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Watershed for segmentation of images [1]:

Consider an image as a topographic surface composed of catchment
basins and edges. Now consider that we flood the topographic surface
from each minimum with constant vertical speed water. The watershed
lines are the lines where the water is coming from two or more floods.
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Problem: Oversegmentation

The construction of the watershed lines leads to severe over
segmentations.
This may be corrected thanks to:

preprocessing the images;
using seeded watershed;
using a graph based approach;
using a stochastic watershed;
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Graph applications

A graph is a data structure which is used for various applications:
Social Networks (Facebook) use graphs to represent each user and
their activities.
Page rank is based on graph theory
Recommendations on e-commerce websites: use graphs
segmentation of images can be done using graphs

Why do we need graphs?
Mathematically simple representation with multiple applications
A lot of work has been done on graph theory
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Graph Theory Basics

A graph is a data structure that is defined by two components :
edges
nodes (vertices)
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Graph Theory Basics

We write a graph G = (V ,E ) where V is the set of nodes E is the set of
edges. E ⊆ {(x , y)|(x , y) ∈ V 2}
On the following case V = {1, 2, 3, 4, 5} and
E = {(1, 2), (1, 5), (2, 5), (2, 4), (2, 3)}
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Directed/Undirected graphs

First, let us make a distinction between a directed graph and an
undirected graph. A directed graph or digraph is a graph in which edges
have orientations, while it doesn’t for an undirected graph.

We will focus on undirected graphs.
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Simple graphs / Multigraphs

A simple graph is a graph without any loop in which two nodes are
connected by at most one edge.
A multigraph is a graph that can have multiple edges that have the same
nodes. Thus two nodes may be connected by more than one edge. One
node can also have a self-loop.

We will focus on simple graphs.
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Connected, Complete, Bipartite graphs

A connected graph is a graph composed of at least one vertex and there
is a path (=finite or infinite sequence of edges which joins two nodes)
between every pair of nodes.
A complete graph is a graph whose each nodes are connected to all other
nodes .
A bipartite graph is a graph whose vertices can be divided into two
disjoint and independent sets U and V such that all edges connect a
node in U to one in V .
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Cycle, tree graphs

For an undirected graph: A cycle graph is a graph that has at least one
path (at least 3 nodes) that start and finish on the same node.
A tree is an undirected graph G is connected and acyclic (contains no
cycles).
A spanning tree of an undirected graph G is a tree that includes all the
nodes of G, with a minimum possible number of edges.
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A weighted graph

Let us consider a undirected simple graph G = (V ,E ) where V is the set
of vertices E is the set of edges. E ⊆ {(x , y)|(x , y) ∈ V 2}
Now let us consider a weighted graph : a graph whose edges have
weights that we denote (G ,w), with w : E −→ R
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Images as graphs

Pixel adjacency Graphs (PAG)
Region Adjacency Graphs (RAG)
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Pixel adjacency Graphs (RAG)
We consider as a weighted undirected graph the PAG.

V is the set of pixel of the image
E corresponds to an adjacency relation on V
w is a measure of dissimilarity between the pixel

(a) (b)

Figure: (a)A 4-connected pixel adjacency graph, (b) a 8-connected pixel
adjacency graph.
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Region Adjacency Graphs (RAG)

We consider as a weighted undirected graph the RAG.
V is the set of clusters of the image
E corresponds to an adjacency relation on V
w is a measure of dissimilarity between the clusters
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Region Adjacency Graphs (RAG): the nodes

Figure: superpixels [8]

15 / 40



Graph and Watershed
Context

Region Adjacency Graphs (RAG): the nodes

Figure: Watershed vs superpixels [8]
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Region Adjacency Graphs (RAG): the edges

We associate each edge e ∈ E with a real valued, non-negative
weight, w(e);
The weight of an edge represents the similarity ,or the dissimilarity
between the nodes connected by edges;
For example, we may define the edge weights as
w(eij) = |I(vi)− I(vj)| with vi and vj two nodes of V and eij the
edge between these nodes, and I(vi) the mean value of the cluster i .
For example, we may define the edge weights as
w(eij) = e−

‖I(vi )−I(vj )‖2

σ with σ ∈ R+∗
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From RAG to watershed [2]
Given that the flooding of the watershed transform always follows the
path of minimum height we can transform the watershed partition into a
RAG by using as the weight between two regions the minimum pass point
of the gradient along the frontier of these regions.

Figure: (a)Partition with valuated frontiers (b) example of frontiers

Then [2] proposed to link the watershed and the Minimum Spanning Tree
(MST).
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Minimum Spanning Tree and watershed

Figure: Construction of the minimum spanning tree by flooding a topographic
surface [9].
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Shortest path - Minimum Spanning Tree

Definition shortest path : Given an edge-weighted graph (G ,w), one of
the main problems is the computation of distG(x , y) and finding a
shortest(x , y)-path among all possible paths.
Definition Minimum Spanning Tree : Given an edge-weighted graph
(G ,w), one of the main problems is to find: a spanning tree T of G with
minimum weight, i.e. for which

∑
e∈T w(e) is minimum.

Search of the minimum spanning tree can be solved with:
Kruskal algorithmO(n2 + mlog2(m)) (n is the number of vertices
and m of edges)
Prim algorithmO(n2)

Important: If each edge has a distinct weight then there will be only
one, unique minimum spanning tree.
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Minimum Spanning Tree
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Minimum Spanning Tree and watershed

Figure: Construction of the minimum spanning tree by flooding a topographic
surface [3].
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Minimum Spanning Tree and watershed

Figure: Construction of the minimum spanning tree by flooding a topographic
surface [9].
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Kruskal algorithm:

1 Sort the graph edges with respect to their weights.
2 Start adding edges to the MST from the edge with the smallest

weight until the edge of the largest weight.
3 Only add edges which doesn’t form a cycle , edges which connect

only disconnected components.
4 repeat the previous step up to when all nodes are on the tree.
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Kruskal algorithm:
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Prim algorithm:

1 remove all loops and parallel edges (keep the one with minimum
weight)

2 while adding new edge select the one with minimum weight out of
the edges from already visited nodes. No cycle are allowed.

3 repeat the previous step up to when all nodes are on the tree.
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Prim algorithm:
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Prim algorithm:
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Prim algorithm:
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Minimum Spanning Tree and watershed

Then in order to obtain k partitions with k < m, one just need to remove
the k − 1 biggest edges of the MST. These operations leads to a
Minimum Spanning Forest (MSF).
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Minimum Spanning Tree and watershed

Figure: (A): a RAG, (B) : the MST of the graph, (C) two connected subgraphs,
obtained by cutting all edges with a weightabove 6, (D) watershed cut if we
want two clusters. [6]
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Minimum Spanning Tree and watershed

Figure: Construction of the partition [9].
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Minimum Spanning Tree and watershed

Figure: An image, its watershed partition, followed by 4 levels of hierarchy of
MST cut, going from coarse to fine. [6]
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Stochastic watershed

The basic idea comes from the difficulties to find the appropriate markers
to have a good partition. Hence Angulo and Jeulin proposed the
following algorithm [5]:
Algorithm 1: Stochastic watershed algorithm
Result: Fout a grey scale image of the same size than I having the

probability of the boundaries
initialization: I (input image), L (nb markers), K (nb realisations);
while step < K do

generate random L markers in the image;;
performed a marked watershed with these L markers;;
save the frontiers of the watershed into F ;
Fout = Fout + F ;

end
Fout = Fout/K
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Stochastic watershed [7]
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Stochastic watershed
Let us consider two markers in blue.

36 / 40



Graph and Watershed
Context

Stochastic watershed

If we consider just L markers. The edge eT1,T2 is an edge of the
segmentation if and only if the tree T1 and T2 have each of them at least
one node.
This means that at least one germ has fallen in each of the surfaces S1 of
T1 and S2 of T2 spanned by both trees. Let us write S the total surface
of the image.
We have to compute the probability of the event there is at least one
germ in T1 and there is at least one germ in T2.
Its probability is the probability that there is no germ in T1 + the
probability that there is no germ in T2 - the probability that there is no
germ in T1 ∪ T2.
Hence the probability of eT1,T2 to be an edge is :

PeT1,T2
= 1− (1− S1

S )L − (1− S2
S )L + (1− S1 + S2

S )L (1)
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Stochastic watershed

Let us consider two markers in blue.
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