Action modelling and recognition in videos

Antoine Manzanera

U2IS / Robotics and Vision
ENSTA-Paris

Master 2
IP Paris - Univ. Paris-Saclay
Action Modelling and Activity Understanding

Context

Automatic recognition of gesture / action / activity by video analysis.

Focus of this lecture

- Action modelling: Extract relevant action features from the video flow.
- Action recognition: Classify a video block with respect to known action classes.

From [Laptev 13]
Action Modelling and Activity Understanding

Applications

- Video retrieval (summarization, indexing)
- Video surveillance (assistance)
- Biomedical imaging (gait, flight, ...)
- Human machine interaction (gesture control)

Challenges

- Huge variability (appearance, geometry)
- Moving camera
Presentation Outline

1. Introduction
2. Action Features
3. Action Coding and Recognition
4. Evaluation of Action Recognition
5. Current trends
1. Introduction

2. Action Features

3. Action Coding and Recognition

4. Evaluation of Action Recognition

5. Current trends
Global Action Features

The action may be modelled using geometric features from a global pattern obtained by segmentation of the moving objects. Examples:

- Action → 2d image [Bobick 96]
- Action → 3d shape [Gorelick 07]

![Images of actions with corresponding 2d and 3d representations]
Velocity-based Action Features

Some models are built from velocity field (optical flow). For example:

- **[Efros 03]** computes grey level patterns from velocity measures.

- **[Chaudhry 09]** uses histograms of optical flow orientations as action descriptor.

![Images showing original images, optical flow, and histograms](image_url)
Local Action Features - Overview

Some action representations are made from a *collection* of features calculated on a set of *space × time* salient points. For example [Laptev 05]:

- detects space × time 3d Harris corner points (STIP)
- describes them using a local (patch) descriptor
- quantises the local descriptor space to form a code book
- describes an action by the code book occurrence histogram over the sequence from [Laptev 05]
Local Action Features - Local (STIP) descriptor

$n \times n$ blocks neighbourhood

Spatial Orientations

$\times \times 8$ HOG descriptor

$n \times n \times 9$ HOOF descriptor
The space of local descriptors is quantised using a clustering (e.g. K-means) algorithm to form a Code book.

The action is represented by a Code book Histogram, that counts the number of occurrences of each word along the sequence.
[Martínez 12] computes recursive temporal statistics (average, min, max, variance) of the spatial histogram values of optical flow orientations.

(Left) Orientation histograms, calculated on each frame within the Region of Interest, represent the spatial distribution of instantaneous velocities.

(Right) The action descriptor is obtained by recursively calculating a set of temporal statistics on each bin of the velocity orientation histogram.

See video examples
Multiscale version (1: spatial decomposition)

From [Martínez 17]
Multiscale version (2: temporal decomposition)

From [Martínez 17]
The apparent trajectory of a moving point can be used to represent gesture, action or activity.

Pros
- Compact
- Large temporal depth
- Appearance invariant
- Facilitates segmentation

Cons
- Sparse
- Fragile
- Noisy
- Costly

J.E. Marey *Mouvement*
(Chronophographie) - 1882
Trajectory beam with semi-dense tracker Video extruder

Optical Flow
- Temporally *short term*
- Spatially *dense*
- Main computational load: *Spatial regularisation*

Point tracker
- Temporally *long term*
- Spatially *sparse*
- Main computational load: *Spatial characterisation*

Video Extruder
- Temporally *long term*
- Spatially *semi-dense*
- Weak spatial characterisation
- Minimal spatial regularisation
Video extruder: Weak spatial selection

Weak keypoint selection

- **Principle:** discarding only points whose matching will be ambiguous at all computed scales.

- **Saliency measure at one scale:**
 \[
 \Sigma_s(p) = \min_{i=0}^{7} |2I(p) - I(q_i) - I(q_{i+8})|
 \]

- **Multi-scale saliency:**
 \[
 \Sigma = \max_{s \in S} \Sigma_s
 \]

- **Fast computation of detector and descriptor (Bresenham circles).**

Multi-scale keypoint supports: Bresenham circles
Video extruder: Weak spatial selection

- **Block-wise maxima:** 2 or 3 times more points than local maxima

- **Geometric selection is better than arbitrary selection (brown curve) up to 10% of the image surface.**

- **Different detectors on the same support perform similarly, and far from ideal detector (purple curve).**

Keypoint selection evaluation: total error vs number of keypoints.
Video extruder: Tracking algorithm

Pyramidal tracking algorithm

- Coarse-to-fine prediction, based on:
 - Point velocity (temporal)
 - Regional dominant motion (spatial)
- Gradient descent based matching.
- Elimination of incoherent points and merging of redundant points.

Comparison with Pyramidal LKT (OpenCV)

- Similar tracking quality.
- Faster from $\times 2$ to $\times 15$ (depending on LKT parameters).
Video extruder: Benchmarking

Thanks to its high level of parallelism and regularity, Video extruder can run in real-time on many low-end embedded platforms.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Resolution</th>
<th># points</th>
<th>Freq. (Hz)</th>
<th># Cpp</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU GeForce GTX 460 1.35GHz</td>
<td>640 × 480</td>
<td>8 500</td>
<td>166</td>
<td>957</td>
</tr>
<tr>
<td>CPU quad-core i5 2500k 3.3GHz</td>
<td>640 × 480</td>
<td>8 500</td>
<td>152</td>
<td>2 550</td>
</tr>
<tr>
<td>ARM dual-core STE U8500 1GHz</td>
<td>320 × 240</td>
<td>3 000</td>
<td>11</td>
<td>30 300</td>
</tr>
<tr>
<td>ARM single-core IMX.53 1GHz</td>
<td>720 × 288</td>
<td>2 000</td>
<td>10</td>
<td>50 000</td>
</tr>
</tbody>
</table>

Time performance of Video extruder on different architectures.

http://perso.ensta-paristech.fr/~garrigues/video_extruder.html
From Trajectories to Action

- hand clapping
- hand waving
- running

A. Manzanera (ENSTA/U2IS)
Presentation Outline

1. Introduction
2. Action Features
3. Action Coding and Recognition
4. Evaluation of Action Recognition
5. Current trends
On [Martínez 17], the action descriptor made of the concatenation of VOH, is simply submitted to N linear SVM (with N the number of actions, one-against-all method).
The online frame-level classification on [Martínez 17] allows temporal filtering of the action labels (example shows two long videos with different actions).
On [Nguyen 13], elementary motion elements (atomic actions) are extracted from the trajectories, using dominant points, corresponding to local maxima of the radial acceleration (related to curvature), for different temporal scales.

The temporal scale is related to the standard deviation σ of the Gaussian used to smooth the trajectory.
Representation of Atomic Actions on trajectories

Dominant point detection [Nguyen 13]
Every dominant point is described using a *feature vector* composed of *geometrical* and *statistical* parameters of the trajectory around the dominant point: angle, curvature, directions, average and variance of speed and accelerations...

The size of the support depends on the temporal scale σ of the dominant point.
In a first level (non supervised) learning phase, the feature vectors from a set of actions are vector quantised (K-means algorithm) to form a code book of atomic actions.

At the run time, every dominant point is classified as an atomic action using a nearest neighbour search.

The action may then be represented using a classic Bag of Features approach (i.e. distribution of the words from the code book), however the spatiotemporal relations between the atomic actions are crucial to represent a complex action.
We represent a complex action by concatenating histograms of atomic actions on a hierarchy of space \times time boxes.

The multiple histogram represents spatiotemporal relations between atomic actions.
The second level (supervised) learning phase corresponds to learning a SVM on action descriptors from training sequences.

At the run time, action classification is performed using 1 vs 1 SVM multiclass classifier.
Online Modelling can be extended to trajectories: On [Martínez 15], a set of kinematic features (orientation, speed, curvature...) is recursively estimated for each trajectory. A kinematic codebook is then used though a multiscale bag-of-words approach.
Background Motion Removal

When the camera is moving, many trajectories are due to the relative motion of the background and must be discarded.

Sport sequence from *UCF Youtube dataset*
Computed trajectories
If we suppose the background essentially plane and/or the camera motion is limited to pan/tilt, and if the interest object is not too big, the background motion is associated to the dominant motion, calculable by a cumulative framework (Figure).

The framework can be extended to an affine motion of the camera $X_{t+1} = A_t X_t + B_t$ [Jain 13].

The trajectory framework makes the removal more robust, by counting the number of times a point has a dominant motion along its trajectory.
Background Removal: Results

A. Manzanera (ENSTA/U2IS)

Action Recognition
Data Bases of segmented videos: from the handcrafted...

KTH [Schuldt 04] 2,391 videos; 6 actions × 25 subjects

- [Image: Handcrafted gestures]

UCF Youtube [Liu 09] 800 videos; 11 actions × 25 groups

- [Image: Various action sequences]
Data Bases of segmented videos

HMDB [Kuehne 11] 6849 videos; 51 actions

5 types of human actions: (1) General facial actions (smile, laugh, chew, talk...) (2) Facial actions with object manipulation (smoke, eat, drink...) (3) General body movements (cartwheel, clap hands, climb stairs...) (4) Body movements with object interaction (brush hair, catch, dribble...) (5) Body movements for human interaction (fencing, hug, kick someone...)
Data Bases of segmented videos: ...to the Big Data era!

Kinetics [Carreira 18] 300,000 videos (\approx 10s); 400 actions

- (a) headbanging
- (b) stretching leg
- (g) riding a bike
- (h) riding unicycle
- (c) shaking hands
- (d) tickling
- (i) playing violin
- (j) playing trumpet
- (e) robot dancing
- (f) salsa dancing
- (k) braiding hair
- (l) brushing hair
Evaluation metrics: Accuracy

The accuracy is the recognition rate, i.e. the number of correct classification divided by the number of predictions made on the test (or validation) set.

Evaluation: UCF101 Eval

Description: Three splits as defined by authors

Results

<table>
<thead>
<tr>
<th>Result</th>
<th>Paper</th>
<th>Description</th>
<th>URL</th>
<th>Peer Reviewed</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.2</td>
<td>PoTion: Pose MoTion Representation for Action Recognition [Vasileios Choutas, Philippe Weinzaepfel, Jérôme Revaud, Cordelia Schmid]</td>
<td>I3D + PoTion</td>
<td>URL</td>
<td>Yes</td>
<td>2018</td>
</tr>
<tr>
<td>98.2</td>
<td>Global and Local Knowledge-Aware Attention Network for Action Recognition [Zhenxing Zheng, Gaoyun An, Dapeng Wu, Qiuqi Ruan]</td>
<td>global and local attention + I3D</td>
<td>URL</td>
<td>No</td>
<td>2019</td>
</tr>
</tbody>
</table>

Best accuracies on UCF 101 Data set (3-fold cross-validation), from www.actionrecognition.net, University of Bonn
Evaluation metrics: Accuracy

Evaluation: HMDB Eval

Description:

Results

<table>
<thead>
<tr>
<th>Result</th>
<th>Paper</th>
<th>Description</th>
<th>URL</th>
<th>Peer Reviewed</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.48</td>
<td>Hallucinating IDT Descriptors and I3D Optical Flow Features for Action Recognition with CNNs [Lei Wang, Piotr Koniusz, Du Q. Huynh]</td>
<td>HAF+BoW/FV halluc.</td>
<td>URL</td>
<td>Yes</td>
<td>2019</td>
</tr>
<tr>
<td>82.3</td>
<td>Evolving Space-Time Neural Architectures for Videos [AJ Piergiovanni, Anelia Angelova, Alexander Toshev, and Michael Ryoo]</td>
<td></td>
<td>URL</td>
<td>Yes</td>
<td>2019</td>
</tr>
<tr>
<td>82.1</td>
<td>End-to-end Video-level Representation Learning for Action Recognition [Jiagang Zhu, Wei Zou, Zheng Zhu, Lin Li]</td>
<td>DTPP (Kinetics pre-training)</td>
<td>URL</td>
<td>No</td>
<td>2017</td>
</tr>
</tbody>
</table>

Best accuracies on HMDB Data set,
from www.actionrecognition.net, University of Bonn
Evaluation metrics: Accuracy

Evaluation: Kinetics-val

Description: Top-1 results for the validation or test set of the Kinetics dataset. Results of the val and test set should be comparable.

Results

<table>
<thead>
<tr>
<th>Result</th>
<th>Paper</th>
<th>Description</th>
<th>URL</th>
<th>Peer Reviewed</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.8</td>
<td>Large-scale weakly-supervised pre-training for video action recognition [Deepthi Ghadiyaram, Matt Feiszli, Du Tran, Xueting Yan, Heng Wang, Dhruv Mahajan]</td>
<td>WeakLargeScale (RGB)</td>
<td>URL</td>
<td>No</td>
<td>2019</td>
</tr>
<tr>
<td>82.6</td>
<td>Video Classification with Channel-Separated Convolutional Networks [Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feiszli]</td>
<td>CSN on RGB</td>
<td>URL</td>
<td>Yes</td>
<td>2019</td>
</tr>
<tr>
<td>79.4</td>
<td>Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification [Xiang Long, Chuang Gan, Gerard de Melo, Jiajun Wu, Xiao Liu, Shilei Wen]</td>
<td>Attention Cluster (RGB + Flow + Audio)</td>
<td>URL</td>
<td>No</td>
<td>2017</td>
</tr>
</tbody>
</table>

Best accuracies on Kinetics Data set (Validation or Test set), from www.actionrecognition.net, University of Bonn
Confusion matrix for [Nguyen 13] on UCF Youtube

<table>
<thead>
<tr>
<th></th>
<th>bb</th>
<th>bk</th>
<th>dv</th>
<th>gf</th>
<th>rd</th>
<th>sc</th>
<th>sw</th>
<th>tn</th>
<th>tp</th>
<th>vb</th>
<th>wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>basketball</td>
<td>46.2</td>
<td>0</td>
<td>9.6</td>
<td>1.9</td>
<td>0</td>
<td>1.9</td>
<td>0</td>
<td>17.3</td>
<td>5.8</td>
<td>17.3</td>
<td>0</td>
</tr>
<tr>
<td>biking</td>
<td>0</td>
<td>51.9</td>
<td>3.7</td>
<td>0</td>
<td>18.5</td>
<td>0</td>
<td>0</td>
<td>7.4</td>
<td>0</td>
<td>0</td>
<td>18.5</td>
</tr>
<tr>
<td>diving</td>
<td>0</td>
<td>0</td>
<td>73.3</td>
<td>6.7</td>
<td>0</td>
<td>1.7</td>
<td>5.0</td>
<td>3.3</td>
<td>5.0</td>
<td>3.3</td>
<td>1.7</td>
</tr>
<tr>
<td>golf</td>
<td>0</td>
<td>0</td>
<td>4.0</td>
<td>82.0</td>
<td>0</td>
<td>2.0</td>
<td>12.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>riding</td>
<td>1.2</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
<td>91.9</td>
<td>0</td>
<td>0</td>
<td>1.2</td>
<td>2.3</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>soccer</td>
<td>0</td>
<td>3.5</td>
<td>5.3</td>
<td>0</td>
<td>5.3</td>
<td>66.7</td>
<td>14.0</td>
<td>0</td>
<td>5.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>swing</td>
<td>2.2</td>
<td>0</td>
<td>2.2</td>
<td>6.7</td>
<td>15.6</td>
<td>2.2</td>
<td>57.8</td>
<td>0</td>
<td>6.7</td>
<td>2.2</td>
<td>4.4</td>
</tr>
<tr>
<td>tennis</td>
<td>5.1</td>
<td>1.7</td>
<td>1.7</td>
<td>13.6</td>
<td>8.5</td>
<td>6.8</td>
<td>0</td>
<td>59.3</td>
<td>0</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>trampoline</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
<td>0</td>
<td>2.2</td>
<td>0</td>
<td>6.7</td>
<td>0</td>
<td>82.2</td>
<td>0</td>
<td>6.7</td>
</tr>
<tr>
<td>volleyball</td>
<td>10.0</td>
<td>0</td>
<td>10.0</td>
<td>5.0</td>
<td>2.5</td>
<td>0</td>
<td>0</td>
<td>12.5</td>
<td>0</td>
<td>60.0</td>
<td>0</td>
</tr>
<tr>
<td>walk</td>
<td>0</td>
<td>15.2</td>
<td>4.3</td>
<td>4.3</td>
<td>28.3</td>
<td>8.7</td>
<td>6.5</td>
<td>4.3</td>
<td>4.3</td>
<td>0</td>
<td>23.9</td>
</tr>
</tbody>
</table>
Evaluation metrics: Confusion Matrices

Confusion matrix for [Nguyen 13] on KTH
Examples taken from [Tran 19]
Data Bases for online recognition

Visor [Vezzani 10] 5 actions; 40 short + 1 long videos (≈ 180s)

(a) Getting into a car
(b) Leaving an object
(c) Running
(d) Walking

UT-Interaction [Ryoo 10] 6 actions; 20 videos (≈ 60s and 8 actions per video)

(e) Hand shaking
(f) Hugging
(g) Kicking
(h) Punching
Results of [Martínez 17] for online recognition

Accuracies are calculated per frame (on the basis of frame-level action annotations).

Confusion matrices on ViSOR:

<table>
<thead>
<tr>
<th>Category</th>
<th>gc</th>
<th>lo</th>
<th>w</th>
<th>r</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>get car</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>leave Object</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>walk</td>
<td>0</td>
<td>0</td>
<td>83.3</td>
<td>16.7</td>
<td>0</td>
</tr>
<tr>
<td>run</td>
<td>0</td>
<td>0</td>
<td>14.29</td>
<td>85.71</td>
<td>0</td>
</tr>
<tr>
<td>hand shake</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

3 temporal scales

<table>
<thead>
<tr>
<th>Category</th>
<th>gc</th>
<th>lo</th>
<th>w</th>
<th>r</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>get car</td>
<td>85.76</td>
<td>0</td>
<td>0</td>
<td>14.24</td>
<td>0</td>
</tr>
<tr>
<td>leave Object</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>walk</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>run</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>hand shake</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

5 temporal scales

Comparative average accuracies on UT-Interaction:

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Accuracy UT-dataset 1</th>
<th>Accuracy UT-dataset 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagative voting [28]</td>
<td>93</td>
<td>91</td>
</tr>
<tr>
<td>Proposed approach</td>
<td>81.6</td>
<td>78.3</td>
</tr>
<tr>
<td>Daysy [9]</td>
<td>71</td>
<td>51</td>
</tr>
<tr>
<td>SIFT 3D [29]</td>
<td>63</td>
<td>55</td>
</tr>
<tr>
<td>Slimani 2014 [30]</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Ryoo 2011 [32]</td>
<td>71.7</td>
<td></td>
</tr>
<tr>
<td>Mukherjee [31]</td>
<td>79.17</td>
<td></td>
</tr>
<tr>
<td>Xiaofei [33]</td>
<td>83.33</td>
<td></td>
</tr>
</tbody>
</table>
Best algorithms of the moment?

Until 2015 (?), the best algorithms in the different action recognition benchmarks were based on dense trajectories:

- In [Wang 13] dense trajectories are extracted from a fixed block of N frames, by compensating the background (camera) motion (assumed a homography).
- A series of appearance (HOG) and motion (HOF, MBH) histogram based descriptors are calculated within the cuboids centred on each trajectory.
- A codebook is trained for the trajectory features, and then the action descriptors are encoded within a bag-of-feature approach and classified using a SVM.
Best algorithms of the moment?

- Unlike still images (recognition, categorisation, detection...) the performance of pure end-to-end deep learning techniques applied on video data hardly reaches state-of-the-art algorithms using hand-crafted features.
- End-to-end networks are huge and computationally very heavy.
- Significant number of training videos is hard to find.
- From 2015, action recognition algorithms using CNN have begun to outperform hand-crafted algorithms, most of them being hybrid, not end-to-end approaches.
For example, [Ravanbakhsh 15] use output of the penultimate layer of a CNN pre-trained on ImageNet (still images) as a pose feature.

Significant changes in the pose features are used as key frames, and composed within a hierarchical descriptor.

The previous descriptors are quantised (PCA) and used to train a SVM for action classification.
[Wang 17] calculates, on one hand, the dense trajectories on the video, and on the other hand the feature maps from a CNN using static image and optical flow as inputs.

Then the features are pooled along the dense trajectories to obtained a trajectory constrained deep CNN.
DNN based Action Recognition in 2019

- A new huge action video dataset *Kinetics* [Carreira 18] has been proposed with 400 classes of 400 video clips per class.
- Most DNN based action recognition methods have been improved by pre-training on *Kinetics* dataset.
- New deep networks appear every month. Their architecture can be classified as follows [Carreira 18]:

 a) LSTM
 b) 3D-ConvNet
 c) Two-Stream
 d) 3D-Fused Two-Stream
 e) Two-Stream 3D-ConvNet
Example of Two-stream CNN

From [Simonyan 14]
Example of end-to-end Recurrent NN

From [Donahue 16]
Conclusion

- Global, segmentation or detection based modelling are considered too fragile.
- Local, statistical bag-of-words approaches have better performance for hand-crafted approaches.
- Trajectory seems the most relevant information support.
- Deep CNN techniques have only begun to emerge from 2014.
- Representative datasets and benchmarks are growing fastly, but remain a challenge.
- Online action recognition is still at its infancy.
[Vishwakarma 13] S. Vishwakarma and A. Agrawal
A survey on activity recognition and behavior understanding in video surveillance
The Visual Computer 29(10), pp 983-1009, Oct. 2013

[Bobick 96] A.F. Bobick and J.W. Davis
Real-time recognition of activity using temporal templates

Actions as Space-Time Shapes

[Laptev 05] I. Laptev
On Space-Time Interest Points
International Journal of Computer Vision 64(2/3), 107-123, Jul. 2005
Recognizing Action at a Distance
Int. Conf. on Computer Vision (ICCV), Vol. 2, pp 726-733, 2003

Histograms of Oriented Optical Flow and Binet-Cauchy Kernels on Nonlinear Dynamical Systems for the Recognition of Human Actions

[Martínez 12] F. Martínez, A. Manzanera, and E. Romero
A motion descriptor based on statistics of optical flow orientations for action classification in video-surveillance.

[Martínez 17] F. Martínez, A. Manzanera, and E. Romero
Spatio-temporal multi-scale motion descriptor from a spatially-constrained decomposition for online action recognition.
[Garrigues 12] M. Garrigues and A. Manzanera
Real Time Semi-dense Point Tracking
Int. Conf. on Image Analysis and Recognition (ICIAR), pp245-252, 2012

[Nguyen 13] T.P. Nguyen and A. Manzanera
Action Recognition Using Bag of Features extracted from a Beam of Trajectories
Proc. of Int. Conf. on Image Processing (IEEE-ICIP), Sep. 2013

[Martínez 15] F. Martínez, A. Manzanera, M. Gouiffès and A. Braffort
A Gaussian mixture representation of gesture kinematics for on-line Sign Language video annotation
Int. Symp. on Visual Computing (ISVC), 2015.

Better exploiting motion for better action recognition
Conf. on Computer Vision and Pattern Recognition (CVPR), 2013
[Schuldt 04] C. Schuldt, I. Laptev and B. Caputo
Recognizing Human Actions: A Local SVM Approach
Int. Conf. on Pattern Recognition (ICPR), pp 32-36, 2004

Recognizing realistic actions from video “in the wild”

HMDB: A Large Video Database for Human Motion Recognition
ICCV, 2011

[Tran 19] D. Tran, H. Wang, L. Torresani and M. Feiszli
Video Classification with Channel-Separated Convolutional Networks
arXiv Preprint 1904.02811, 2019

[Ryoo 10] M.S. Ryoo and J.K Aggarwal
UT-Interaction Dataset
ICPR contest on SDHA, 2010
[Vezzani 10] Video surveillance online repository (ViSOR): an integrated framework
R. Vezzani and R. Cucchiara
Multimedia Tools and Applications 50 (2), 359-380, 2010

[Sadanand 12] S. Sadanand and J.J. Corso
Action bank: A high-level representation of activity in video
Conf. on Comp. Vis. and Pat. Rec. (CVPR), pp 1234-1241, 2012

Action Recognition with Improved Trajectories
IEEE Int. Conf. on Comp. Vis.pp.3551-3558 2013

Action Recognition with Image Based CNN Features
Action recognition with trajectory-pooled deep-convolutional descriptors
Conf. on Comp. Vis. and Pat. Rec. (CVPR), 2015, pp. 4305-4314

[Donahue 16] J. Donahue et al
Long-term Recurrent Convolutional Networks for Visual Recognition and Description

[Simonyan 14] K. Simonyan and A. Zisserman
Two-Stream Convolutional Networks for Action Recognition in Videos
Advances in Neural Information Processing Systems 27 (NIPS 2014)

[Carreira 18] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
J. Carreira and A. Zisserman
https://arxiv.org/abs/1705.07750, 2018