

Géométrie Discrète & Morphologie Mathématique

Antoine MANZANERA – ENSTA/U2IS

Chapitre 2 : Géométrie discrète & Aspects algorithmiques

- Introduction à la géométrie discrète
- Topologies et distances discrètes
- Transformées en distances discrètes
- Calcul des opérateurs de base
- Files d'attente et opérateurs géodésiques

Le modèle discret

La géométrie discrète est une discipline encore plus ancienne que le traitement d'images.

A l'opposé de certains modèles comme le modèle différentiel qui extrait la géométrie locale à partir du calcul différentiel en considérant l'image comme une fonction continue, le modèle discret intègre l'espace échantillonné comme cadre mathématique, et s'efforce de donner un cadre formel aux structures géométriques discrètes : définition, propriétés, théorèmes,...

Quelle est la distance entre les 2 points ?

Qu'est-ce qu'un trou?

Qu'est-ce qu'une droite ?

Pavages du plan

Un pavage du plan est une partition du plan en cellules élémentaires (pixels). Il n'existe que 3 pavages réguliers du plan :

... mais de nombreux pavages irréguliers :

Pavages du plan

D'autres pavages irréguliers du plan...

Pavage apériodique de Penrose

Pavage périodique d'Escher

Pavages et Maillages

A tout pavage du plan on peut associer un *graphe* où les *sommets* (noeuds) représentent les cellules élémentaires, et où les *arêtes* représentent la relation d'*adjacence* entre les cellules (2 cellules sont adjacentes si elles ont un côté en commun). Un tel graphe est un *maillage* du plan.

Les pavages et les maillages réguliers sont *duaux* :

Questions :

- représentation dans Z²?
- combien de directions ?
- récursivité ?

Maillage, Adjacence, Composantes Connexes

Les relations topologiques dans les images discrètes sont définies à partir de la relation d'adjacence induite par le graphe du maillage (*X*,*S*), où *X* représente l'ensemble des *sommets*, et *S* l'ensemble des *arêtes* : $X \subset \mathbb{Z}^2$; $S \subset X^2$

<u>Définition</u> : soit $(x, y) \in X^2$ on dira que x et y sont *adjacents*, noté $x \approx y$ si et seulement si : x = y ou $(x, y) \in S$

<u>Propriété 1</u> : La relation $x \approx y$ est réflexive et symétrique, c'est donc une relation de pré-équivalence.

maille triang. 6-connexe

<u>Propriété 2</u>: La clôture transitive de la relation $x \approx y$ est donc une relation d'équivalence dite de connexité (« il existe un chemin connexe entre x et y) : $x \sim y \Leftrightarrow \exists (x_1, ..., x_n) \in X^n / x \approx x_1, ..., x_i \approx x_{i+1}, ..., x_n \approx y$

<u>**Définition**</u> : Les classes d'équivalence de la relation $x \sim y$ sont appelées les *composantes connexes*.

Images discrètes dans la maille carrée

- Le *plan discret* est représenté par \mathbb{Z}^2 .
- Une *image discrète binaire* est un sous-ensemble de \mathbb{Z}^2 .

 $X \subset \mathbb{Z}^2$

• Une *image discrète en niveau de gris* est une fonction de \mathbb{Z}^2 dans N.

Une image binaire (représentation « pavage »)

Une image binaire (représentation « maillage »)

 $I: \mathbb{Z}^2 \to \mathbb{N}$

Une image en niveaux de gris

Topologies dans la maille carrée

Dans la maille carrée, on peut définir 2 types de *relations d'adjacence*, donc de topologie :

Par clôture transitive, on définit la relation de connexion, qui est une relation d'équivalence :

Un chemin 4-connexe

Un chemin 8-connexe

Les classes d'équivalence de la relation de connexion sont les composantes connexes.

Théorème de Jordan en maille carrée

Dans la maille carrée, la notion de *trou* dans un objet X, qui doit correspondre à une composante connexe finie de X^c , n'est pas bien définie :

8-connexité

Ce problème est lié à la validité du *théorème de Jordan*, selon lequel une courbe simple fermée sépare le plan en 2 composantes connexes, dont une bornée.

...sauf si l'on considère des topologies différentes pour X et pour X^{c} :

Exemple :

combien l'image ci-contre compte-t-elle de composantes connexes ? Combien de trous ?

(1) Pour la (8,4)-connexité

(2) Pour la (4,8)-connexité

La distance euclidienne dans la maille carrée se calcule facilement pour 2 points donnés, mais est difficile à manipuler d'un point de vue algorithmique pour calculer la carte de distance à un ensemble donné (transformée en distance).

$$d_E(A,B) = \sqrt{5^2 + 3^2} = \sqrt{34}$$

 $B_{\sqrt{10}}^{d_E}(C) = \left\{ z \in \mathbf{Z}^2; d_E(z, c) \le \sqrt{10} \right\}$

Les distances discrètes plus faciles à manipuler d'un point de vue algorithmique sont celles qui sont induites par la topologie : étant donnée une relation d'adjacence la distance entre A et B est alors définie comme le nombre minimum d'arêtes que compte un chemin qui relie A à B. Par exemple la distance d_4 , ou distance de la 4-connexité :

$$d_4(A,B) = |x_A - x_B| + |y_A - y_B|$$

 $d_4(A, B) = 5 + 3 = 8$

 $B_3^{d_4}(C) = \left\{ z \in \mathbf{Z}^2; d_4(z, c) \le 3 \right\}$

De la même façon, la distance d_8 , ou distance de la 8-connexité :

$$d_8(A, B) = \max(|x_A - x_B|, |y_A - y_B|)$$

 $d_8(A, B) = \max(5,3) = 5$

 $B_3^{d_8}(C) = \left\{ z \in \mathbf{Z}^2; d_8(z, c) \le 3 \right\}$

On peut aussi pondérer différemment les arêtes du maillage 8-connexe, voire utiliser des maillages plus complexes (i.e. des voisinages plus grands) :

Transformée en distance

La transformée en distance d'une image binaire X est une fonction qui associe à chaque pixel de X sa distance au complémentaire X^c . Cette fonction est très utile en analyse d'images, par exemple pour le calcul des opérateurs morphologiques :

$$F_X^d \colon \mathbb{Z}^2 \to \mathbb{N}$$

$$p \mapsto d(p, X^c)$$

$$X$$

$$F_X^{d_c}$$

Pour les distances d_4 et d_8 , la transformée en distance d'une image binaire X se calcule facilement par un algorithme récursif, basé sur 2 balayages d'image : 1 direct, 1 rétrograde :

```
% Balayage direct
for i = 1:w
for j = 1:h
if (i,j)∉X F(i,j)=0;
else F(i,j) = min(F(i-1,j)+1,F(i,j-1)+1);
end
end
% Balayage rétrograde
for i = w:-1:1
for j = h:-1:1
F(i,j) = min(F(i,j),F(i+1,j)+1,F(i,j+1)+1);
end
end
```

Algorithme de calcul de la transformée en distance d_4

Balayage direct et son masque de calcul

Balayage rétrograde et son masque de calcul

Illustration du calcul de la transformée en distance d_4 en 2 balayages, sur un exemple :

0	0	0	0	0	0	0	0
0	∞	∞	∞	∞	∞	∞	0
0	∞	∞	∞	∞	∞	∞	0
0	∞	∞	0	0	8	∞	0
0	~	~~~	~~~	~	∞	∞	0
0	~~	~~~	~~~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	2	2	2	2	2	0
0	1	2	0	0	1	2	0
0	1	2	1	1	2	3	0
0	1	2	2	2	3	4	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	0
0	1	2	1	1	2	1	0
0	1	1	0	0	1	1	0
0	1	2	1	1	2	1	0
0	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0

Etat « initial »

Après le premier balayage

Après les 2 balayages

La transformée en distance d_8 se calcule de façon similaire :

Algorithme de calcul de la transformée en distance d₈

Balayage rétrograde et son masque de calcul

Comparaison distances d_4 et d_8

Transformée en distance d₄

Transformée en distance d₈

Les transformées en distance de chanfrein se calculent aussi de façon similaire. Par exemple, pour d_{3-4} (noter la normalisation) :

```
% Balayage direct
for i = 1:w
  for i = 1:h
    if (i,j) \notin X F(i,j)=0;
    else F(i,j) = min(F(i-1,j-1)+4,F(i-1,j)+3)
                      F(i-1,i+1)+4,F(i,i-1)+3);
  end
end
% Balayage rétrograde
for i = w:-1:1
  for j = h:-1:1
    F(i,j) = min(F(i,j),F(i+1,j+1)+4,F(i+1,j)+3)
                      F(i+1,i-1)+4, F(i,i+1)+3)/3;
  end
end
```

Algorithme de calcul de la transformée en distance de chanfrein d_{3-4}

Balayage rétrograde et son masque de calcul

Comparaison distances d_{3-4} et d_{5-7-11}

Transformée en distance d₃₋₄

Transformée en distance d₅₋₇₋₁₁

Distance euclidienne : algorithmes

On ne peut pas calculer de transformée en distance euclidienne *exacte* en utilisant un algorithme similaire, car la valeur de la transformée en distance en un point ne peut pas toujours être décidée en fonction de la valeur de la transformée en distance de ses 8 plus proches voisins :

Sur la figure ci-contre, le pixel Q est plus proches de B que de A ou de C. Mais tous ses 8 plus proches voisins sont soit plus proches de A, soit plus proches de C, que de B

Distance euclidienne : algorithmes

Néanmoins, on peut calculer une très bonne approximation de la transformée en distance euclidienne sur la maille carrée, grâce à l'algorithme de Danielsson-Leymarie (DL). Cet algorithme consiste à calculer récursivement les coordonnées relatives des pixels les plus proches du complémentaire :

L'algorithme consiste à calculer, pour chaque pixel p de X, les coordonnées $(R_x(p),R_y(p))$ tels que le point de X^c le plus proche de p a pour coordonnées :

 $(x_p + R_x(p), y_p + R_y(p))$

La valeur de la transformée en distance au point p est donc :

$$F_X^E(p) = \sqrt{(R_x(p))^2 + (R_y(p))^2}$$

Distance euclidienne : algorithmes

Le carré de la distance euclidienne est calculé par sommation marginale : quand un nombre n augmente de 1, son carré augmente de 2n+1 :

$$(|R_{x}|+|a|)^{2} + (|R_{y}|+|b|)^{2} = R_{x}^{2} + R_{y}^{2} + 2|R_{x}a| + 2|R_{y}b| + a^{2} + b^{2}$$

et donc :
$$F_{x}^{E}(x+a, y+b)^{2} = F_{x}^{E}(x, y)^{2} + 2|R_{x}a| + 2|R_{y}b| + a^{2} + b^{2}$$

Notations pour l'algorithme :
$$V^{-} = \{(-1,-1), (0,-1), (+1,-1), (-1,0)\}$$
 le voisinage causal
$$V^{+} = \{(+1,+1), (0,+1), (-1,+1), (+1,0), (0,0)\}$$
 le voisinage anticausal

Enfin, on note :

$$DF^{(a,b)}(x, y) = 2|aR_x(x+a, y+b)| + 2|bR_y(x+a, y+b)| + a^2 + b^2$$

l'augmentation marginale du carré de la transformée en distance, lorsqu'on passe du point (x+a,y+b) au point (x,y).

Algorithme de Danielsson-Leymarie

```
for i = 1:w % Initialisation
  for i = 1:h
    if (i,j) \notin X \{F(i,j)=0; R_x(i,j)=0; R_y(i,j)=0; \}
    else {F(i,j)=\infty;R_x(i,j)=0;R_v(i,j)=0;}
  end
end
for i = 1:w % Balayage direct
  for i = 1:h
    (1) (a,b) = Arg Min { F(i+u,j+v)+DF^{(u,v)}(i,j):(u,v) \in V^{-} }:
    (2) R_x(i,j)=R_x(i+a,j+b)+a; R_v(i,j)=R_v(i+a,j+b)+b;
    (3) F(i,i) = F(i+a,i+b)+DF^{(a,b)}(i,i);
  end
end
for i = w:-1:1 % Balayage rétrograde
  for i = h:-1:1
    (1) (a,b) = Arg Min { F(i+u,j+v)+DF^{(u,v)}(i,j);(u,v) \in V^+ };
    (2) R_x(i,j)=R_x(i+a,j+b)+a; R_v(i,j)=R_v(i+a,j+b)+b;
    (3) F(i,j) = F(i+a,j+b)+DF^{(a,b)}(i,j);
end
end
```

L'algorithme DL a une complexité constante par pixel. L'algorithme cicontre, en 2 passes, nécessite 8 décalages (multiplication par 2), 12 sommes et 6 comparaisons par pixel. En réalité, l'algorithme en 2 passes produit des erreurs qui peuvent être par des balayages corrigées supplémentaires (utilisant des masques plus petits). L'algorithme DL complet a donc une complexité de : 8 décalages, 14 sommes et 8 comparaisons par pixel.

Algorithme de calcul de la transformée en distance quasieuclidienne par l'algorithme DL en 2 passes

Algorithme de DL : résultats

Implantation des opérateurs de base

Méthode triviale :

Complexité du calcul par pixel : c^2

 $\delta_{R}(X)$

Implantation des opérateurs de base

(décomposition des polyèdres de Steiner)

Complexité du calcul par pixel : 2c

Erosions binaires et distances discrètes

Pour les ensembles (images binaires), dans le cas où l'élément structurant est une boule d'une distance discrète, on calculera l'érodé *par seuillage de la transformée en distance* :

ex : distance de la 4-connexité $d_{4}(a,b) = |x_{a} - x_{b}| + |y_{a} - y_{b}|$

en effet :
$$p \in \mathcal{E}_{B_{\lambda}}(X) \Leftrightarrow F_{X}^{d}(p) \ge \lambda$$

transformée en distance *d* de l'ensemble *X* :

 $F_X^d \colon \mathbb{Z}^2 \longrightarrow \mathbb{N}$ $p \longmapsto d(p, X^c)$

Transformée en distance d_4

Erosion par une boule de d_4

Erosions binaires et distances discrètes

Transformée en distance d_8

Erosion par une boule de d_8

Géométrie Discrète & Morphologie Mathématique

Antoine MANZANERA – ENSTA/U2IS

Erosions binaires et distances discrètes

distance euclidienne

ex :

Grâce aux techniques de calcul récursif de la transformée en distance, la complexité du calcul par pixel devient constante : (O(1))

$$d_e(a,b) = \sqrt{(x_a - x_b)^2 + (y_a - y_b)^2}$$

Transformée en distance quasi-euclidienne

Erosion par une boule quasi-euclidienne

Géométrie Discrète & Morphologie Mathématique

Antoine MANZANERA – ENSTA/U2IS

Implantation des opérateurs en niveaux de gris

L'implantation de l'érosion par calcul de la fonction distance n'est valable que pour les opérateurs ensemblistes. Existe-t-il des algorithmes pour le calcul de l'érosion en niveaux de gris, dont la complexité soit indépendante de la taille de l'élément structurant ?

OUI ! Dans le cas d'élément structurant 1D (segment), nous détaillons ci-dessous l'algorithme de Van Herk :

Soit X une image 1D à valeurs numériques :

Soit *B* un segment de taille K (K = 2p + 1). Supposons qu'on souhaite calculer l'érosion de *X* par *B*.

On « partitionne » *X* en segment de taille *K* :

L'algorithme de Van Herk comprend 3 phases :

Phase(2):
for (i = W-1; i >= 0 ; i--)
if (i % K == 0)
 E₂[i] = X[i];
else
 E₂[i] = min(E₂[i+1],X[i]);

Rq : les calculs de E_1 et de E_2 sont indépendants et peuvent être réalisés en parallèle.

Van Herk / Calcul érosion/dilatation

Van Herk / Conclusion

Complexité : 3 min/max quelque soit la longueur de l'élément structurant.

Adapté à un calcul séquentiel, mais compatible avec un parallélisme de données.

□ Adaptable à des éléments structurants rectilignes de n'importe quelle orientation.

[Van Herk 92]

Reconstruction : algorithmique

RECONSTRUCTION NAÏVE

Sur une architecture séquentielle, l'implantation « naïve » de la reconstruction, *i.e.* basée sur la définition :

$$\begin{cases} \delta_g^r(f) = \delta_g(f) \wedge r \\ E_g^r(f) = \sup_{n \ge 0} \left\{ (\delta_g^r)^n(f) \right\} \end{cases}$$

conduit à un coût de calcul tout à fait prohibitif, puisque le nombre d'itérations de dilatation géodésique peut être égal au diamètre géodésique des plus grandes composantes connexes :

RECONSTRUCTION SEQUENTIELLE

Une implantation sensiblement plus efficace consiste à « propager » le marqueur au cours d'un balayage séquentiel, direct puis rétrograde :

Néanmoins, le nombre d'itérations de double balayage peut parfois être important dans le cas de composantes connexes enroulées, par exemple :

Géométrie Discrète & Morphologie Mathématique

Algorithmique des files d'attente

La file d'attente (FIFO) est une structure de donnée particulièrement utile dans les algorithmes morphologiques à base de reconstruction géodésique. Son intérêt est multiple :

• On restreint les calculs aux pixels susceptibles de changer : on examine les pixels qui sont dans la file d'attente, et pas tous les pixels de l'image.

• La terminaison d'un algorithme de relaxation est rendue visible par le fait que la file d'attente est vide. On n'a donc plus besoin de garder une trace explicite des changements pour détecter la convergence.

Φest la file d'attente. c est la valeur de l'élément de tête. l celle de l'élément de queue.

$x = pop(\Phi)$	l k j Φ d	La fonction POP (Φ) supprime l'élément de tête et renvoie sa valeur, soit x = c .
push(Φ,y)	m 1 k j Φ d	La procédure PUSH (y , Φ) ajoute en queue de Φ un nouvel élément de valeur y , soit $m = y$.
$empty(\Phi) == TRUE$	Φ	La fonction empty (Φ) est une fonction booléenne qui renvoie 1 si et seulement si Φ est vide.

La structure de donnée File d'attente et ses fonctions associées.

Reconstruction binaire à base de files d'attente

La reconstruction par file d'attente consiste à initialiser la FIFO avec le marqueur, puis pour chaque élément de la FIFO extrait, rajouter ses voisins dans l'image, ainsi jusqu'à convergence (FIFO vide). Le nombre d'opération est proportionnel au nombre de pixels « ajoutés » au marqueur...

0 Complémentaire

• pixel en cours

Ouvertures et fermetures par reconstruction

L'ouverture par reconstruction élimine les composantes connexes qui n'appartiennent pas à l'ouvert sans modifier les autres :

La fermeture par reconstruction est définie par dualité :

ouverture par reconstruction

 $E^X(\gamma_B(X))$

 $\Big(E^{X^c}\Big)\Big(\varphi_{\scriptscriptstyle R}(X)\Big)$

Géométrie Discrète & Morphologie Mathématique

Antoine MANZANERA – ENSTA/U2IS

B

Reconstruction fonctionnelle

La dilatation géodésique de f dans r:

 $\delta_g^r(f) = \delta_g(f) \wedge r$

La reconstruction géodésique de f dans r:

$$E_g^r(f) = \sup_{n \ge 0} \left\{ (\delta_g^r)^n(f) \right\}$$

Extrema régionaux

La notion d'extremum régional joue un rôle important pour les image numériques, en particulier dans le calcul des opérateurs géodésiques. Il s'agit de « plateaux », au bord desquels on ne peut que descendre (pour les maxima régionaux), ou monter (pour les minima régionaux) strictement.

Soit f une fonction numérique.

Reconstruction numérique à base de FIFO

Dans le cas de la reconstruction numérique (fonctionnelle), l'utilisation des FIFO est moins immédiate car il faut déterminer le domaine de stabilité (ensemble des points fixes) de la fonction marqueur f, au bord duquel la propagation va être initialisée. Ce domaine de stabilité est en fait l'ensemble des *maxima régionaux* de f. On utilise alors la propriété suivante :

La reconstruction de f est la même que la reconstruction de la restriction de f à ses maxima régionaux :

$$E^r(f) = E^r(f \cdot \mathbf{1}_{\max_f})$$

Reconstruction numérique à base de FIFO

(1) La première étape consiste donc à calculer les maxima régionaux de f:

Initialisation de la FIFO :

Géométrie Discrète & Morphologie Mathématique

Reconstruction numérique à base de FIFO

(2) Puis on reconstruit $\max_{f} \text{sous } r$:


```
// Initialisation FIFO
m = max<sub>f</sub>;
Pour tout pixel p tq
(m(p) ≠0) et (∃ q voisin de p tq m(q) = 0) {
F.push(p);
}
// Propagation FIFO
Tant que non(F.empty()) {
F.pop(p);
Pour tout voisin q de p tq m(p)>m(q) {
m(q) = MIN(f(q),m(p));
F.push(q);
}
```

Le coût de calcul de la reconstruction numérique par FIFO est donc obtenue par un nombre constant de parcours d'images : 2 balayages complets pour les initialisations de FIFO, et 2 parcours de FIFO où les points ne sont examinés qu'une fois en général (2 ou 3 dans des cas extrêmes où 2 ou plusieurs maxima régionaux sont très proches).

Géométrie Discrète & Morphologie Mathématique

Ouvertures et fermetures par reconstruction

Les ouvertures et fermetures par reconstruction éliminent les petites structures en préservant les contours des images numériques :

> élément structurant de l'ouverture morphologique :

ouverture par reconstruction

fermeture par reconstruction

original

Transformées en distance et FIFO

Les files d'attente peuvent également être utilisées pour calculer la transformée en distance de manière efficace par propagation du contour. L'algorithme correspond alors à une application à la maille carrée de l'algorithme de Dijkstra. Tous les algorithmes récursifs présentés précédemment s'adaptent facilement à ce cadre. Par exemple, pour la distance d_4 :

```
% Initialisation FIFO
for i = 1:w
  for j = 1:h
     if (i,j)∈X
       if \exists (i',j'), d_4((i,j),(i',j')) = 1) \& (i',j') \notin X : \{F(i,j) = 1; Q.push(i,j);\}
       else : F(i,j) = \infty ; endif
     endif
  endfor
endfor
% Parcours de la FIFO et étiquetage
while \sim(Q.empty)
  Q.pop(i,j);
  forall (i',j'), (i',j')\inX,d<sub>4</sub>((i,j),(i',j'))==1) and F(i',j')==\infty : {F(i',j') = F(i,j)+1 ; Q.push(i',j');}
  endfor
endwhile
```

Géométrie algorithmique – Conclusion

A RETENIR POUR CE COURS :

- Concepts de base : Distances et Topologies discrètes Paradoxe de Jordan Définition algébrique de la composante connexe.
- Algorithmes de transformées en distance : Intérêt, principe, complexité.
- Calculs rapides des opérateurs d'érosion et dilatation dans le cas binaire : principe, restrictions.
- Calcul rapide des opérateurs en niveau de gris : cas 1d (Algorithme de Van Herk)
- Calcul rapide des opérateurs de reconstruction : principe des files d'attente Algorithme de reconstruction binaire – Notion de maximum régional – Algorithme de reconstruction numérique.