

Earth Observation and Remote Sensing Image Mining

Flora Weissgerber, ONERA, DTIS/SAPIA flora.weissgerber@onera.fr

ONERA in a nutshell

Research center in

- Aeronautics
- Defence
- Space

Wind tunnel

Electromagnetic signature

Microscope satelllite

Remote sensing

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber

3

What is remote sensing

Timelapse of Sierra Nevada Spain

Sentinel-2 Optical sensor RGB images

What is remote sensing

Time Lapse of Hinlopenstretet Svalbard Norway

Sentinel-1 SAR sensor VV images

What is remote sensing

Observing the Earth (but it can be another planet) from afar, but not too far (generally with a satellite or airborne sensor)

Multiple questions :

- How much are the water reserve in snow ?
- Is the water free for sailing or is the sea ice too thick ?
- What are the damage after an earthquake ?
- Did another country build a nuclear power plant ?
- How do crops grow this year ?
- What was planted ?
- Did someone build a house without permission ?

Outlines

Objectives

- 1. Knowing what remote sensing is, and what are the different sensors
- 2. Assimilating image processing techniques for remote sensing
- 3. Getting some specificities of machine-learning/AI for remote sensing
- 4. Your case study

Outines

- Sensors presentation
- Optical remote sensing with applications
- LiDAR remote sensing
- SAR remote sensing with applications
- Radar altimeter
- Radiometer
- The need for co-registration

A. Sensors

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber

10/12/2024

8

Sensors

	Optical wavelength: 400 to 2200 nm	Electromagnetic wavelength: 1cm to 1m
Passive: measure energy that is naturally available	Optical imaging sensors	Radiometers
Active: provide their own energy source for illumination	• LIDAR	 SAR imaging sensors SAR imaging sensors SAR imaging sensors Radar altimeters

Satellite VS Airborne sensors

Airborne sensors Sensor on plane or drones	Observation satellite	Weather satellite
Cover a "small" area	Cover large areas	Cover VERY large areas
Close to the earth (10km)	Far from the earth (700km)	VERY far from the earth (36000km)
Choice of the track	Fixed orbit	Fixed position
Flexible repeat time Temporal stack on a mission timescale (few month or few month per year)	Fixed repeat time (~10 days) Temporal stack on multiple year	Fixed repeat time (~15 min)
Sub meter resolution	meter to 10 meters resolution	3km resolution

10

Sun synchronous orbits

Optical satellites:

Half of the orbit is in the sun and half is in the night Take images around noon local time

Sentinel-2 orbit (Heavens above)

Radar satellites:

Stay at the sun/night limit The solar panel are always directed to the sun

TerraSAR-X orbit (Heavens above)

Vue au-dessus du satellite

Révolution autour de la Terre

Révolution autour de la Terre

Sentinel-6 non sun synchronious orbit

Altimetry satellite missions: Near-real-time measurements of sea-surface heights

- Cover most of the oceans
- TOPEX/Poseidon and Jason measures continuity

CryoSat-2 non sun synchronious orbit

Go to higher latitudes than sun synchronious sensors

Journal of Geophysical Research: Oceans. 124. 10.1029/2019JC015232/ R&R Tilling, A. Shepherd (2019)

Vue au-dessus du satellite

Révolution autour de la Terre

Geostationary orbits for weather forecast

The orbit is at 36 700km Fixed point above the earth

B. Optical remote sensing

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10/12/2024

15

Optical sensors

Some current sensors :

- ESA: Sentinel-2 opendata
- NASA : Landsat (Landsat-9, Landsat-8,...) opendata
- MAXAR (ex-Digital global) : Worldview-3, Worldview-2
- AIRBUS/CNES : Pléiades Neo, Pléiades, Spot-7

	Sentinel-2	Landsat-9	Worldview-3	Pleiade Neo
Spatial resolution RGB	10m	30m	1.24m	0.3m
Radimetric resolution/quantization	12 bits	14 bits	11 bits	12 bits
Number of bands	10	11	29	6
Swath	290km	185 km	13 km	14 km
Revisit time	5 days	8 days	14 days / on demand	26 days / on demand

Wavelength and bandwidth

- Each band has a special target :
 - RGB bands
 - Infrared for vegetation or snow
 - Bande 10 for cloud detection
- Trade off between spatial resolution and spectral resolution

Pleaides	Spectral resolution	Spatial resolution
Panchromatique (PA)	470 – 830 nm	50cm
Blue (B0)	430 – 550 nm	2m
Green (B1)	500 – 620 nm	2m
Red (B2)	590 – 710 nm	2m
NIR (B3)	740 – <mark>940</mark> nm	2m

Figure 1. MSI spectral bands vs. spatial resolution with corresponding FullWidth at Half Maximum (FWHM). Source: [9]

Band combinations for vegetation or snow detection

NDVI: Normalized difference vegetation index

```
NDVI = (NIR - R) / (NIR + R)
NIR: near infrared, R: Red
```

NDSI: Normalized Difference Snow Index

```
NDSI = (NIR - G) / (NIR + G)
NIR: near infrared, G: Green
```

NDVI example

https://www.usgs.gov/media/images/landsat-surface-reflectance-and-normalized-difference-vegetation-index

Pushbroom acquisition

- Line are acquired one at a time
- Use the sensor displacement to create an image
- The line need to be merged LOD0 "as acquired by a CCD matrix"
- There may be vibrations

Level of processing and impact of the atmosphere

photon flux nadir

LO	Original data
L1C	Orthorectified images, Top of Atmosphere (with clouds mask)
L2A	Orthorectified images, Ground surface reflectance (with clouds removed)

Cloud detection :

- Bande 2 : Detect dense clouds (spatial resolution 10m)
- Bande 10 : Detect thin cloud (spatial resolution 60m)

Reflectance :

- Compensate from the solar illumination
- Compensate from the incidence angle

solar illumination

Resolution, pixel spacing and pan-sharpenning

- Resolution: capacity to separate two similar target Depends on the acquisition system
- Pixel spacing: size of a pixel in the image domain

For real images, when sampled at Shannon, the pixel spacing is half the resolution

Pansharpening

Panchromatic band **finer resolution** than RBG bands. Pansharpening : Pachro + RGB to have a fine resolution RGB image

Jnder

Illumination and seasonal change

17-12-2020

01-06-2014

Differences in season mean differences in shadows, vegetation state. Colorimetric data augmentation can help

Incidence angle and 3D from stereo acquisition

• Nadir (0°)

- No visible façades
- Mountains are flattened

• Off Nadir (here 30°)

- Façades are visible
- Reduce repeat-time
- 3D is possible using stereo acquisition

Panagiotakis, E.; Chrysoulakis, N.; Charalampopoulou, V.; Poursanidis, D. Validation of Pleiades Tri-Stereo DSM in Urban Areas. *ISPRS Int. J. Geo-Inf.* **2018**, *7*, 118. https://doi.org/10.3390/ijgi7030118

https://www.orfeo-toolbox.org/CookBo ok/recipes/stereo.html

B1. Mapping cities

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10/12/2024

2024 25

Manually defined procedures

Pattern recognition

- Edge detection
 - 1. Edge detection (Canny filter) [Wei2004]
 - \circ 2. Edge selection and grouping
 - 3. Edge linking: line or polygon fitting [Tupin2003]
- Texture feature
 - Co-occurrence matrices (Harralick) [Moya2019]
- Image segmentation (regions having similar attributes)
 - Mathematical morphology
- Shadow detection

Use of stereo images

Deep-learning

Multiple dataset with different tasks :

- Building semantic segmentation
- Building instance segmentation
- Building monitoring through time
- Land Cover semantic segmentation
- Road extraction and graph construction

Databases : Inria

Task: Semantic segmentation - Roof detection

Images : 30 cm resolution

Different cities : San Francisco, Lienz (Austria), Kitsap County, WA Transfert/Generalization

Chicago

Vienna

Databases : AIRS

Task: Building detection City: Christchurch Images: Very High Optical data

Databases : Semcity

Task: instance building segmentation

City: Toulouse

Image: very high resolution multi-spectral images

HAL Id : hal-02948177, version 1 DOI : 10.5194/isprs-annals-V-5-2020-109-2020

Datasets : Spacenet 7

Task: building detection and tracking through time Cities: ~100 unique geographies Images: Very high optical images

Datasets: ISPRS Vaihingen and Potsdam

Very nice dataset to start:

- All the patches come from the same image
- three RGB bands : infrared, red and green + DSM
- 5 labels : building, impervious surfaces, tree, low vegetation/grass, car.

Datasets : Spacenet 5

Task: Road network extraction Cities: Moscow, Mumbai, San Juan Image: very high resolution optical images

Datasets : DLR-SkyScapes: Aerial Semantic Segmentation Dataset for HD-mapping

- 31 classes
- Road marking
- Airborne optical acquisition

S. Azimi, C. Henry, L. Sommer, A. Schaumann, and E. Vig, " Skyscapes -- Fine-Grained Semantic Understanding of Aerial Scenes," in International Conference on Computer Vision (ICCV), October 2019.

Images are large! What to annotate, how to evaluate ?

Manual annotation are expensive:

- What to label
- Where to label

Automatic annotation from external database

- Coregistration in space
- Time matchig

Images are heterogeneous : how to create Train/Val/Test ensembles that make sense ?

- Avoid overfitting
- Test for generalization
- Test for domain change

Toulouse Pleiades image, annotated using open street map (Al4GEO)

Geometrical data augmentation Original image + label

D4 group: 7 data augmentation

Rotate 90° image + label

Question in remote sensing:

Help generalisation for another city but not always generalisation within the same image
B2. Mapping at large scale

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10/12/2024

2/2024 37

Mapping fire severity with random forest [Gibson2020]

https://fr.wikipedia.org/wiki/For%C3%AAt_d%27arbres_d%C3%A9cisionnels

Pixel classifier developed based on :

- A set of classified images
- A set of a priori criteria
 - NDVI (NIR, Red)
 - NDVR : differenced normalised burn ratio (1

o ...

Datasets: Mini France

Task: Semantic segmentation

Cities:

Labeled training data: Nice, Nantes/Saint Nazaire. <u>Unlabeled training data:</u> Le Mans, Brest, Lorient, Caen, Calais/Dunkerque and Saint-Brieuc. Test data: Marseille/Martigues, Rennes, Angers, Quimper, Vannes, Clermont-Ferrand, Cherbourg, Lille

Images: RGB IGN aerial images

Labels: 15 classes

0: No information - 1: Urban fabric - 2: Industrial, commercial, public, military, private and transport units - 3: Mine, dump and contruction sites - 4: Artificial non-agricultural vegetated areas - 5: Arable land (annual crops) - 6: Permanent crops - 7: Pastures - 8: Complex and mixed cultivation patterns - 9: Orchards at the fringe of urban classes - 10: Forests - 11: Herbaceous vegetation associations - 12: Open spaces with little or no vegetation - 13: Wetlands - 14: Water - 15: Clouds and shadows

Datasets: Resisc45

Task: image classification Number of classes:

B3. Change detection

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10/12

10/12/2024 41

Datasets : Xview 2

Task: Assessing building damage after a disaster is a critical first step in disaster response.

Images: Before/After optical images

Location:

The xBD Dataset

 $1\ dataset\ 6\ different types of disasters\ 15\ countries\ 850,736\ annotated\ buildings\ 45,362\ km^2$ of "before" and "after" images

Hurricane Harvey

Santa Rosa Wildfire

Pre-disaster

Post-disaster

Damage assessment from xView 2 model

Dataset : HRSCD

Task: semantic change detection

Images: RGB aerial images from IGN BD ORTHO database

Labels: 5 labels from Urban Atlas

Class imbalance HRSCD example

The most represented class is often the best predicted

Small classes may never be predicted

Options:

- Non uniform sampling
- Loss weighthing w = 1/class_frequency

Cannot compensate very big imbalance

Imbalance even larger for changes No change: 99.232%

Label	Proportion	
0 Background	0.176959	
1 Artificial surfaces	0.11508	
2 Field	0.618345	
3 Forest	0.0836437	
4 Wetland	0.000195238	
5 Water	0.00577677	

Ground truth precision

- They maybe error in the ground truth
- They are variation between annotators
- It is difficult to have very precise borders BUT border account for a large

proportion of the pixel in a dataset

(a) Image 1.

(b) Image 2.

(c) Inaccurate border.

(d) Image 1.

(g) Image 1.

(h) Image 2.

(i) False positive.

Daudt, R.C., Le Saux, B., Boulch, A. and Gousseau, Y., 2019. Multitask learning for large-scale semantic change detection. Computer Vision45 and Image Understanding, 187, p.102783.

(f) False negative.

C. LiDAR remote sensing

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10/1

10/12/2024 46

LIDAR acquisitions

Some current sensors :

- NASA: IceSAT-2 et GEDI (https://gedi.umd.edu/mission/mission-overview/)

Some current products :

- IGN : https://geoservices.ign.fr/lidarhd

Waveform :

The energy scattered back from the earth through time

Point cloud : Sampled waveform

D. SAR remote sensing

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10/1

10/12/2024 48

SAR imaging sensor

Pleiades

TerraSAR-X

What do we see on this image?

What does SAR measure? Range: the distance to the sensor

Measure the distance between the sensor and the object thanks to the **autocorrelation** of the chirp.

The Point Spread Function is a cardinal sine

Current sensor

Sensor	Space agency	Band (λ)	Revisit	Mode	Resolution	Swath
Biomass	ESA	P (70cm)	25-45 days	To be launched in 2025		
Alos/Palsar	JAXA	L (23.62cm)	14 days	Fine	10 m	70 km
				ScanSAR	100 m	350 km
Sentinel-1	ESA	C (5.5cm)	12 days	Interferometric Wide Swath	20 m x 5 m	240 km
				Extra Wide Swath	40m	400 km
Radarsat-2	CSA	C (5.5cm)	24 days	Fine	5.2 x 7.7 m	50km
				Wide	13.5 x 7.7 m	150km
TerraSAR-X TanDEM-X	DLR	X (3.1cm)	11 days	Starring Spotlight	25cm	4 x 3.7 km
				ScanSAR	40m	270×200 km

What does SAR measure? Amplitude: Backscattered energy

Low energy: Mirrors The energy is backscattered at the opposite of the satellite Example: water Medium energy: Very scattering surfaces High energy: (Metallic) structure well oriented

What do we see on this image?

What do we see on this image ?

- Low energy pixels:
 - The Seine river
 - Roads
 - The Eiffel Tower shadow
- Medium energy pixels:
 - Trees/Bushes/Lawn
- High energy pixels:
 - The Eiffel Tower
 - Buildings
 - Boats
 - Street lamps

Stealth ships

- No 90° corners
- Surfaces oriented to directed the energy not in the emitted direction

Backscatter the same energy as a fishing ship despite being much larger

https://en.wikipedia.org/wiki/USS_Zumwalt

What does SAR measure? Phase: the residual distance

The phase of the chirp change with the distance

 $\Phi=2\pi D/\lambda$, D the distance and λ the wavelength

Synthetic aperture

- 1. Multiple pulses are emitted along the trajectory
- 2. The backscattered signal is measured and focus in range
- 3. The backscattered echoes are **focused in azimut** in a larger converging antenna Point Spread Function : cardinal sine

The resolution of the signal is refined and an image is formed

Ground range perpendicular to the trajectory along the ground

Geometric effects in SAR images

Speckle noise

Fully developped speckle (Goodman, 1976) : sum of scatterers:

- 1. Independent and identically distributed
- 2. Modulus and phase are independent
- 3. Phase uniformly distributed on a 2π intervalle

For N channel, the backscattering pixel p follows a complexe circular normal distribution :

$$p \sim \mathcal{N}_c(0,\mu) = \frac{1}{\pi\mu} e^{-p^{\dagger}\mu^{-1}p}$$

Real part follows a normal distribution of variance $\mu/2$ Imaginary par follows a normal distribution of variance $\mu/2$ Phase is uniformly distributed on a 2π intervalle The modulus follows a Rayleigh distribution of parameter μ

Filtering

Maximum likelihood estimator

Courtesy of Mathias Montginoux, PhD Student ONERA/LS2N

Side lobes

Antennas side lobes->

Create replicas visible in the sea San Francisco, TanDEM image

<-Target side lobes

Cardinal Sine Point Spread Function Salon de Provence SETHI/ONERA image

Interferometry

Two acquisitions from two slightly different points of view

$$\phi \equiv 2\frac{2\pi}{\lambda}(R_1 - R_2) \quad [2\pi]$$

The phase difference is proportional to the height, modulus the ambiguity height

$$h \equiv \frac{1}{k_z} \phi \quad [h_{\text{amb}}] \qquad k_z = 2 \frac{2\pi}{\lambda} \frac{B_\perp}{R \sin(k_z)}$$

The noise in the phase depends on the stability of the object, measured by the coherence $\gamma \in [0, 1]$

Applications :

- Create Digital Elevation Model (DEM)
- Measure deformation
 - Earthquake
 - Landslide
 - Sea terminating glacier grounding line

Estimating covariance matrices

- If p_{k} is a pixel with multiple channels: $p_{k} = [r_{1} e^{i\phi}, r_{2} e^{i(\phi+\Phi)}]$
- The covariance matrix \dot{C} =

$$r_{1}^{2}$$
 $r_{1}r_{2}\gamma e^{i\Phi}$
 $r_{1}r_{2}\gamma e^{-i\Phi}$ r_{2}^{2}

- Φ is the phase difference 0
- y is the degree of coherence 0
- It is estimated using the maximum likelihood estimator using L pixels: $\hat{\mathbf{C}} = \frac{1}{I} \sum_{k=1}^{L} \mathbf{p}_{k} \mathbf{p}_{k}^{\dagger}$
- The distribution of the estimated phase

Polarimetry

Horizontal polarisation

4 polarimetric channels

Tropical forest, French Guyana, SETHI images (NLSAR denoised)

Color composiion R: HH G: HV V: VV

SOMA district, San Francisco, UAVSAR images (NLSAR denoised)

What do we see differently thanks to polarimetry on this image ?

What do we see differently thanks to polarimetry on this image ?

- Low energy pixels don't change
- Medium energy piels:
 - Tree are more green
 - Lawn are more blue
- The orientation of the buildings:
 - Red/blue: parallel to the trajectory
 - \circ $\,$ Green: 45° to the trajectory

D1. Detecting ships

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10

10/12/2024 69

Bright target detection [Lopez1998]

- Compare the intensity I₁ in the central area to the intensity of the neighbouring pixels I₂
- Use of speckle pdf :
 - Gamma distribution for intensity
 - Rayleigh distribution for modulus
- False alarm rate depends on :
 - \circ r = I₁ / I₂
 - \circ N₁: the number of pixels of the central area
 - N_2 : the number of pixels in the neighbouring area
- Same idea can be apply with 2 or 3 regions to detect edges or roads [Tupin1998]

Datasets : Xview 3

Task: Detect "dark" vessels (the one without AIS)

Detect vessel and classify them "fishing" vs. "not fishing"

Images: SAR Sentinel-1 images

D2. interferometric phase estimation

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10/12/2024

024 72
Snaphu [Chen2001] - Phase unwrapping based on network optimisation

- a maximum a posteriori probability (MAP) estimation problem
- Cost function where :
 - \circ unwrapped gradients $\Delta \Phi$
 - \circ wrapped gradients $\Delta \Psi$
 - \circ f($\Delta \Phi | \Delta \Psi$) conditional probability density function

minimize $\left\{-\sum_{k} \log \left[f(\Delta \phi_k | \Delta \psi_k)\right]\right\}.$

Estimating the phase in mountainous areas

- Discontinuous patterns
- A lot of different scenarios:
 - Small slopes
 - Large slopes
 - Cities
- Speckle "noise"
- No ground truth

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Φ-Net: Deep Residual Learning for InSAR Parameters Estimation

Francescopaolo Sica[®], Member, IEEE, Giorgia Gobbi, Paola Rizzoli[®], and Lorenzo Bruzzone[®], Fellow, IEEE

0

π

 $-\pi$

Goal, architecture and inputs

- Goal: Estimate the noise instead of the clean signal
- Network close to the U-Net architecture
- Inputs:
 - Not the phase, that is discontinuous
 - But the corresponding real and Imaginary part, that are continuous

Training procedure

Simulation to create not realistic but diverse training example

Results

Very smooth on flat surfaces

Preserve fine details

E. Radar altimeter

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber

Radar altimeter

1.5

Power [W]

0.5

Some current sensors :

- CryoSat-2
- SIRAL/AltiKa

F. Radiometer

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10

Radiometer

Current instrument :

- SMOS

Passif radar instrument Measure the faint microwave emissions from Earth's surface

Application : levels of soil moisture, sea surface salinity, sea ice thickness, wind speed over the ocean

Ex : Hurricane surface wind field measurement Reul Nicolas, Tenerelli Joseph, Chapron Bertrand, Vandemark Doug, Quilfen Yves, Kerr Yann (2012). **SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes**. *Journal Of Geophysical Research-oceans*, 117, -. Publisher's official version : <u>https://doi.org/10.1029/2011JC007474</u>, Open Access version : <u>https://archimer.fr/doc/00067/17805/</u>

30°N

25°N

1 20°N

15°N

30⁰N

25°N

atitude 20°N

15°N

G. Corregistration

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10/12/2024

2024 82

Coregistration

Having multiple images/signals on the same grid

Two main options:

- Having all the images on a geographical grid EO browser / google earth engine idea
 - Correcting all the acquisitions specificities
- 2. Choosing the geometry of one image and transforming the other images
 - Using image properties (Gefolki)
 - Using geographical information

EO Browser S1/S2 over Italy

GeFolki https://github.com/aplyer/gefolki

Optical flow method used in:

- Computer vision
- Particle image velocity
- Mono and multi modal remote sensing
 - Coregistration
 - Flow estimation

L. Charrier, P. Godet, C. Rambour, F. Weissgerber, S. Erdmann and E. C. Koeniguer, "Analysis of dense coregistration methods applied to optical and SAR time-series for ice flow estimations," *2020 IEEE Radar Conference (RadarConf20)*, 2020, pp. 1-6, doi: 10.1109/RadarConf2043947.2020.926 6643.

Geographical link

Conclusion

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10

Conclusion

Earth Observation is fun!

There are lots of challenges in AI:

- Optimize the processing for the acquisition constraints (orbit, resolution)
- Take into account the physic of acquisition
- Take into account the specificity of the monitored
 - Urban areas are very discontinuous
 - Sea ice can change and move very fast
 - Snow characteristics are very dependant of the terrain geometry
 - \circ $\,$ To understand agricultural changes, we need to go back through time

H. Your case study

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10/

Questions

- 1. For this application, what would be the advantages and the drawbacks of :
 - a. optical sensors
 - b. SAR sensors
 - c. Lidar
 - d. Sar altimeter
- 2. Will you select one sensor or try a multi-modal approach ?
- 3. Will you ask for new VHR commercial satellite (TerraSAR-X/Pleiades) images or will you download open HR images (Sentinel-1/Sentinel-2)?
- 4. What type of non-learning approach could you use (mandatory) ? Test it on one well selected example that you have yourself downloaded
- 5. Is there a already existing DL dataset (optional)?
 - a. <u>https://github.com/chrieke/awesome-satellite-imagery-datasets</u>
 - b. If so, test a vanilla methodology on the dataset and report your results. How does it compare to the non-learning approach ?
 - c. If not, could you use an existing source of annotations?

Data platforms and GIS tools

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10/12/2024

2024 90

Data platform: Copernicus browser

https://browser.dataspace.copernicus.eu/

Data platform: Google Earth Engine

code.earthengine.google.com

QGIS

93

References

Earth Observation and Remote Sensing Image Mining. Flora Weissgerber 10/

[Chen2001] C. W. Chen and H. A. Zebker, ``Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization," Journal of the Optical Society of America A, vol. 18, pp. 338-351 (2001).

[Gibson2020] Rebecca Gibson, Tim Danaher, Warwick Hehir, Luke Collins, A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest, Remote Sensing of Environment, Volume 240, 2020, 111702, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2020.111702.

[Lopès1998] A. Lopes, J. Bruniquel, F. Sery, J. - C. Souyris and F. Adragna, "Optimal target detection using one channel SAR complex imagery: application to ship detection," IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174), Seattle, WA, USA, 1998, pp. 813-815 vol.2, doi: 10.1109/IGARSS.1998.699592.

[Moya2019] Luis Moya, Homa Zakeri, Fumio Yamazaki, Wen Liu, Erick Mas, Shunichi Koshimura, 3D gray level co-occurrence matrix and its application to identifying collapsed buildings, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 149, 2019, Pages 14-28, ISSN 0924-2716, https://doi.org/10.1016/j.isprsjprs.2019.01.008.

[Tupin1998] F. Tupin, H. Maitre, J. - F. Mangin, J. - M. Nicolas and E. Pechersky, "Detection of linear features in SAR images: application to road network extraction," in IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 2, pp. 434-453, March 1998, doi: 10.1109/36.662728

[Tupin2003] F Tupin, M Roux, Detection of building outlines based on the fusion of SAR and optical features, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 58, Issues 1–2, 2003, Pages 71-82, ISSN 0924-2716, <u>https://doi.org/10.1016/S0924-2716(03)00018-2</u>.

[Wei2004] Yanfeng Wei, Zhongming Zhao and Jianghong Song, "Urban building extraction from high-resolution satellite panchromatic image using clustering and edge detection," IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 2004, pp. 2008-2010 vol.3, doi: 10.1109/IGARSS.2004.1370742.