbf{P} i given by

$$\hat{\mathbf{P}} = \begin{bmatrix} \hat{\mathbf{A}} \\ \hat{\mathbf{B}} \\ \hat{\mathbf{C}} \end{bmatrix} = v_9$$

This leads to the estimated projection matrix. No solution if all point x are on a line.

DLT algorithm

Objective:

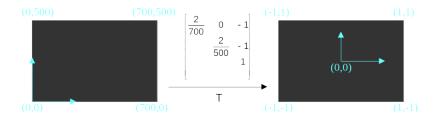
Given $N \ge 4$ 2D to 2D point correspondences $(\mathbf{x}_i, \mathbf{x}'_i)$, determine the 2D homography matrix H such that $\mathbf{x}'_i = \mathbf{H}\mathbf{x}_i$. Algorithm:

- For each correspondence $(\mathbf{x}_i, \mathbf{x}_i')$ compute \mathbf{M}_i . Usually only two first rows needed.
- Assemble N 2 × 9 matrices \mathbf{M}_i into a single 2N × 9 matrix \mathbf{M}
- Obtain SVD of **M**. Solution for *h* is the last column of **V**
- Determine **H** from h

Estimation of P

Illustration of distributed errors whose repartition respectively depends, and does depends on the dimensions on the left and the right image. How do we transform all the coordinates so that the coordinate are between [-1, 1]?

Estimation of P



Normalized DLT algorithm

Objective:

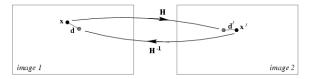
Given $N \ge 4$ 2D to 2D point correspondences $(\mathbf{x}_i, \mathbf{x}'_i)$, determine the 2D homography matrix H such that $\mathbf{x}'_i = \mathbf{H}\mathbf{x}_i$. Algorithm:

- Apply the normalization $\tilde{\mathbf{x}}_i = \mathbf{T}_{norm} \mathbf{x}_i$ and $\tilde{\mathbf{x}}'_i = \mathbf{T}_{norm} \mathbf{x}'_i$
- apply DLT with $(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}'_i)$
- Denomalize the homography: $\mathbf{H} = \mathbf{T}_{norm}^{-1} \tilde{\mathbf{H}} \mathbf{T}_{norm}$

Homography estimation different cost function

- Algebraic Distance : This is a metric can minimized by DLT.
- Geometric Distance : The goal is to minimize the Reprojection error:

$$D(\mathbf{x}, \mathbf{H}^{-1}\mathbf{x}')^2 + D(\mathbf{x}', \mathbf{H}\mathbf{x})^2$$



Estimation of homography by Ransac

What if set of matches contains outliers?

We need to perform a Robust estimation.

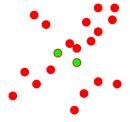
Estimation of homography by Ransac

- Extract features
- Compute putative matches e.g. "closest descriptor"
- Loop:
 - Hypothesize transformation T from some matches
 - Verify transformation (search for other matches consistent with T)
- apply T

Estimation of homography by Ransac

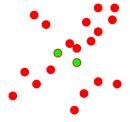
- Sample(randomly) the number of points required to fit the model
- Solve for model parameters using sample
- Score by the fraction of inliers within a present threshold of the model
- Repeat 1-3 until the best model is found with high confidence

Estimation of homography by Ransac



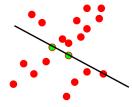
- Sample(randomly) the number of points required to fit the model
- Solve for model parameters using sample
- Score by the fraction of inliers within a present threshold of the model
- Repeat 1-3 until the best model is found with high confidence

Estimation of homography by Ransac



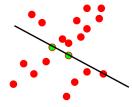
- Sample(randomly) the number of points required to fit the model
- Solve for model parameters using sample
- Score by the fraction of inliers within a present threshold of the model
- Repeat 1-3 until the best model is found with high confidence

Estimation of homography by Ransac



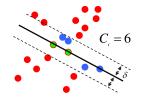
- Sample(randomly) the number of points required to fit the model
- Solve for model parameters using sample
- Score by the fraction of inliers within a present threshold of the model
- Repeat 1-3 until the best model is found with high confidence

Estimation of homography by Ransac



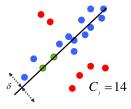
- Sample(randomly) the number of points required to fit the model
- Solve for model parameters using sample
- Score by the fraction of inliers within a present threshold of the model
- Repeat 1-3 until the best model is found with high confidence

Estimation of homography by Ransac



- Sample(randomly) the number of points required to fit the model
- Solve for model parameters using sample
- Score by the fraction of inliers within a present threshold of the model
- Repeat 1-3 until the best model is found with high confidence

Estimation of homography by Ransac



Algorithm:

- Sample(randomly) the number of points required to fit the model
- Solve for model parameters using sample
- Score by the fraction of inliers within a present threshold of the model
- Repeat 1-3 until the best model is found with high confidence More support implies better fit

Ransac¹ algorithm

Objective: Robust fit of model to data set *S* which contains outliers **Algorithm:**

- Randomly select a sample of *s* data points from *S* and instantiate the model from this subset.
- Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of samples and defines the inliers of S.
- If the subset of S_i is greater than some threshold T, reestimate the model using all the points in S_i and terminate
- If the size of S_i is less than T, select a new subset and repeat the above.
- After *N* trials the largest consensus set *S_i* is selected, and the model is reestimated using all the points in the subset *S_i*

 $^1{\rm Martin}$ A. Fischler and Robert C. Bolles, " Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography"

Ransac Parameters

- The size of the subset (minimum size to define the model)
- Typically minimum number needed to fit the model
- $\bullet\,$ Error tolerence threshold $\delta\,$
- Minimum consensus Threshold w
- Number of iteration k

It is important to know the proportion of inlier w. The Error tolerence threshold δ is related to the gaussian error in inliers.

number of iteration k

Let us write P(inlier) = w the probability of choosing an inlier. Then for Subset of size $n : P(a \text{ Subset with no outlier}) = w^n$. So, a subset of size n has a probability $P(a \text{ Subset with outlier(s)}) = 1 - w^n$. So, the probability of choosing a subset with outliers in all k repetitions is $P(k \text{ Subset with outlier(s)}) = (1 - w^n)^k$. So the probability of successful run is $P(\text{sucess}) = 1 - (1 - w^n)^k$.

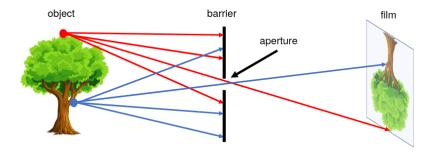
$$k = \frac{\log(1 - P(\text{sucess}))}{\log(1 - w^n)}$$

number of iteration k with P(sucess) = 0.99

Sampl e size n	Proportion of outliers						
	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	117 7

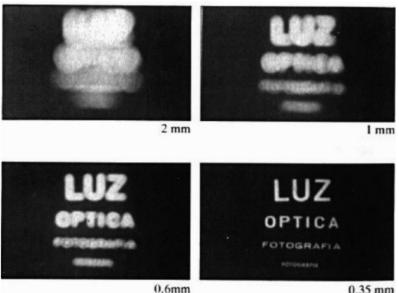
3D Vision an introduction Camera Estrinsics and Intrisics

Pinhole cameras



Each point on the 3D object emits multiple rays of light outwards. Without a barrier in place, every point on the film will be influenced by light rays emitted from every point on the 3D object. 3D Vision an introduction Camera Estrinsics and Intrisics

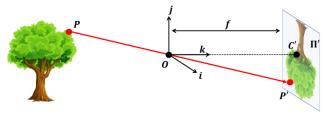
Pinhole cameras



0.35 mm 75 / 83

Pinhole cameras

The aperture is referred to as the pinhole O or center of the camera The distance between the image plane and the pinhole O is the focal length f.

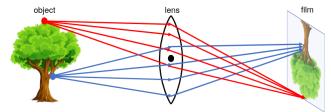


Let us write $P = \begin{bmatrix} x & y & z \end{bmatrix}^t$ a point in the 3D world. Let $P' = \begin{bmatrix} x' & y' \end{bmatrix}^t$ be its projection on Π' . Using geometry we have:

$$P' = \begin{bmatrix} f\frac{x}{z} & f\frac{y}{z} \end{bmatrix}^t$$

Modern cameras

Thanks to the lens all rays of light that are emitted by some point P are refracted by the lens such that they converge to a single point P'



Let us write $P = \begin{bmatrix} x & y & z \end{bmatrix}^t$ a point in the 3D world. Let $\mathbf{P}' = \begin{bmatrix} x' & y' \end{bmatrix}^t$ be its projection on Π' . Using geometrical optics we have:

$$\mathbf{P}' = \begin{bmatrix} z'\frac{x}{z} & z'\frac{y}{z} \end{bmatrix}^t$$

with z' the distance between the lens and the film.

This $\mathbb{R}^3 \to \mathbb{R}^2$ mapping is referred to as a projective transformation. Note that the image coordinates have their origin C' at the image center where the k axis intersects the image plane.

Digital images typically have their origin at the **lower-left corner** of the image. We need to do a translation with the vector $\begin{bmatrix} c_x & c_x \end{bmatrix}^t$. So the new coordinate are:

$$\mathbf{P}' = \begin{bmatrix} z'\frac{x}{z} + c_x \\ z'\frac{y}{z} + c_y \end{bmatrix}^t$$

The next effect we must account for is that the points in digital images are expressed in **pixels**, while points in image plane are represented in **physical measurements (e.g. centimeters)**.

So we need to change of the units in the two axes of the image plane. So the new coordinate are:

$$\mathbf{P}' = \begin{bmatrix} z'k\frac{x}{z} + c_x \\ z'l\frac{y}{z} + c_y \end{bmatrix}^t = \begin{bmatrix} \alpha\frac{x}{z} + c_x \\ \beta\frac{y}{z} + c_y \end{bmatrix}^t$$

 ${\sf k}$ and ${\sf I}$ may be different because the aspect ratio of the unit element is not guaranteed to be one

So

Digital image space

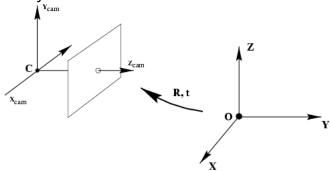
Using homogeneous coordinates, we can formulate :

$$\mathbf{P}' = \begin{bmatrix} \alpha & 0 & c_x & 0\\ 0 & \beta & c_y & 0\\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{P} = \begin{bmatrix} \alpha & 0 & c_x\\ 0 & \beta & c_y\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_3 & \mathbf{0}_{3,1} \end{bmatrix} \mathbf{P}$$

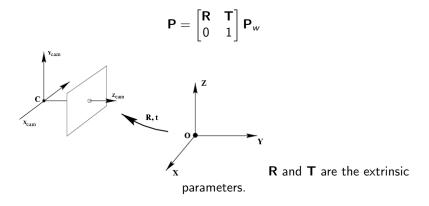
$$\mathbf{P}' = \mathcal{K} \begin{bmatrix} \mathbf{I}_3 & \mathbf{0}_{3,1} \end{bmatrix} \mathbf{P}$$

The matrix K is often referred to as the camera matrix. To parameters are missing : **skewness** and **distortion**. But it goes beyond the scope of this course. **K** is linked to intrinsic parameters.

So far, we have described a mapping between a point P in the 3D camera reference system to a point P' in the 2D image plane. But what if the information about the 3D world is available in a different coordinate system?



Then, we need to include an additional transformation that relates points from the world reference \mathbf{P}_w system to the camera reference system \mathbf{P} . This transformation is captured by a rotation matrix \mathbf{R} and translation vector \mathbf{T} .



$$\mathbf{P}' = \mathcal{K} \begin{bmatrix} \mathbf{R} & \mathbf{T} \end{bmatrix} \mathbf{P}_w = \mathbf{M} \mathbf{P}_w$$

The extrinsic paramters include the rotation and translation, which do not depend on the camera's build.

 ${\bf M}$ is a 3×4 projection matrix with 11 degrees of freedom: 5 from the intrinsic camera matrix, 3 from extrinsic rotation, and 3 from extrinsic translation.