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Image Mining Course: Objectives
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Images and Videos represent a major source of information today.

There is an increasing demand to find automated methods to organise huge 
collections of image data, and to interpret images and videos by computer.

The Image Mining course deals with the problem of increasing the 
semantics of visual data by:

(1) reducing its information to relevant data
(2) adding to it specific information related to a model and/or to a previous knowledge, 

in order to facilitate its retrieval and interpretation by a machine.

The course does not assume previous knowledge in Image Processing, but 
basics in signal processing, information theory and pattern recognition are 
useful. 
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Image Mining Course: Content
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- Introduction - Image basics and processing models: 
Image sampling and quantization. Linear models and convolutions. Frequency models and Fourier transforms. 
Differential models, Scale-space and EDPs. Discrete models, set based models and mathematical morphology. 
Statistical and probabilistic models.
- Image clustering and classification:
Unsupervised clustering for images: PCA, K-means... Supervised classification in images: Bayesian methods, 
SVM...
- Feature extraction: 
Multiscale derivatives, gradient, Hessian and curvature. Contours extraction. Interest point extractors. Basics of 
segmentation.
- Image representation and description:
Local and regional descriptors. Differential invariants. Histograms of orientation. Local Binary patterns. Visual 
bag-of-words representations. Hough based representations.
- Visual learning for image recognition and mining:
Applications of deep convolutional networks for visual recognition: image categorisation, object recognition, 
semantic segmentation, image captioning,...
- Video, motion estimation and object tracking:
Optical flow estimation. Basic of object tracking methods. Video structuring and indexing.
- Application / Case study:
Satellite image mining
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Introduction and Image Models
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I Development of Image Processing and Connected Domains
I-1 Historical aspects
I-2 Image Processing Systems
I-3 Image Processing, Machine learning and Visual perception

II Introduction to digital images
II-1 Modalities
II-2 Models of Image Processing
II-3 Vocabulary
II-4 Sampling and quantization

III Exploring the models of Image Processing
III-1 Linear model: the convolution...
III-2 Frequency based model: the Fourier transform and the sampling problem...
III-3 Statistical model: histograms, quantization, entropy,...
III-4 Differential model: gradients, isophotes, PDEs,...
III-5 Set-based model: mathematical morphology,...
III-6 Discrete model: tessellations and meshes, connectivity, distances,...
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A (very) brief History of Image Processing
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Segmentation

Decoding / restitution

Image Processing Systems?
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Vision for AI...
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In our modern conception of embodied Artificial Intelligence, the machine acts onto 
the external world, eventually moves, and needs to perceive its environment so that it 
can adapt to it.

Vision is an extremely rich 
source of information, that 
allows the machine to localise, 
recognise objects or people, at a 
small cost, a low energy, and in a 
passive way (i.e. without 
emitting  signal).
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...and AI for Vision
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Learning

Knowledge 
Modelling

Reasoning and 
Decision

Uncertain 
Representation

Reciprocally, image processing and computer vision exploit knowledge and ML 
techniques to address the adaptation problem to a dynamic environment, the uncertain 
information, the heterogeneous knowledge and the different levels of decision making. 
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IP and visual perception
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A fundamental difficulty of computer vision comes from the lack of deep knowledge 
of the biological mechanisms of image understanding. Human vision is extremely 
powerful (navigation, reading, recognition), but without any conscious feedback on 
the underlying mechanisms (as opposed to many “difficult” tasks like playing chess or 
calculating a division for example). In this sense studying physiological and 
psychological mechanisms of vision are a major source of information and 
inspiration. 

Examples:

●  Retinal / Cortical processes.
●  Contrast enhancement mechanisms.
●  Retina and multi-resolution.
●  Motion and frog vision.
●  .../...
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IP and visual perception

page 10

Example: 
The checker board illusion
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IP and visual perception

page 11

Example: 
The checker board illusion

Several mechanisms are operating here, from 
the very early level of perception (local 
enhancement of contrasts) to the very high 
level of understanding (interpretation of the 
cast shadow and recognition of the checker 
board)
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Modalities and Sensors...
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Physical phenomenon Measured quantity Sensor

Emission and Reflection 
of visible light 

Ultrasound echo

Infrared 
emission

Magnetic Resonance

X-ray Absorption

Electromagnetic echo

Intensity, Reflectivity,...

IR luminance (heat), ...

Tissue densities,...

Distance, surface specularities,..

CCD Camera, CMOS 
Sensor...

Bolometers,...

Echography, 
sonar,...

Radar, SAR,... 

Radiography, CT 
scanners,... 

Distance, tissue densities,...

Presence of a chemical body... IRM, RMN,...
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Models in Image Processing
Different models coexist in Image Processing. 

A model formally defines an image, and then, operators and algorithms that 
are applied to it. We will consider the following families of modelling:

● Linear model / An Image  A vector

● Statistical model / An image  A random field

● Frequency based model / An image  A A A periodic function

● Differential model / An image  A differentiable function

● Set based model / An image  A set

● Discrete model / An image  A discrete set or function
page 13



Antoine MANZANERA – Master 2 Paris-Saclay IMAGE MINING – Introduction and Image models

Digital images

page 14

Image Sampling is the process of spatial digitization that 
consists in associating to each rectangular zone (tile) 
R(x,y) of a continuous image a unique value I(x,y).

We refer to sub-sampling   when the image is already 
discrete and the number of samples is decreased.

x

y

R(x,y) I(x,y)

A digital image is both sampled and quantized.

Quantization refers to limiting the number of distinct values of  I(x,y).
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Pixels and gray level
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Sampling and Quantization
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Changing the resolution...
...in the spatial domain:

...in the tonal domain:

6 bits 4 bits 3 bits 2 bits 1 bit

Quantization

Sampling

256x256 128x128 64x64 32x32
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Sampling and information

page 17

Sampling is a fundamental step that must take into 
account the relevant information from the image to 
be analysed. On the example on the right (in 1d), the 
sample signal looks like a sinusoid with a frequency 
8 times smaller than the continuous one: 

This phenomenon called aliasing is 
somewhat worse in 2d, since it affects 
frequency and orientation of periodical 
structures. Suppose for example that we 
wish to sample the image on the right 
with the black stripes:
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Sampling and information
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With an adapted sampling, the digital 
image shows structures that are conform to 
the information present in the continuous 
image:

But if we consider only 1 sample over 2 in 
each dimension, a different structure 
appears, whose analysis (here thicker and 
vertical stripes) will not conform to the 
real object:
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Sampling and information

page 19

Another example, on a synthesis image:

...and on a 
natural image:

Original image Sub-sampled image 
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Quantization and information

page 20

Quantization also creates distortions in images:

As for sampling, there are rules to determine the right quantization (the right number of 
bits) to encode digital images.
One is depending on the sensor, and its effective capability to distinguish signals with 
different magnitudes: the signal-to-noise ratio. 
It is defined from the ration between the amplitude of gray levels that can be measured by 
the sensor (n

max
 - n

min
) and the level of noise, corresponding to the standard deviation s

n
 of 

the random perturbation that affects the gray levels. By taking the logarithm, we get the 
number of useful bits to encode the images.

I quant=⌊ I
nquant ⌋
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Quantization and information

page 21

Aside from the sensor capabilities, the number of bits 
actually necessary to encode an image varies according to 
the information content.
This is related to the entropy, defined from the distribution 
of gray levels (see further, the statistical model). 

E=∑
iN

−pi log 2 pi

Where N is the number of gray levels, p
i
 is the ratio (0 < p

i
 < 1) of pixels with gray 

level equal to i. This quantities measures the average number of bits per pixel necessary 
to encode the whole information. It is used in lossless compression techniques to adapt 
the volume of image data to their information content.
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III Models and fundamental tools
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We now present an introduction to the most common digital imaging processing 
tools. For tutorial purposes, the presentation is structured according to the main 
mathematical models employed to process images. HOWEVER those different 
models are neither exclusive nor clearly separated and the distinction will be hardly 
visible in the next lectures.

Some fundamental tools are associated to each different model, that have (or have 
had) an important role in image processing, from a theoretical or practical point of 
view. Let us mention: convolution, Fourier transform, histogram, pyramids, 
correlation, wavelets...

Exploring the different models is seen here as the opportunity to introduce some of 
those tools. In this introduction the focus will be put on:
Convolution, Fourier transform, histogram, partial derivatives.
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III-1: The linear model
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Convolution :

This is the basic operator of linear image processing. Appeared very early in the first 
image processing systems for the sake of simplicity, it was later justified by physical 
considerations and by the theoretical links with filters in signal processing.

In the linear model, the underlying mathematical structure is the Vector Space. 
Basic operators are then those that preserve the structure of vector space, that is the 
linear applications:

f  I J = f  I  f  J 
f  I = f  I 

For images (translation invariance), this correspond to convolutions:
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Convolution

page 24

 I∗h[ x , y ]=∑
i= x

1

x2

∑
j= y

1

y2

h [i , j ]⋅I [ x−i , y− j ]

Let I be a digital image.
Let h be a real-valued function from [x

1
,x

2
]×[y

1
,y

2
].

h∗g=g∗h

h∗g∗k=h∗g∗k =h∗g∗k

h∗gk =h∗gh∗k 

Properties of convolution:

COMMUTATIVITY

ASSOCIATIVITY

DISTRIBUTIVITY / +

The function h is called 
convolution kernel

The convolution of I by h is defined as follows:

The new values of each pixel are 
calculated through the scalar 
product between the convolution 
kernel and the corresponding 
neighbourhood of the pixel.

x

y

h [ x , y ]
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Convolution

page 25
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Example:

241/152

To calculate a convolution, the value of 
every pixel is replaced by the scalar 
product between the convolution kernel 
and the neighbourhood of the considered 
pixel (with respect to the origin (0,0) of the 
convolution kernel).

Attention: “parallel” implementation.
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III-2: Frequency-based model

page 26

Fourier transform:
Fundamental tool of signal processing, the 2d counterpart of the Fourier Transform and its 
discrete version can be applied to digital images. Its use as analytic tool has been mostly 
abandoned to the benefit of other approaches more adapted to the spatial location of 
frequencies (like wavelets), however its theoretical and tutorial role  remains important: see 
formalisation of the aliasing (spectrum folding) and of sampling conditions.

The frequency-based model describes the image in terms of periodic structures, by 
decomposing it into a basis of simple periodic functions, like sinusoids:
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Fourier Transform 

page 27

F [u , v ]=∑
x=0

w−1

∑
y=0

h−1

f [ x , y ]e−2j π(ux /w+ vy/h)

f [ x , y ]=
1

wh ∑
u=0

w−1

∑
v=0

h−1

F [u ,v ]e2j π(ux /w+ vy /h )

The Fourier transform allows decomposing a signal f in linear combination of complex 
sinusoids, whose coefficients F[u,v] referred to as Fourier coefficients, provide information 
on frequencies (u,v) and allow frequency domain image manipulations.

2d discrete Fourier transform:

Inverse:

Direct:(x,y) are the coordinates in 
the spatial domain

(u,v) are the coordinates in 
the frequence domain

Properties of the Fourier Transform (1):
F [u ,v ]=∥ F [u ,v ]∥ e jφ[u ,v ]

F [u ,v]=F [uw , vh ]

MODULUS / ARGUMENT FORMULATION

PERIODICITY

SYMMETRY
If  F is the Fourier Transform of a real function  f :

F [u ,v]=F [−u ,−v ] ∥F [u , v ]∥=∥F [−u ,−v ]∥ [u ,v ]=−[−u ,−v ]and then: et 
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{
f [ x , y ]  F [u ,v ]

f 1[ x , y ]  F1[u , v ]

f 2[ x , y ]  F2 [u , v]}

Fourier Transform

page 28

Properties of the Fourier Transform (2):

a⋅f 1[ x , y ]b⋅ f 2 [ x , y ]  a⋅F1[u , v ]b⋅F 2[u , v]

f 1[ x , y]∗ f 2[ x , y]  F1[u , v ]⋅F 2[u ,v]
f [ x−x ' , y−y ' ] → F [u , v ]⋅e−2j π(ux ' /w+ vy ' /h)

f [ x , y ]⋅e2j π(u ' x /w+ v ' y/h)
→ F [u−u ' , v−v ' ]

∑
x=0

w−1

∑
y=0

h−1

∥ f [ x , y ]∥
2
=

1
wh

∑
u=0

w−1

∑
v=0

h−1

∥F [u ,v ]∥
2

LINEARITY

CORRESPONDENCE CONVOLUTION / PRODUCT

f 1[ x , y]⋅f 2[ x , y ]  F1[u ,v ]∗F 2[u ,v]

SPATIAL / FREQUENTIAL TRANSLATIONS

PARSEVAL THEOREM
DERIVATION

∂ f [ x , y ]

∂ x
→ juF [u , v ]

∂ f [ x , y ]

∂ y
→ jvF [u , v ]et

si

Image
Modulus Phase

u

v

u

v

f [ x , y ] ln ∥F [u , v ]∥ [u ,v ]

TF
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Understand the 2d Fourier spectrum
A simple 2d sine map:

f Log ||F||
page 29
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Understand the 2d Fourier spectrum
A 2d square signal:

f Log ||F||
page 30
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Understand the 2d Fourier spectrum
A visual chirp:

f Log ||F||
page 31
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Understand the 2d Fourier spectrum
Another visual chirp:

f Log ||F||
page 32
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Understand the 2d Fourier spectrum
A “natural” image:

f Log ||F||
page 33
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Understand the 2d Fourier spectrum
Same, with rotation and texturing:

f Log ||F||
page 34
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Smoothing in the Fourier domain

page 35

Low-pass Filter

The (ideal) low-pass filter is the 
multiplication in the frequency 
space by a  gate function (indicator 
function of the 2d interval: 
[-u

max
,u

max
]×[-v

max
,v

max
])

Low-
pass

FT IFT
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Band-stop in the Fourier domain
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Band-stop Filter
The band-stop filter is the 
multiplication in the frequency 
domain by a complementary band 
function, indicator function of the 
set:

(ℝ2 \ [-u
max

,u
max

]×[-v
max

,v
max

]) 
∪ A [-u

min
,u

min
]×[-v

min
,v

min
]

Note that in this case 
and in the previous 
one, the F[0,0] 
component remains 
unchanged:

The sum of intensities 
is the spatial domain is 
then constant.

F [0,0 ]=∑
x=0

w

∑
y=0

h

f [ x , y ]

Band-
stop

FT IFT
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Details enhancing in the Fourier domain
The high-pass filter is the multiplication in the frequency 
domain by the complementary of a gate function.

High-pass Filter

High-pass  = 60High-pass  = 20

FT
IFTIFT
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Band-pass in the Fourier domain

page 38

The band-pass filter is the 
multiplication in the 
frequency domain by a 
symmetric band function.

In this case and the 
previous one, the F(0,0) 
component is set to zero. 
The sum of the intensities 
in the spatial domain is 0, 
which means that the 
image has positive and 
negative values.

Band-pass Filter

FT IFT
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III-3: The statistical model

page 39

It deals with statistical properties of images: distribution of gray level values among pixels, 
correlation between spatially close pixels, occurrence frequency of some spatial structures... 
 
Statistical measures provide empirical functions that can be used as probabilistic models in 
many algorithms.

For example, the Markov Random Field model considers the image as the realisation 
(event) of a random field (where each pixel corresponds to a random variable), where the 
value of a pixel only depends on its neighbours values (according to a certain discrete 
topology, see discrete models further).  
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III-3: The statistical model

page 40

The histogram:
Basic tool for studying a sensor or the dynamics of a scene, it is used in some pre-
processing operators. However the histogram of gray levels should not be considered as 
a fundamental analysis tool for images, since it may be dramatically transformed 
without changing significantly the image.

Another remarkable example of statistical analysis is the use of co-occurrence matrices 
to represent textures.
The co-occurrence matrix M

v
 associated to the 

shift vector v, is the N x N matrix (N is the 
number of gray levels), such that M

v
(i,j) is the 

frequency of occurrence of couple (i,j) amongst 
value couples of pixels (x,x+v).

i

j
v

i

j

In this introductory lecture, we develop the first and most basic of these tools: the 
histogram.
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Histogram

page 41

Histogram

Gray level

Amount

Normalised cumulative histogram
Proportion

Gray level

H(x)

HC(x)

H(x) is the amount 
of pixels whose 
gray level is equal 
to x.

HC(x) is the ratio 
of pixels whose 
gray level is less 
than x.

HC  x=
∑
i=0

x

H x 

W×H

The histogram shows the 
repartition of pixels according 
to they (gray level) value. It 
provides  diverse information 
like order statistics, entropy, 
and can be used in some 
specific cases to isolate 
objects.

W

H

Min MaxMedian
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Histogram based processing

page 42

(1) Normalisation

(2) Equalisation

(3) Segmentation

A few histogram based operators are shown in the following. It should be noted that 
they are often calculated within the sensor during the acquisition, and that their 
relevance greatly depends on the acquisition conditions.

 make the most of the whole encoding dynamics

 balance the encoding dynamics and globally enhance the contrast

 simplify the image by grouping pixels according to their values
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Histogram: normalisation

page 43

Histogram normalisation, or dynamics expansion, is an affine function of the gray level so 
that the image uses the whole encoding dynamics.

Original histogram Normalised histogram

Original iimage f[x,y]

Expanded dynamics  f
new

[x,y]
NmaxNmin 2D - 1

f new [ x , y ]= f [ x , y ]−Nmin⋅
2 D

−1
Nmax−Nmin

● D: dynamics
● Nmin: smallest 
value in the image
● Nmax:  largest 
value in the image

To be less sensitive to outlier values, the 
normalisation can use a parameter , A 0<<1, 
and take:

Nmin∈HC−1
 

Nmax∈HC−1
1−
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Histogram: equalisation

page 44

Histogram equalisation  is a function of gray levels whose purpose is to balance as 
uniformly as possible the gray level distribution (The idea is to get as close as possible to a 
flat histogram).

f new [ x , y ]=2D
−1⋅

HC  f [ x , y]
wh

● D: dynamics
● (w,h): image dimensions
● HC(.): cumulative histogram

● The classic technique consists in linearising the 
cumulative histogram through the following operation:

Original f[x,y] After equalisation f
new

[x,y]

Histogram of  f Histogram de f
new

Cumulative 
histogram of f

Cumulative 
histogram of f

new

It results in a global contrast augmentation in the image. Note on the example above the enhancement of defaults 
also, like the fixed pattern noise of the uncooled infrared sensor.
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Histogram: segmentation
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Original image
“Segmented” image

Cumulative histogram 
showing quantile aggregation 

There exists “segmentation” techniques based on grouping the gray levels from the 
histogram. These techniques are not effective in the general case since they only consider 
the values of pixels without regard to any geometrical or topological criterion. 

For example, the method below calculates a given number (here 20) of quantiles from the 
cumulative histogram, then group them into classes based on a distance criterion, and 
attributes the same labels to pixels whose value belongs to that class: 
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III-4: Differential model

page 46



x

y

g

t

I



x

y

g

t

I

In the differential model, the image is seen as a continuous and  et differentiable function 
f(x,y), whose local behaviour is studied using its partial derivatives.
Such study, founded on Taylor’s expansion formula, only makes sense if the function f is 
regular enough, which is the key problem of differential methods.

At the first order, to each pixel (x,y) may be associated a 
local frame (g,t), where the vector g corresponds to the 
gradient direction (i.e. line of steepest ascent), and t to the 
isophote direction (i.e. line of iso-gray-value).

Thanks to the continuous approximation, this model 
allows in addition to express a large number of analysis 
operations in terms of Partial Derivative Equations 
(PDEs), which provides mathematical / physical 
foundations to many image processing operators, and also 
methods to calculate them using numerical resolution 
schemes. 
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Differential quantities

page 47

Analysing local geometry in images: contrast, orientation, curvature... is 
naturally approached by the differential geometry framework.
Estimating the spatial derivatives then plays a major role in image 
processing.
Nowadays this estimation is strongly related to the scale space theory: a 
derivative in a physical signal only makes sense up to a scale factor.
It is based on the fact that convolution commutes with derivation, and then 
estimating the derivative at a given scale is done by convolving the image 
by the derivative of a convolution kernel, where the spatial scope of the 
kernel corresponds to the scale:

∂

∂u
( f∗G s)=f∗

∂G s

∂ u

- s: estimation scale
- Gs: smoothing filter (scale s)
∂G s

∂u
-           : derivative filter (scale s)
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Multi-scale derivatives
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Derivatives to the order 2, estimated at 3 different scales. The estimation is obtained by convolving the original 
image (200x200) with the 2d (derivative of) Gaussian, corresponding to the convolution kernel (100x100 icon) 
displayed above the result image. 
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Finite differences: order 1
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[−1 01] [
−1
0
1 ]

[121 ]

h x=[
−1 0 1
−2 0 2
−1 0 1] h y=[

−1 −2 −1
0 0 0
1 2 1 ]

The simplest approximations of spatial derivatives are obtained by finite differences, corresponding to 
convolutions with small kernels: 

[−11] [−1
1 ]E.g.: , for approximating  ∂ f

∂ x
, and : ∂ f

∂ y

Usually            and        are preferred, since they produce thicker, but well centred (zero-phased) 
frontiers.  
These operations being very noise sensitive, they are usually combined with a smoothing filter in the 
direction orthogonal to derivation, for example using the following kernel (or its transpose): 
Finally the first order spatial derivatives in x and y may be estimated by convolving the image with the 
following kernels, respectively:

(Sobel’s masks)  f x [i , j ]= f ∗h x[i , j]
f y [i , j ]= f ∗h y[i , j ]

, with: 

Then to compute the norm of the gradient:

∥∇ f [i , j]∥2= f x [i , j ]2
 f y [i , j]2

∥ ∇ f [i , j ]∥1=∣ f x [i , j]∣∣ f y [i , j ]∣
∥∇ f [i , j]∥∞=max {∣ f x [i , j ]∣,∣ f y [i , j ]∣}

...and its orientation:

arg ∇ f [i , j ]=arctan f y[i , j ]
f x[i , j ] 

, for approximating  
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Finite differences: order 1

page 50

Horizontal Sobel Vertical Sobel Sobel gradient magnitude

Original Kernel [-1 1] Kernel [-1 0 1]
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Finite differences: order 2
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The simplest finite difference approximation of the second derivative is obtained by the convolution 
with the following kernel:

[1−2 1] [
1

−2
1 ], for approximating  ∂

2 f
∂ x2 , and: , for approximating  ∂

2 f
∂ y2

 f =
∂

2 f
∂ x2 

∂
2 f

∂ y2The Laplacian                                   can then be approximated by the following linear operator:

[
1

1 −4 1
1 ] [

1 1 1
1 −8 1
1 1 1]4-connected 

Laplacian
8-connected 
Laplacian, or also  

Original 4-cx Laplacian 8-cx Laplacian 
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Exercise: Unsharp masking
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[
−1

−1 5 −1
−1 ]

● Explain why convolution by               approximates

● Show how it behaves on a simple 1d step, like:

● Explain why the following convolution kernel enhances the local contrast 
(see lab 1):  

[1−2 1]
∂

2 f
∂ x2

f ∗[
−1

−1 5 −1
−1 ]f
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III-5: Set based model

page 53

B⊂X

B∩X =∅

B∩X ≠∅

In mathematical morphology, the image is seen as a set, whose properties are studied 
with respect to local relations with a reference set (the structuring element) in terms of 
intersection and inclusion (hit-or-miss relations).
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Erosion and Dilation
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Morphological transformations are defined from 2 basic (and dual) set-based operators: 
erosion and dilation 

Original (Matisse - 1952) B  X ={x∈ℝ
2 ; B x∩X ≠∅}B  X ={x ∈ℝ

2 ; B x⊂X }

(structuring element: disk)
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Erosion and Dilation
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Erosion and dilation, and then all the morphological transformations, generalise from sets 
(binary images) to functions (gray level images) through the level sets:  

Original (Man Ray - 1924) B  I B  I 

MIN MAX

I n={x ∈ℝ
2 ; I x n }

(structuring element: diamond)
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III-6: the discrete model
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Discrete geometry is at least as old as Image Processing. Whereas the differential model 
considers the geometric structures (curves, surfaces, lines, etc.) as numerical 
approximations of their continuous counterparts, or the frequency based model interprets 
the digitization in terms of information loss, the discrete model, in contrast, integrates the 
sampled space as its mathematical framework, and aims to provide a rigorous formalism 
to geometric structures, including definitions, properties, theorems,...  

What is the distance 
between the 2 points?

What is a hole? What is a line?
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Tessellation of the plane
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A tessellation (tiling) of the plane is its partition into elementary cells (pixels).
There only exist 3 regular tessellations:

triangular square hexagonal

... but many irregular ones:
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Tessellation of the plane

page 58

Other irregular tessellations of the plane...

Penrose’s aperiodic tessellation

Escher’s periodic tessellation
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Tessellations and meshes
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Every tessellation can be associated to a graph whose vertices represent elementary cells, 
and whose edges represent the adjacency relation between cells (2 cells are adjacent if 
they share an edge). Such graph is referred to as a mesh of the plane. 

Regular tessellations and meshes are dual:

Triangular tessellation Square tessellation Hexagonal tessellation

Triangular meshSquare meshHexagonal mesh

Questions:

- representation in Z2?

- how many directions?

- recursivity?
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Meshes and connectivity
Topological relations in discrete images are defined from the connectivity relation 
induced by the mesh graph (X,S), where X is the set of vertices and S the set of edges.

X⊂ℤ
2 ; S⊂X 2

x≈ y⇔x , y∈S

x~ y⇔∃{x1, ... , x n}/ x≈ x1, ... , x i≈ x i1 , ... , x n≈ y

Let x and y be 2 points of X, by definition x and y are neighbours if:

The transitive closure of the neighbourhood (adjacency) relation is an 
equivalence relation “there exists a connected path between x and y”:

The equivalence classes of this relation are called the connected components of X

4-connected 
square mesh

8-connected 
square mesh

6-connected 
triang. mesh
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Topologies in the square mesh
In the square mesh, the notion of hole in an object X (X ⊂Z2), that should correspond to a 
finite connected component of the complementary Xc, is not well defined...

...except if different connectivities are considered for X and Xc: 

This is related to the validity of Jordan’s 
theorem, which stated that a simple closed 
(Jordan’s) curve separates the plane into 2 
connected components,one of which is bounded.

Questions:
How many connected 
components, and how many 
holes are there in the image on 
the left?
- in (8,4)-connectivity?
- in (4,8)-connectivity?

Jordan’s theorem is valid for these 
hybrid connectivities.

8-connectivity 4-connectivity

(4,8)-connectivity(8,4)-connectivity
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Metrics in the square meshes
The graph of the mesh also induces a metrics in the discrete space, the distance between 
2 points x and y being defined by the length of the shortest path between them. By 
weighting each edge by 1, we get:

1 1
1distance of the 4-connectivity

d 4 x , y =∣x1−y1∣∣x2−y2∣

distance of the 8-connectivity

d 8x , y =max∣x1− y1∣,∣x2−y2∣

We can also weight differently the edges of the 8-connected mesh, or even use more 
complex meshes (i.e. larger neighbourhoods): 

3

4

55

117

(3,4) chamfer 
distance

(5,7,11) chamfer 
distance

Questions:

calculate distances d
4
(x,y), d

8
(x,y), d

ch(3,4)
(x,y), d

ch(5,7,11)
(x,y) 

between the two 2 points x and y on the right:
x

y
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Conclusion

page 63

Set based model

Differential 
model

Linear model Frequency 
based model

Statistical model

Equivalence convolution / 
multiplication

PDE / Level sets

Correlation 
– PCA 

Wavelets

Differential filters

Statistical 
morphology

.../...

Key notions:

- digital image
- sampling
- quantization
- histogram
- convolution
- frequency representations
- estimation of derivatives
- discrete connectivity and 
distance
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Course description, program, practical 
details, and slides available on:
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