From data-mining to social networks.

Subjectivity and AI

Cours TPT-DATAAI-903
M2 AI (Artificial Intelligence) - Université Paris Saclay
Master CPS (Cyber Physical Systems) - IPP
Master DATA AI - IPP

Henri Maître - Télécom Paris
henri.maitre@telecom-paris.fr

October 2021
Objectives of this course

- 1 - To present some limits of Artificial Intelligence (AI) based on deep neural networks (DNN),
- 2 - To emphasize the role of subjectivity in the consumer’s demand,
- To present some tracks to conciliate 1) and 2) based on tools developed for social networks managing.

The course takes aesthetic assessment of photos as experimental field.

It lights up the place of individual criteria in human perception of images

--/---
The course in brief

- Evaluating the beauty of a photo may be seen as a challenge for AI.
 - Solutions have been proposed using either:
 - Machine Learning and Handmade features
 - Deep Neural Networks
 - They are based on:
 - Collecting data bases of instances of photos either “nice” or “not”
 - Collecting expertise on the assessment

- These methods let no room for the user’s personal tastes

- Several attempts are made to alleviate the problem:
 - Recommendation systems
 - Assessment of the user’s psychological profile
 - Assessment of the user’s tastes
 - Proposing concurrent expertise

About Beauty of Photos
Beauty … a rather long story for Humanity

- 25 centuries of philosophical debating:
 - Beauty vs Aesthetics vs Art,
 - Objectivists vs Subjectivists
 - Transcendental vs Naturalist

- 150 years of experimental & social Psychology
 - Fechner, Gestalt, … ➔ Bauhaus, Design

- 150 years of biological studies
 - Physiology of vision ➔ eye & visual paths
 - Neurobiology with fNMR ➔ brain & neuro-aesthetics

- 180 years of Photography
 - User’s manual, starting to advanced level manuals
 - Universities & courses
 - Galeries, museums, exhibitions and challenges,
Aesthetics: a short review of Beauty assessment (1/2)

Two opposite sides:

1 - « Objectivist » approach (Plato, Democrites, Pythagores): beauty is part of the piece of art. Thus, Beauty is:

- Universal,
- Identically perceived by everybody
- Independent of time, space and context (Kant, Hegel)

- Beauty follows « rules » (to be discovered) linking the attributes of objects (disposition, form, color, etc.)

Instances: Hellenic and Roman Schools
Renaissance and Classical periods
2 - For « Subjectivists » (Locke, Burke, Diderot, Goethe) Beauty is only a matter of personal assessment

- It depends on observer & context.
- It may vary in time
- It may not be related at all to the observed object
- If « rules » have to be found, they lie in the consciousness of the observer.

Instances: Romantism, Impressionism, Surrealism, Pop Art ...
Approaches based on objectivist approach: Machine Learning & Deep Neural Networks
Automatic Aesthetic Assessment

- Machine Learning approaches: 2 steps

Step 1: Training stage

Database with groundtruth

Learning machine

Classifier
Automatic Aesthetic Assessment

- Machine Learning approaches: 2 steps

Step 2: Decision stage

1. Unknown Image
2. Classifier
3. Class
Machine Learning approaches

- Handcrafted Feature Selection + Classifier
- Deep Neural Network

Image → Features → Classifier
- Bayes
- SVM
- KD Tree → Class
Machine Learning approaches

- Handcrafted Feature Selection + Classifier
- Deep Neural Network
Objectivist approach

Machine Learning

1. Feature detection & Classification (handcrafted) 2006 ➔ 2015
 Decision rules issued from:
 - Applied photography & Psychovision
 - Image processing
 - Vision & Multimedia

2. Deep Convolutional Neural Networks (CNN) 2014 ➔ ...
 Existing architectures & software exploiting: ResNet, AlexNet, VGG, GoogleNet, …
 Specific adaptations to « Beauty »
Data Bases for Machine Learning & CNN

Criteria to choose a database:

- Where are images taken from? Quality, topics, size, …
- Level of expertise: professional, trained unprofessional, amateurs
- Evaluation granularity: « Nice/Not-nice », continuous grade,
- Used Metadata: semantic classes, style, comments

➔ AVA = Aesthetic Visual Analysis
AVA data base: Aesthetic Visual Analysis

- 250 000 photos issued from *DPChallenge* (Digital Photography Challenge)
 https://www.dpchallenge.com/
- Good quality: almost professional
- Are only kept the photos with at least 200 notes given by visitors
 - Notes between [0,10] ➔ global mark = mean value
- Often with literal comments
 - « I love the audacious composition, as well as the B&W conversion. Great entry. Congrats on the ribbon! »
- Labels: tittle of the challenge

AVA: https://computervisiononline.com/dataset/1105138637
Learning stage: Which images are beautiful?

Mark distribution of the 250,000 images from AVA database

- Continuous mark: [0,10]
- Binary mark (as a function of δ)
Machine Learning approaches

- Handcrafted Feature Selection + Classifier
- Deep Neural Network

Image → FEATURES → Classifier
- Bayes
- SVM
- KD Tree → Class
Format or aspect ratio

- Commercial Formats: 3/2, 4/3, 5/3, 16/9, A, B, …

 Markowsky (1992) ➔ 1.83

- Rule of Third: S.E. Amirashi et al. (2014)

- Golden Number: \(\varphi = \frac{1 + \sqrt{5}}{2} \approx 1.618 \) Markowsky (1992)

- Weight of Center: Arnheim (1983)
Machine learning with Photo aesthetics rules

- **Composition rules**
 - Weight of the center
 - Importance of orders (regular, progressive)
 - Symetries
 - Alignements, diagonal, perspective

- **Role of attention points**
 - Objet versus background
 - Position
 - Focus
 - Contrast
Machine learning with Photo aesthetics rules (3/4)

- **Image:** $I(x,y)$
- **Grey level histogram:** $\text{proba}(I)$
 - Any Mean or Variance: $<I> \leq <(i-<i>)^2>$
 - Positively biased skew (order 3)

 Attewell & Baddeley, 2007

- **Power spectrum (after Fourier transform):**
 - $P_f(I) = |TF(I)|^2$
 - Radial Symmetry
 - $1/f^2$ power spectrum decay

 Koch M, Denzler J, Redies C, (2010)
Machine learning with Photo aesthetics rules

- From RVB to Lab color space

- Color harmony
 - Moon & Spencer (1943)
 - Judd & Wiszecki (1967)
An instance of vector of features (*Simond et al. 2015*)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness AVG and STD</td>
<td>(1) Average and standard deviation of the brightness, using the V channel in the HSV space.</td>
</tr>
<tr>
<td>Color Variance</td>
<td>(1) Variance of colors in the LAB space.</td>
</tr>
<tr>
<td>Contrast</td>
<td>(1) Width of the middle 96% mass of the histogram of the V channel in the HSV space.</td>
</tr>
<tr>
<td>#Edges and #Edges L, R, T, B, C</td>
<td>(1) We split the canny map into 16×16 blocks and we compute the number of blocks containing more than 10% of edges. We also compute this number on the left, right, top, bottom and center regions of the image.</td>
</tr>
<tr>
<td>Hue Count</td>
<td>(1) Approximation of the number of unique hues [18].</td>
</tr>
<tr>
<td>Saturation AVG and STD</td>
<td>(1) Average and standard deviation of the saturation.</td>
</tr>
<tr>
<td>Sharpness</td>
<td>(1) Variance of the Laplacian. [20]</td>
</tr>
<tr>
<td>Distance to the Center</td>
<td>(2) Distance of the salient region to the center of the image.</td>
</tr>
<tr>
<td>Rule of Thirds</td>
<td>(2) Shortest distance of the salient region to a power point.</td>
</tr>
<tr>
<td>Salient Hue, Brightness and Saturation</td>
<td>(2) Average hue, brightness and saturation of the salient region.</td>
</tr>
<tr>
<td>Salient Sharpness</td>
<td>(2) Sharpness of the salient region.</td>
</tr>
<tr>
<td>Salient Size</td>
<td>(2) Size of the salient region.</td>
</tr>
<tr>
<td>Salient LOC</td>
<td>(2) We split the image into nine equal parts, and compute the proportion of the salient region in each part. LOC can then take nine values: Top-Left, Middle-Left, Bottom-Right.</td>
</tr>
<tr>
<td>Color Difference</td>
<td>(3) Difference of colors in the LAB space between the salient object and the background.</td>
</tr>
<tr>
<td>Hue, Saturation and Brightness Difference</td>
<td>(3) Difference of hue, saturation and brightness between the salient region and the background.</td>
</tr>
<tr>
<td>Sharpness Difference</td>
<td>(3) Difference of sharpness between the salient region and the background.</td>
</tr>
</tbody>
</table>
An instance of vector of features *(Simond et al. 2015)*

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosité</td>
<td>moyenne et variance du canal V d'une représentation HSV</td>
</tr>
<tr>
<td>Variance de la couleur</td>
<td>Variance des couleurs dans l'espace Lab</td>
</tr>
<tr>
<td>Contraste</td>
<td>Largeur de l'intervalle central à 96% du canal V de HSV</td>
</tr>
<tr>
<td>nombre de Contours</td>
<td>L'image est divisée en blocs 16x16. Nombre de blocs contenant plus de 10% de contours</td>
</tr>
<tr>
<td>nombre de Contours L R T C B</td>
<td>Nombres de contours dans les blocs à gauche, à droite, en haut au centre et en bas</td>
</tr>
<tr>
<td>nombre de Teintes</td>
<td>Nombre de teintes uniques</td>
</tr>
<tr>
<td>Saturation</td>
<td>Moyenne et variance de la saturation</td>
</tr>
<tr>
<td>Netteté</td>
<td>Variance du laplacien</td>
</tr>
<tr>
<td>Distance au centre</td>
<td>Distance du centre de la zone S au centre de l'image</td>
</tr>
<tr>
<td>Règle du tiers</td>
<td>Plus courte distance du centre de la zone S à un axe de tiers</td>
</tr>
<tr>
<td>Couleurs de la zone S</td>
<td>Teinte, luminosité et saturation moyennes de la zone S</td>
</tr>
<tr>
<td>Netteté de la zone S</td>
<td>Variance du laplacien de la zone S</td>
</tr>
<tr>
<td>Taille de la zone S</td>
<td>Nombre de pixels de la zone S</td>
</tr>
<tr>
<td>Localisation de la zone S</td>
<td>L'image étant divisée en 9, proportions de la zone S dans chaque zone</td>
</tr>
<tr>
<td>Différences de couleur</td>
<td>Différence des couleurs dans l'espace Lab entre la zone S et le fond</td>
</tr>
<tr>
<td>Différences HSV</td>
<td>Différences teinte, luminosité et saturation entre la zone S et le fond</td>
</tr>
<tr>
<td>focalisation sur l'objet</td>
<td>Différence de netteté entre la zone S et le fond</td>
</tr>
</tbody>
</table>
Machine learning with Image processing features

- Statistics from histogram & color distribution
- Texture statistics: wavelets, Gabor, Haralick
- Detection of edges & contours
- Segmentation and distribution of areas

Machine learning with general vision oriented features

- Characteristic points (points of interest) : SIFT or SURF
Feature Detection & Classification

<table>
<thead>
<tr>
<th>reference</th>
<th>Data Base</th>
<th>Evaluation result</th>
<th>features</th>
<th>classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ke et al., 2006] Carnegie Mellon + Microsoft Asia</td>
<td>DPChallenge</td>
<td>2 classes</td>
<td>Image: Generic</td>
<td>Bayes, AdaBoost</td>
</tr>
<tr>
<td>[Datta and Wang, 2010] PennState University</td>
<td>Photo.net</td>
<td>2 classes + mark</td>
<td>Photography theory</td>
<td>SVM</td>
</tr>
<tr>
<td>[Marchesotti et al., 2011] Xerox, Grenoble</td>
<td>Photo.net + CUHK</td>
<td>mark</td>
<td>Vision: generic</td>
<td>PCA + FV + SVM</td>
</tr>
<tr>
<td>[Dhar et al., 2011] Stony Brook Uni.</td>
<td>DPChallenge</td>
<td>2 classes</td>
<td>Semantic – Hi level</td>
<td>SVM</td>
</tr>
<tr>
<td>[Lo et al., 2012] Academia Sinica, Taiwan</td>
<td>CUHK</td>
<td>2 classes</td>
<td>Photography theory</td>
<td>SVM with categories</td>
</tr>
<tr>
<td>[San Pedro et al., 2012] Telefonica, Barcelona - Maryland</td>
<td>DPChallenge</td>
<td>Continuous mark</td>
<td>Crowd-sourcing</td>
<td>SV_eps</td>
</tr>
<tr>
<td>[Lu et al., 2014a] BUP, Beijing - Raytheon</td>
<td>AVA</td>
<td>2 classes</td>
<td>color HSV or Munsell</td>
<td>LDA + Lasso</td>
</tr>
<tr>
<td>[Schifanella et al., 2015] Uni. Torino - Yahoo</td>
<td>BEAUTY</td>
<td>5 levels</td>
<td>Image: Generic</td>
<td>PLSR</td>
</tr>
</tbody>
</table>
Machine Learning approaches

- Handcrafted Feature Selection + Classifier
- Deep Neural Network

Image \rightarrow DNN \rightarrow Class
Machine Learning approaches

- Handcrafted Feature Selection + Classifier
- Deep Neural Network
DNN architecture

- Use a generic DNN as optimized for pattern recognition competitions (ResNet, Photo.net, Google LeNet, VGG, Inception …)
- Train it with it with ordinary databases?
- Add a last level of fine tuning with data issued from an aesthetic database
Main publications using CNN (1/2)

<table>
<thead>
<tr>
<th>reference</th>
<th>Data Base</th>
<th>Evaluation granularity</th>
<th>Middleware</th>
<th>decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Lu et al. 2014] Penn State + Adobe</td>
<td>AVA</td>
<td>2 classes</td>
<td>2 tracks + categories</td>
<td>2xCNN : 50 random sub-images</td>
</tr>
<tr>
<td>[Lu et al. 2015] Penn State + Adobe</td>
<td>AADB + AVA</td>
<td>2 classes</td>
<td>6 tracks</td>
<td>1CNN + 5 random sub-images</td>
</tr>
<tr>
<td>[Kong et al. 2016] Irvine + Adobe</td>
<td>AADB + AVA</td>
<td>2 classes</td>
<td>reduced images + categories</td>
<td>Siamese CNN</td>
</tr>
<tr>
<td>[Jin et al. 2016] Beijing Uni.</td>
<td>AVA</td>
<td>2 classes</td>
<td>reduced images + categories</td>
<td>CNN - ILGNet</td>
</tr>
<tr>
<td>[Mai et al., 2016] Portland Uni + Adobe</td>
<td>AVA</td>
<td>2 classes</td>
<td>pyramid + categories</td>
<td>MNA CNN multitask</td>
</tr>
<tr>
<td>[Schwartz et al. 2016] Uni. Tübingen</td>
<td>Tübingen</td>
<td>ranking</td>
<td>1 track</td>
<td>Siamese & triplets</td>
</tr>
<tr>
<td>[Wang et al. 2016] Uni Illinois</td>
<td>AVA</td>
<td>2 classes</td>
<td>multiples parallel paths</td>
<td>CNN = Brain Inspired</td>
</tr>
<tr>
<td>[Kao et al., 2017] Chinese Acad. Sci.</td>
<td>AVA</td>
<td>2 classes</td>
<td>aesthetics + categories</td>
<td>CNN multitask</td>
</tr>
</tbody>
</table>
Main publications using CNN (2/2)

<table>
<thead>
<tr>
<th>reference</th>
<th>Data Base</th>
<th>evaluation granularity</th>
<th>Middleware</th>
<th>classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Redi et al., 2017] Bell Labs + Flickr + Yahoo</td>
<td>AVA ==> Redi</td>
<td>3 classes</td>
<td>web on-line training</td>
<td>CNN</td>
</tr>
<tr>
<td>[Kairanbay et al. 2017] Malaysia</td>
<td>AVA</td>
<td>2 classes</td>
<td>Global Average Pooling</td>
<td>CNN – GAP AlexNet</td>
</tr>
<tr>
<td>[Ma et al. 2017] SUNY (Buffalo) + Tianjin</td>
<td>AVA</td>
<td>2 classes</td>
<td>Aesthetical criteria</td>
<td>A-Lamp – CNN multitask</td>
</tr>
<tr>
<td>[Murray & Gardo, 2017] Naver Labs Europe</td>
<td>AVA</td>
<td>Mark distribution</td>
<td>categories</td>
<td>ResNet - VGGNet</td>
</tr>
<tr>
<td>[Park et al., 2017] Postech, Corea</td>
<td>AVA + interaction</td>
<td>2 classes</td>
<td>Personnal preference learning</td>
<td>CNN + R-SVM + SVR</td>
</tr>
<tr>
<td>[Srivastava & Kant, 2018] ParallelDots</td>
<td>AVA2</td>
<td>2 classes</td>
<td>LAB space</td>
<td>ILGNet</td>
</tr>
<tr>
<td>[Wang et al. 2018] Fudan (Shanghai) + Xi’an</td>
<td>AVA - Reviews</td>
<td>report</td>
<td>Vision to Language LSTM</td>
<td>CNN recurrent = NAIR</td>
</tr>
</tbody>
</table>
Beauty assessment with DNN

- Results: good for binary classification > 80%
 DNN > « Handcrafted+Classification »
 expert knowledge of no use

- Problems remain with:
 - Image resolution
 - concatenate mosaïc subprocessing,
 - parallel processing of sub-images,
 - pyramidal pooling,
 - random sub-image high resolution processing
 - Use of semantic metadata
 - Decision over nice/poor images
Subjectivity of aesthetic appraisal
Subjectivity

- Subjectivity is the quality or condition of an individual who possesses conscious experiences, such as perspectives, feelings, beliefs, and desires.
- Subjectivity is an explanation for that which influences, informs, and biases people's judgments about truth or reality.

- “Beauty is in the eye of the beholder”, Margaret Wolfe Hungerford (1878)
Subjectivity

- It is the result of many different causes:
 - Long term observer’s personal dispositions: temper or temperament
 - Short term observer state of consciousness: mood
 - Long term cultural & social context of life (unconscious), personal experience
 - Education and training (volunteer)
 - Context of the assessment experimentation

- The role of these factors is not enough known today
I - Recommendation systems

- Popular for films, books, series ... "you appreciated xxx, you will love yyy ..."

- Method:
 - Collect a large series of opinions from a large number of customers
 - Collect some opinions from the user of concern
 - Deduce the user’s opinion on the object of concern from the collection of opinions using various strategies

- Not well adapted to aesthetic assessment
 - Recommendations work well with hidden semantic features: actors, authors, genre,

- Exception: Art galleries
 - But aesthetics has only a minor rôle in photo selection versus artist’s name, price and previous acquisitions from the user
II – Subjectivity from a social profile

- Collect any information on the user available from online social networks
- Make use of a specific database AVA-PD (*AVA Photographer Demographic*)
 - Subset of AVA with the only photographers the social profiles of which are known (age, gender, profession, country of life …)
 - Proceed to an aesthetical assessment with a CNN training on AVA + a fine tuning on the only photographers of AVA-PD the profile of which are close from the user’s one.
 - Submit the unknown photo to the trained CNN

 (Kairanbay et al., 2019)

Alternative:

- Make use of photos posted by the user on the web (*Instagram, Flickr, Pinterest, …*) to categorize users *(Lovato et al., 2013, Yang et al. 2015, You et al, 2016)*
II – Social classes from posted images online

Pinterest User A
Board: Travel

Pinterest User B
Board: Travel

Pinterest User C
Board: Travel

Pinterest User D
Board: Travel

Yang, Hsieh & Estrin, 2015
II – Social classes from posted images on line

Yang, Hsieh & Estrin, 2015
Components of psychological profile: the Big Five (L. Goldberg, 1990)

- Openness
- Conscientiousness
- Extraversion
- Agreeableness
- Nevrotism

When using a media to determine a profile ➔ 2 different profiles

- The producer psychological profile vs. the receiver image of the producer’s profile ➔ Brunswik lens (E. Brunswik, 1956)
Measure of Big Five using Brunswik lens model

Ground truth = PsychoFlickr database:
- 60 000 images
- 300 photographers
- Emitter profile
- Receiver profile

Figure 2: The picture shows the Brunswik Lens model for the PsychoFlickr dataset, where the state corresponds to the Big Five traits (as per assessed with the BFI-10). Ecological and Representation validities are measured with the Spearman Coefficient and the picture shows (for each trait) features for which both values are statistically significant ($p < 5\%$).

M. Cristani et al., 2013
Learning Big Five

- With handcrafted features and classification: M. Cristani et al., 2013
- With CNN: C. Segalin et al., 2017

Conscientiousness = sens of responsability

C. Segalin et al., 2017

Fig. 7. Representative images in the low (left) and high (right) value classes for the Consciousness trait.
Use of Big Five for Aesthetic appraisal of photos

Make use of images posted by the user

Li, Zhu & Zhao, 2020
IV – Learning aesthetical tastes with tests

- Submit some images to the user’s judgement
 - How many? 10? 100? No clear answer
 - Fine-tune a CNN with user’s preferences

- Either: Compare the user to one of some prototype photographers previously used to train a CNN (for instance with AVA Photographer Demographic) (O’Donovan et al., 2014; Zhu et al., 2020)

- Or: Compare the user’s choices to yet classified images and select from the ground truth a subset to specify a personal CNN (reinforcement technique) (Ren et al., 2017; Lv et al., 2018)
Learning user’s preference through reinforcement loop

Lv et al., 2018
Conclusions
Conclusions

- Conventional AI based on:
 - Very large data base
 - Uncriticized & universal ground truth

Is efficient, easy to use and flexible
It provides rather good results for Photo Beauty Assessment

- Adaptation for more personal needs is very difficult
 - Recommendation techniques are not adapted
 - Psychosocial profiles may be determined, but the relation aesthetic assessment is loose
 - Aesthetic tastes are hard to define and to measure

- Progress are needed