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MULTISCALE VISUAL FEATURES 

Visual features aim at representing objects in order to match them within images 
(sequences, pairs, databases, models,…) 
  
Feature extraction in images consists in: 
 
1) Reducing the support of representation in images to a significant and compact 

subset. 
2) Calculating a function describing this subset in a discriminative, robust and 

efficient manner. 
 
Local characterisation is generally related to local (differential) geometry. 
 
Global characterisation is generally related to statistics. 
 
Multiscale estimation allows to: 
 
1) Provide a well-founded formalism to differential calculus. 
2) Establish a continuum between the local (geometry) and the global (statistics). 
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IMAGE MINING: MULTISCALE VISUAL FEATURES 
 

Lecture outline: 
 

 Introduction: what is a good visual feature? 

 Basics differential geometry for images 

 Beyond the local: multiscale derivatives 

 Multiscale contour detection 

 Feature points 1: Harris detector 

 Feature points 2: SIFT point detector 

 Local descriptors 1: Hilbert invariants 

 Local descriptors 2: Orientation histograms 

 From the local to the global: Visual Bag-of-Words 

 A global descriptor: Fourier-Mellin invariants 
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WHAT IS A GOOD VISUAL FEATURE? 

Goal: Put in correspondence points / sets / images with other  
  points / sets / images / classes / visual categories. 
 
A good feature should be: 
 
• Robust: it should faithfully represent the data without regard to its variation: 

geometric distorsions, illumination changes, occlusions, intra-class variability… 
 

• Discriminative: the represented data should be easily distinguished from other data, 
specially those from its close environment… 
 

• Efficient: its computation should be fast, and its memory footprint low… 
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BASICS OF DIFFERENTIAL GEOMETRY FOR IMAGES 

Local geometry in an image is most naturally described in terms of differential géometry: 
direction, curvature,… 
 
In the differential model, the image is assimilated to a continuous and differentiable 

function 𝐼: ℝ2⟶ℝ. 
 
Then the local behaviour in the image around every point can be predicted by its partial 
derivatives (Taylor Formula): 
 

𝐼 𝑥0 + 𝜀, 𝑦0 + 𝜂 =   
1
𝑘−𝑖 !𝑖!
𝜀𝑘−𝑖𝜂𝑖

𝜕𝑘𝐼

𝜕𝑥𝑘−𝑖𝜕𝑦𝑖  
𝑥0, 𝑦0 + 𝑜 𝜀

2 + 𝜂2 𝑟/2
𝑘

𝑖=0

𝑟

𝑘=0

 

 
In discrete images, derivability is interpreted as a local regularity property.  

 
Since such regularity can be explicitly imposed by filtering (convolution), the estimation of 
a derivative will be done through a convolution, and as such, will always be relative to a 
scale (scale spaces). 
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ORDER 1: GRADIENT AND ISOPHOTE 

At order 1, the basic measure is the gradient vector: 

𝛻𝐼 =  
𝜕𝐼

𝜕𝑥
,
𝜕𝐼

𝜕𝑦

𝑇

 

 

 Its orientation, arg 𝛻𝐼, corresponds to the direction of 
steepest ascent. 
 

 Its magnitude, 𝛻𝐼 , measures the local contrast. 
 

 It allows to calculate the first derivative in any 
direction. Let v be a unitary vector: 
 

𝜕𝐼

𝜕𝑣
= 𝛻𝐼. 𝑣𝑇 

 

 So in the local frame (g,t) with 𝑔 =  
𝛻𝐼

𝛻𝐼
 and 𝑡 = 𝑔⊥: 

 
𝛻𝐼

𝛻𝑔
= 𝛻𝐼  (main direction) ; 

𝛻𝐼

𝛻𝑡
= 0 (isophote) 
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DIFFERENTIAL QUANTITIES AT ORDER 1 

𝐼 

𝛻𝐼  

arg 𝛻𝐼 

arg 𝛻𝐼⊥ 

original 

gradient 
magnitude 

gradient 
direction 

isophote 
direction 
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ORDER 2: HESSIAN AND CURVATURE 

At order 2, the basic measure is the Hessian matrix: 
 

 Its eigen vectors (resp. eigen values Λ𝐻 et 𝜆𝐻) correspond to principal curvature  
directions (resp. intensities). 
 

 Its Frobenius norm, HI 𝐹 , measures the intensity of global curvature. 

𝐻𝐼 =

𝜕2𝐼
𝜕𝑥2

𝜕2𝐼
𝜕𝑥𝜕𝑦

𝜕2𝐼
𝜕𝑥𝜕𝑦

𝜕2𝐼
𝜕𝑦2
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ORDER 2: HESSIAN AND CURVATURE 

 Let u and v two unit vectors. The second derivative with respect to u and v is calculated 
as follows: 

𝜕2𝐼

𝜕𝑢𝜕𝑣
= 𝑢𝑇𝐻𝐼𝑣 

 
 In particular the isophote curvature is related to the inverse radius of the osculating circle 

to the contour: 

𝜅𝐼 = −
𝐼𝑡𝑡
𝐼𝑔
= −
𝐼𝑥𝑥𝐼𝑦
2 − 2𝐼𝑥𝐼𝑦𝐼𝑥𝑦 + 𝐼𝑦𝑦𝐼𝑥

2

𝛻𝐼 3
 

(Notations:  

𝐼𝑢 =  
𝜕𝐼

𝜕𝑢
 ; 𝐼𝑢𝑣 =

𝜕2𝐼

𝜕𝑢𝜕𝑣
, etc.)  
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DIFFERENTIAL QUANTITIES AT ORDER 2 

𝐼 

HI 𝐹 

Δ𝐼 

original 

Hessian 
norm 

Hessian trace, 
or  total 

curvature 
= Laplacian 

Hessian 
determinant 

det HI 𝐹 
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DIFFERENTIAL QUANTITIES AT ORDER 2 

Λ𝐼 

largest 
eigen 
value 

direction 
of "large" 

eigen 
vector 

𝜆𝐼 

smallest 
eigen 
value 

direction 
of "small" 

eigen 
vector 
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REPRESENTATION BY LOCAL DERIVATIVES 

𝐼 𝑥0 + 𝜀, 𝑦0 + 𝜂 = 𝐼 𝑥0, 𝑦0 + 𝜀, 𝜂
𝑇. 𝛻𝐼 + 1

2
𝜀, 𝜂 𝑇 . 𝐻𝐼 . 𝜀, 𝜂 + 𝑜 𝜀

2 + 𝜂2  

Expressing Taylor’s formula at order 2, using the gradient vector and Hessian 
matrix:  

Reconstructing image patches from partial derivatives estimated at the centre of 
the patch, at orders 0, 1 and 2 : 

patches order 0 order 1 order 2 
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CATEGORISING IMAGE PATCHES BY THEIR DERIVATIVES 

The values of derivatives up to order 2 allow dividing, depending on the dominating order, 
the local geometry of pixels into 4 categories (6 if considering the polarity):  
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ESTIMATION OF DERIVATIVES AND SCALE SPACES 

The key notion of scale spaces for image processing is that any physical (as opposed to 
mathematical) quantity is relative to an estimation scale. 
 
In particular a derivative only makes sense as estimated to a given scale, corresponding to 
a regularity hypothesis that is explicitly realised by image smoothing. This estimation is 
based on the commutativity property that links derivation and convolution: 
 

𝜕𝑛 𝐼 ⋆ 𝑔 = 𝐼 ⋆ 𝜕𝑛𝑔  
 
In the Gaussian scale space framework, the convolution kernel g is identified to the 2d 
Gaussian kernel with standard deviation σ: 
 

𝐺𝜎 𝑥, 𝑦 =
1

2𝜋𝜎2
𝑒
− 
𝑥2+𝑦2

2𝜎2  

 
The derivatives of image I estimated at scale σ are thus defined by the convolutions with 
the corresponding Gaussian derivatives: 
 

𝜕𝑖+𝑗 𝐼

𝜕𝑥𝑖𝜕𝑦𝑗
𝜎

  =    𝐼 ⋆
𝜕𝑖+𝑗 𝐺𝜎
𝜕𝑥𝑖𝜕𝑦𝑗

 

  

def. 
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MULTISCALE DERIVATIVES AND ASSOCIATED DERIVATION KERNELS 
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MULTISCALE DIFFERENTIAL QUANTITIES 
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PCA AND NATURAL IMAGE STATISTICS 

[Hyvrinen 09] 

On the left, the 320 first eigen vectors 
calculated by a Principal Component 
Analysis (PCA) applied to a set of 32x32 
patches randomly sampled from a 
natural image dataset. 
 
Hereunder, the log-variance associated 
to each eigen vector (principal 
component), as a fuction of its rank, for 
the whole set of patches. 

Antoine Manzanera - Image mining - ENSTA-Paris 17 / 65 



PCA AND NATURAL IMAGE STATISTICS 

[Hyvrinen 09] 

Number 1 Principal Component obtained 
for 10 distinct random sets: 

Number 100 Principal Component 
obtained for 10 distinct random sets: 

Note the similarity between the first 
principal components and the first 
derivatives of Gaussian. 
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WHAT ABOUT LEARNED IMAGE FEATURES? 

The first layer block of a convolutional 
network can be seen as a projection 
onto an overcomplete vector set, that 
is expected to help in the objective 
task (here: classification). 
 
It can be seen that many neurons 
can be interpreted as derivative 
kernels.  
 
• Which ones? 
• What is the meaning of the coloured 

kernels? 

96 convolution kernels learned by the 1st layer of 
AlexNet while trained on ImageNet ILSVRC-2010  

AlexNet [Kritzhevsky 12] for end-to-end image classification (1000 classes) 
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VISUAL PRIMITIVES FOR RECOGNITION AND TRACKING  

The representation level, from strictly local to fully global, is a fundamental property of 
visual features. 
 

Local: more geometry (direction, curvature,…) 
 
 
 
 

Global: more statistics (histogram, frequency spectrum,…) 
 
The scale spaces act as continuum from the local to the global. 
 
In the next slides:  
 

• Contours detection (Zero crossing of the Laplacian) 
• Corner points detection (Harris) 
• Blobs detection (SIFT) 
• Local descriptors (differential invariants). 
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CONTOURS: ZERO-CROSSINGS OF THE LAPLACIAN 

Sign change 
detection in 2x2 
neighbourhoods 

• Select zero-crossings 
w.r.t. contrast 

• Select structures 
w.r.t. scales 

Laplacian 

Zero-crossings 

Antoine Manzanera - Image mining - ENSTA-Paris 21 / 65 



MULTISCALE CONTOURS 
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CONTOURS AND CONTRAST 

Laplacian (σ = 1.5) Gradient magnitude (σ = 1.5) 

high 
threshold 
(t = 8.0) 

low 
threshold 
(t = 0.5) 

hysteresis 
threshold 
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CORNER POINTS AND AUTOCORRELATION MATRIX 

Corner (or Interest) points are points that carry much information relatively to the image. At the 

neighbourhood of these points, the image is expected to vary significantly in more than one 

directions. 

One measure of the local variations of image I at point (x,y) 

associated to a displacement (Δx, Δy) is the autocorrelation 

function: 
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Where W is a window centred at point (x,y). 
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And then: 

),( yx

Autocorrelation matrix of image I at (x,y) 
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AUTOCORRELATION MATRIX AND THE HARRIS DETECTOR 

The autocorrelation matrix Ξ represents the 
local variation of I at (x,y). (x,y) will be a 
corner point of I if for any displacement 
(Δx,Δy), the quantity (Δx,Δy).Ξ(x,y).(Δx,Δy)t 
is large.  
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Corner points are those points (x,y) for which the autocorrelation matrix 
Ξ(x,y) has two large eigen values. 

This corresponds to points for which there locally exists a basis of eigen 
vectors of Ξ that describe major local variations for the image. 

The Harris detector actually calculates an interest map Θ(x,y): 

The first term corresponds to the product of eigen values, the second 
term penalises contour points with one single large eigen value. 

Corner points correspond to local maxima of function Θ that are beyond a certain threshold (typically, 
1% of Θmax). 

[Harris 88] 

Θ 𝑥, 𝑦 = det Ξ − 𝛼 trace2 Ξ 
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COMPUTING HARRIS INTEREST MAP Θ 

1. Compute the first derivatives using Gaussian derivatives (standard deviation σ1) 

2. Compute the components of the autocorrelation matrix Ξ by using a Gaussian smoothing instead of summing 
on window W (standard deviation σ2, typically σ2 = 2 σ1) 

3. Compute the interest map: Θ = det(Ξ) – α trace²(Ξ) (typically α = 0,06). 

4. Compute the local maxima of Θ larger than a certain threshold (typically 1% of Θmax). 

σ1 is then the scale parameter of Harris 

detector, that determines the spatial scope of 

derivation and integrations (smoothing) 

operations. 
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MULTISCALE HARRIS CORNER POINTS 

Harris corner points obtained 
by calculating the first 
derivatives by convolution 
with a derivative of Gaussian 
of standard deviation σ. 

s  =  1 s  =  2 s  =  3 

s  =  10 s  =  5 
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SIFT DETECTOR: EXTREMA IN SCALE SPACE 

s 

Gaussian scale space of a 1d signal (top) and scale-space 
fingerprint, showing the position of extrema in (x,s) (bottom). 

s 

The SIFT (Scale Invariant Feature 
Transform) detector uses a different 
approach of interest point that better fits 
large scales compared to corners: 
 

The blob (elliptical structure) 
 
Such structure can be uniformly 
characterised at all scales and corresponds 
to a point of the mixed scale-space (x,y,s) 
where a local extremum disappears.  

This relates to the causality principle 
of scale spaces. 
 
In 1d (on the right): point of maximal 
scale s on each curve of the scale 
space fingerprint. 

[Witkin 83] 
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SIFT DETECTOR: EXTREMA IN SCALE SPACE 

G0 G1 G2 G3 

L1 L2 L3 

scale 

The points selected by SIFT are the local maxima and minima locaux of function Lk(x,y), 
both in the current scale and in the adjacent scales (see on the left). 

Lk+1(x,y) 

Lk(x,y) 

Lk-1(x,y) 

The function Lk(x,y) is a Laplacian representation of the image, that corresponds to a 
spatially localised frequency decomposition: i.e. contribution of structures of scale (or 
size) kσ  at point (x,y). 

The function Gk(x,y) = G(x,y,kσ) is the image convolved by a Gaussian of standard 
deviation kσ. The functions Lk(x,y) correspond to the difference (normalised here) 
between two successive Gaussians. 

[Lowe 04] 

Antoine Manzanera - Image mining - ENSTA-Paris 29 / 65 



SIFT INTEREST POINTS 

Image 1: 589  detected points. 

For each scale-space extremum of the Laplacian 
representation (SIFT interest point), the 
associated orientation is calculated as follows:  


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(where σ is the selected scale) 

On the left, SIFT interest points: 
the direction of the arrow 
represents the orientation θ and 
its length the associated scale. 

[Lowe 04] 

Antoine Manzanera - Image mining - ENSTA-Paris 30 / 65 



EVALUATION OF INTEREST POINT DETECTORS 

Most interest point detectors are designed independently of the descriptor they will be 
used with. It then makes sense to evaluate them alone. 
 
A good detector should be: 

• Repeatable: a point should appear 
at the very same place whatever the 
deformation. 
 

• Representative: the points should 
be as numerous as possible. 
 

• Efficient: it should be fast to 
compute (see SURF, FAST) 
 

(NB: repeatability and representativity 
are not independent!)   

[Schmid 2000] 
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WHAT ABOUT COMPUTATIONAL EFFICIENCY? 

The FAST detector selects 
points p whose circular 
neighbourhood shows long 
contiguous runs with values 
significantly brighter (resp. 
darker) than p. 

The SURF detector approximates 
the second dérivatives using 
rectangular convolution kernels 
computed with integral images, 
then selects the local maxima of 
the determinant of the Hessian. 

[Rosten 05] 

[Bay 06] 
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ORB DETECTOR: MULTISCALE FAST + ORIENTATION 

The keypoint detector ORB (available in OpenCV) is an extension of FAST detector: 
 
• FAST detector is computed at different resolutions (each keypoint then possess a 

characteristic scale). 
 

• For each keypoint P, the mass centre O of the square patch containing the circle 
FAST (i.e. the mean position of pixels weighted by the gray scale) is calculated, and 

the direction of vector 𝑃𝑂 is used as characteristic orientation of  the keypoint. 

[Rublee 11] 
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ORB DETECTOR: MULTISCALE FAST + ORIENTATION 

[Rublee 11] 
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KAZE DETECTOR: ANISOTROPIC DIFFUSION + LOCAL MAXIMA OF THE 
HESSIAN DETERMINANT 

temporal 
gradient 

conductance 

laplacian 

IcIcdiv
t

I





)(

spatial 
gradient divergence 

The image convolved with a Gaussian is 
solution of the heat conduction equation, in 
which case the conductance factor c is 
constant (isotropic diffusion) : 

In this équation (PDE modelling), there is an 
identity between time parameter t and scale. 
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KAZE DETECTOR: ANISOTROPIC DIFFUSION + LOCAL MAXIMA OF THE 
HESSIAN DETERMINANT 
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[Perona and Malik 87] 

The principle of anisotropic diffusion is to 
make conductance function c variable,  and 
image dependent: 
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Examples of function c: 
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KAZE DETECTOR: ANISOTROPIC DIFFUSION + LOCAL MAXIMA OF THE 
HESSIAN DETERMINANT 

Anisotropic diffusion, hyperbolic decrease scheme (Image on 8 bits, K=15). 

t = 0 

t = 10 t = 20 t = 60 t = 100 

anisotropic diffusion of a 1d signal Positions of extrema in the scale space 

[Perona and Malik 87] 

Antoine Manzanera - Image mining - ENSTA-Paris 37 / 65 



KAZE DETECTOR: ANISOTROPIC DIFFUSION + LOCAL MAXIMA OF THE 
HESSIAN DETERMINANT 

 

[Alcantarilla 12] 
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DESCRIPTORS: DIFFERENTIAL INVARIANTS  
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Goal: represent interest points by indexes that are rotation and scale invariant. 

The principle used here is based on multiscale spatial derivatives: 

The local jet of I: 

f 

x 

y 
X 

Y 

IX = Ix cos f + Iy sin f 

IY= Ix sin f – Iy cos f  

IXX = Ixx cos2 f + 2Ixy cos f sin f + Iyy sin2 f 

IYY = Ixx sin2 f – 2Ixy cos f sin f + Iyy cos2 f 

x = X cos f + Y sin f 

y = X sin f – Y cos f  

X = x cos f + y sin f 

Y = –x sin f  y cos f  

with: and: 

Notation: 

The idea is to combine these derivatives to obtain rotation invariant quantities: 

As an example, the Laplacian Ixx + Iyy is rotation invariant: 

And then: IXX + IYY = Ixx + Iyy. 
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DESCRIPTORS: DIFFERENTIAL INVARIANTS  

[Schmid et Mohr 97] 

More generally, a whole family of independent rotation invariant differential quantities can be built: 
the Hilbert differential invariants. For example, at order 2, the following descriptor is obtained: 

Ψ2 =

𝐼
𝐼𝑥
2 + 𝐼𝑦

2

𝐼𝑥𝑥𝐼𝑥 
2 + 2𝐼𝑥𝐼𝑦𝐼𝑥𝑦 + 𝐼𝑦𝑦𝐼𝑦

2

𝐼𝑥𝑥 + 𝐼𝑦𝑦

𝐼𝑥𝑥
2 + 2𝐼𝑥𝑦

2 + 𝐼𝑦𝑦
2

 

NB: the rotation invariance also 
relies on the isotropy of the 
Gaussian kernels! 

The vectors Ψ are then calculated for all interest points at different scales, and then matched 
using a certain metrics (e.g. Euclidean distance). 
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SIFT DESCRIPTOR: GRADIENT ORIENTATION HISTOGRAMS 

The descriptors associated to SIFT points are orientation histograms computed around the 

interest point: 

• The space is divided around each point (x,y) into N2 4x4 squares. 

• The gradient (Gx(a,b,σ), Gy(a,b,σ)) is calculated for the 4x4xN2 points (a,b).  

• For each 4x4 square, a histogram of orientations quantised to 8 directions is computed, by 

weighting the occurrences using: (1) the gradient magnitude (2) the inverse distance to the 

interest point (x,y). 

• For rotation invariance purposes: the local orientation of the interest point θ(x,y) is used as the 

reference (zero) orientation of histograms. 

The resulting descriptors are 

then 8xN2 vectors, that will be 

compared using a distance 

(e.g. Euclidean distance) 

example with  N = 2 

[Lowe 04] 
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SIFT POINT MATCHING EXAMPLE 

SIFT points matching result between image (2) on the left (510 detected points), and image (1) on 

the right (589 detected points). 51 matches were selected as acceptable here.  

Exercise: Which criteria can be used for such selection? 

[Lowe 04] 
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MATCHING FEATURES: METRICS 

Matching features then relies on pairwise comparison of descriptors.  Ideally, this should 
be measured with a simple metrics: 

The Euclidean distance: 
 

𝛿𝑒 𝑥, 𝑥′ 
2 = 𝑥 − 𝑥′ 𝑇(𝑥 − 𝑥′)  

 
However this distance does not take into account differences 
in range, nor correlations that can exist between the different 
components of the descriptor. 

The Mahalanobis distance: 
 

𝛿𝑚 𝑥, 𝑥′ 
2 = 𝑥 − 𝑥′ 𝑇𝐶−1 (𝑥 − 𝑥′)  

 

with 𝐶 = 𝑐𝑜𝑣(𝑥𝑖 , 𝑥𝑗) 𝑖,𝑗
 the covariance matrix calculated on the 

descriptors dataset, take those properties into account by 
deforming the Euclidean distance in the principal covariance 
directions. 
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MATCHING FEATURES: METRICS 

In the case of large descriptor dataset (image mining), the covariance matrix is 
calculated and updated off-line. By diagonalising 𝐶−1, the computation is simplified to a 
Euclidean distance on normalised components: 
 

𝐶−1 = 𝑃𝑇𝐷𝑃 
 

𝛿𝑚 𝑥, 𝑥
′ = 𝑥 − 𝑥′ 𝑇𝐶−1 𝑥 − 𝑥′ = 𝐷𝑃𝑥 − 𝐷𝑃𝑥′  

 
 

Then for each descriptor dataset update, one should: 
 

• Update the covariance matrix 𝐶 
• Calculate and diagonalise 𝐶−1 
• Normalise all vectors to 𝑥 ⟶ 𝐷𝑃𝑥 
 

ellipsoidal distance 
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DESCRIPTORS DATASET AND DATA MINING 

In the case of a large descriptor database, it is desirable to limit the search to a limited 
neighbourhood of the unknown descriptor. This problem is strongly related to the way the 
descriptor vectors are stored within the database. 
 

Cutting the descriptor base into hypercubes 
 

Representing the base by a Kd-tree 
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IMAGE MINING AND KDTREE CONSTRUCTION 

The construction of a Kd-tree is made by recursively partitioning a set of n-dimensional 
vectors (the descriptors) into two subsets (hence the binary tree), until the resulting 
subset present in the leaf (the ‘’bucket’’) has a cardinality inferior to a given threshold.  
 
Classically, each node of the Kd-tree corresponds to a partition by an affine hyperplane  
of equation xi = t, i.e. which is orthogonal to one axis of the canonical basis, and then 
separates a set of vectors into 2 subsets characterised by the binary predicate xi < t, 
where xi is the i-th component of vector X, and t is a scalar threshold (the ‘’pivot’’ value). 
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IMAGE MINING AND KDTREE CONSTRUCTION 

There exist different classic variants to partition the space, i.e. to choose the cutting 
hyperplanes  at each step: 
 
• Octrees: Each component is considered one after the other, and the middle value of 

the space (which is bounded!) is chosen as pivot, then the middle value of the mid-
spaces, and so on, so that all the buckets represent the same size in the vector space. 
 

• Median-trees: At each step, the component that presents the highest variance is 
chosen, and the median value is chosen as pivot, so that the median trees are always 
balanced. 
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IMAGE MINING AND KDTREE SEARCH 

To look for the nearest neighbour of a new vector Y = (y1,… yn), the different nodes of the 
Kd-tree are queried in a depth-traversal manner, depending on the different values of yi 

selected compared to the pivot values t.  
 
For each crossed node, the distance between Y and the node hyperplane : xi = t is 
recorded, it is simply | yi – t |. 
 
When the depth-traversal is over, i.e. we are inside a bucket, then the nearest neighbour 
of Y is sought, using an exhaustive search. 
 
2 cases may occur then:    
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IMAGE MINING AND KDTREE SEARCH 

2 cases may occur then: 
• In the favourable cases (e.g. Y is the green square), the distance to the nearest 

neighbour is inferior to the minimum distance of Y to the crossed hyperplanes. The 
search is terminated. 

• In the unfavourable cases (e.g. Y is the red square), the nearest neighbour may be in 
another bucket, we then need to go up in the upper node, calculate the distances to 
the element of the other bucket son (i.e. the bucket brother), and possibly go up again 
recursively to upper nodes, while the distance to the nearest neighbour remain 
superior to the minimum distance of Y with its crossed hyperplanes…  
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IMAGE MINING AND KDTREE SEARCH 

In the worst case, we may have to go up until the root of the Kd-tree and then examine all 
the vectors of the set! 
 
However it can be shown that such cases are marginal, and that the average search 
complexity if O(n.LogN), where n is the dimension of the vector space and N the number 
of vectors. 
 
There exist optimised approximate search methods such as ANN, that limit the number of 
backward recursions to a certain number of nodes.  [Arya and Mount 1993] 
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FROM LOCAL TO GLOBAL: CONSENSUS OF LOCAL DESCRIPTORS 

The visual features are often used to make a global decision: class label (recognition, 
categorisation), displacement parameters (visual odometry).  
 
How to make such collective decision from the set of descriptors? 
 
Voting consensus: every local descriptor is classified and the global class is attributed 
based on a majority voting (e.g.: room recognition, image categorisation…) 
 
Selection by consistence: a subset of the local matches is (iteratively) selected so that a 
consistent decision is made (e.g.: visual odometry…) 
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FROM LOCAL TO GLOBAL: VISUAL BAG-OF-WORDS 

Another popular method consists in building a global descriptor from statistics of 
local descriptors: 
 
• The descriptor space is reduced to a limited number of labels (words) by 

using a vector quantisation (or clustering) algorithm to form a codebook of 
local descriptors  Unsupervised learning phase. 
 

• Histograms of visual words are used as global descriptors of example 
objects, then used to train a classifier  Supervised learning phase.   
 

• For a unknown image, the codebook is used to encode the local descriptors 
(using for example Nearest Neighbour approach…)  Local classification. 
 

• The histogram of visual words is then fed to the classifier to predict the 
image class  Global classification. 

[Csurka 2004] 
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VISUAL BAG-OF-WORDS 1: BUILDING THE CODEBOOK 

Codebook 

Clustering 
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VISUAL BAG-OF-WORDS 2: TRAINING THE CLASSIFIER 

CLASSIFIER 
(Training) 
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VISUAL BAG-OF-WORDS 3: PREDICTING THE CLASS 

CLASSIFIER 
(Prediction) 

Class 

Car / Background 
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MULTISCALE / HIERARCHICAL VISUAL BAG-OF-WORDS 

[Tomasik 2009] 
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GLOBAL MATCHING: FREQUENCY BASED METHODS 
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Frequency based motion estimation methods are based on the equivalence between translation 
and phase shift in the Fourier transform: 

),( yyxxI  
)//(2),(),( hyvwxujevuFvuG  

),( yxI ),( vuF
TF 

TF 
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And then: and 

The phase shift between F and G is then: 

Two couples (u,v) are then enough in theory to calculate (δx,δy), but this direct method is too 
sensitive to noise and illumination changes. 
 

 The phase correlation technique is preferred. 
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PHASE CORRELATION 
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The phase correlation exploits a direct consequence of the translation / phase shift equivalence. It F is the FT of I 
and G the FT of I translated of (-δx,-δy), then the phase shift between F and G is equal to their normalised cross 
power spectrum (NCPS), i.e.: 

The inverse FT of the NCPS is then equal to the Dirac function of the translation vector: 

The phase correlation method finally consists in: 

1. Calculate the FT of I(x,y,t) and I(x,y,t+1),say F1 and F2 

2. Calculate χ the NCPS of F1 and F2 
3. Calculate D the inverse FT of χ  
4. Search the position with maximum value of D 

Pros and Cons 

+ Robust since all the frequencies contribute 

+ Relatively fast thanks to the FFT 

- In practice limited to a global displacement for the whole 
image. Exercise: explain why. 

Phase correlation in the 
spatial domain (figure INRIA) 
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A GLOBAL DESCRIPTOR: THE FOURIER-MELLIN INVARIANTS 

The Fourier-Mellin transform allows to estimate the parameters of a similitude (rotation and homothety) like a 
translation vector, using a log-polar representation of the frequency space (u,v)  (θ,log ρ): 

Consider g the image transformed from f, by a rotation of angle α, an homothety of ratio ρ, and a translation of vector 
(x0,y0): 
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By expressing the frequencies in polar coordinates: 
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• does not depend on the translation (x0,y0). 

• undergoes a rotation of angle α. 

• undergoes a scaling of ratio 1/σ. 
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The magnitudes of the Fourier transforms of f and g are related as follows: 

meaning that the magnitude: 

Finally, by taking the logarithm of the radial coordinate: we get: 

Then a similitude in the image space corresponds to a translation in the 
space of log-polar frequencies. 
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FOURIER-MELLIN INVARIANTS: FMI-SPOMF 

Using the Fourier-Mellin transform to estimate the position of Aibo robot’s head by phase correlation of Fourier-Mellin Invariants. (FMI-SPOMF: Fourier-
Mellin Invariant Symmetric Phase Only Matched Filtering): J.C. Baillie et M. Nottale 2004. 

 

log  

 

log  

FMI 

FMI 

phase correlation (SPOMF) 

! 
Phase information from the original image is lost in the FMI. The FMI-SPOMF only 
looks for the best (rotation, homothety) that put 2 magnitude spectra in 
correspondence. The translation parameters are lost, and the shape information 
carried by the phase is lost too!.  

Also note that, like the phase correlation method, the FMI-SPOMF is used in general 
to estimate global transformation, since it uses contribution from the whole spectrum, 
which implies a large spatial scope of contributed pixels.  
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CONCLUSIONS: MULTISCALE DERIVATIVES AND CONTOURS 

MULTISCALE DERIVATIVES 
 
• Derivative estimated at a given scale 

(variance of the Gaussian) 
 

• Order 1, Gradient: Contrast, 
Direction… 
 

• Order 2, Hessian: Curvature, 
Contrast, Direction… 
 

• Continuum from the local (geometry) 
to the global (statistics). 
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CONCLUSIONS: DETECTORS AND DESCRIPTORS 

DETECTORS AND DESCRIPTORS 
 
Detector: reduce the data support →  repeatable and/vs representative. 

 Corners: Maxima of curvature, Harris, FAST… 
 Blobs: Determinant of Hessian, SIFT, SURF… 

 
Descriptor: data representation → invariant and/vs discriminant. 

 Differential invariants: colour (intensity), contrast, Laplacian,…  
 Histograms of contrast-invariant features: direction, curvature,… 
 
Local: geometrical → contour, curvature, corner, blob… 
 
Global: statistical → histogram, magnitude / phase spectrum… 

 
In between: multiscale analysis → continuum… 
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