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Content and Goals of the lecture

Explain the interest of Unsupervised learning
Introduce Dimensionality reduction via Principal Component
Analysis
Introduce Dimensionality reduction via Kernel Principal
Component Analysis
Introduce clustering methods
Introduce Neural network and Unsupervised learning
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Introduction to curse of dimensionality

The curse of dimensionality refers to various phenomena that arise
when analyzing and organizing data in high-dimensional spaces.
Suppose that we have 900 data v ∈ [0, 1]D , where D is the
dimension of the data space. Consider first a simple case where
D = 2

(a) (b) (c)

Figure: A set of 900 data of dimension 2. In (a) the data, in (b) their
Gram matrix, in (c) the 3 clusters of the data.
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Introduction to curse of dimensionality

Consider more comple case where D = 10

(a) (b)

Figure: A set of 900 data of dimension 100. In (a) the Gram matrix of
the data. As we can see it is difficult to separate some classes. In (b) the
3 clusters of the data, the clusters are not perfect because of the curse of
dimnensionality.
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Introduction to curse of dimensionality

Moreover we can see that the ratio between the maximum
euclidean distance and the minimum euclidean distance
R =

max(i,j){‖vi−vj‖2}
min(i,j) ‖vi−vj‖2}

of the data tends to 1 when the D increases.

Figure: In this figure we have selected randomly 500 data vi ∈ [0, 1]D

where D is the dimension of the feature space. We represent
R =

max(i,j){‖vi−vj‖2}
min(i,j) ‖vi−vj‖2}

which represents the power of discrimination of the
distance.

Gianni FRANCHI Unsupervised Learning 9 / 62



Introduction
Dimensionality Reduction

Clustering

Curse of dimensionality
Principal Component Analysis (PCA) - A linear method
Kernel Principal Component Analysis
Multi Dimensional Scaling (MDS)
TSNE
Autoencoder

Introduction to Principal Component Analysis (PCA)
[Jolliffe1986]

We start with a set of n points F = {vi}ni=1 ∈ RD . The PCA goal
is to reduce the dimension of this vector space finding the basis
that captures most of the variance of data set thanks to a
projection on the principal component space, namely

F = {vi}ni=1 −→ F ′ = {v ′i }ni=1 (1)

with v ′i ∈ Rd , where d � D.

Figure: Here for the illustration D = 2.
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Introduction to Principal Component Analysis
(PCA)[Jolliffe1986]

Let us call wj ∈ RD the j principal component. The aim of PCA is
to find the set of vectors{wj , 1 ≤ j ≤ D} such as:

arg min
wj

[
n−1

n∑
i=1

‖vi− < vi ,wj >
wj

‖wj‖
‖2
]
, ∀1 ≤ j ≤ D. (2)
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Introduction to Principal Component Analysis
(PCA)[Jolliffe1986]

we want to minimize:

arg min
wj

[
n−1

n∑
i=1

‖vi− < vi ,wj >
wj

‖wj‖
‖2
]
, ∀1 ≤ j ≤ D. (3)

Developing now the distance we have: ‖vi− < vi ,wj >
wj

‖wj‖‖
2 =

1− 2<vi ,wj>
2

‖wj‖ + < vi ,wj >
2, by adding the additional constraint

that ‖wj‖2 = 1, and replacing in (3) and keeping only terms that
depend on wj , we have the following new objective function:

arg max
wj ,‖wj‖2=1

n−1
n∑

i=1

< vi ,wj >
2, ∀1 ≤ j ≤ D. (4)
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Introduction to Principal Component Analysis
(PCA)[Jolliffe1986]

Since :

var(< vi ,wj >) = n−1
n∑

i=1

(< vi ,wj >)2 − (n−1
n∑
i

(< vi ,wj >))2,

if we consider that the data F has been column-centered, which
means that

∑n
i=1 vi = 0, then :

var(< vi ,wj >) = n−1
n∑

i=1

(< vi ,wj >)2.

Thus we can see that the goal of the PCA is to find principal
components that maximize the variance.
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Introduction to Principal Component Analysis
(PCA)[Jolliffe1986]

The problem can be rewritten in a matrix way:

n−1
n∑

i=1

< vi ,wj >
2 = n−1(Fwj)

T (Fwj)

= wT
j (n−1(FTF ))wj = wT

j Vwj ,

where V = n−1(FTF ), V ∈ MD,D(R), is the covariance of F .
Hence we should optimize:

arg max
wj ,‖wj‖2=1

wT
j Vwj , ∀1 ≤ j ≤ D. (5)
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Introduction to Principal Component Analysis
(PCA)[Jolliffe1986]

So we want to maximize: arg maxwj ,‖wj‖2=1 w
T
j Vwj subject to the

constraint ‖wj‖2 = 1.
How can we solve that?
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Lagrange multiplier

Definition(Local extremum under constraint)

Let f and g be two functions of two variables. Let P0 = (x0, y0) a
point belonging to the domain definition of f denoted Df and
domain definition of g denoted Dg checking g(x0, y0) = 0. P0 is a
local maximum (resp. Local minimum) of f on
D = {(x , y)|g(x , y) = 0} if there is a neighboorhood V of P0 such
that for all (x , y) of V satisfying g(x , y) = 0, f (x , y) ≤ f (x0, y0)
(resp. f (x , y) ≥ f (x0, y0)).
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Lagrange multiplier

Theorem(necessary condition of Local extremum)

Let f and g be two functions of two variables of C 1 (that is, having
continuous first derivatives). Let P0 = (x0, y0) a point belonging to
Df and Dg checking g(x0, y0) = 0. If P0 is a local extrama of f on
D = {(x , y)|g(x , y) = 0} and ∇g(x0, y0) 6= 0 then ∇f (x0, y0)
and ∇g(x0, y0) are aligned . That is to say: there exists a scalar
λ0 ∈ R such that

∇f (x0, y0) = λ0∇g(x0, y0)

P0 is called a stationary point of f on D and λ0 is called associated
Lagrange multiplier.
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Lagrange multiplier

Lagrange multipliers is used to find local maxima and minima of a
function subject to equality constraints

Proposition Lagrange multiplier

P0 is a local extrama of f on D = {(x , y)|g(x , y) = 0} associated
with the Lagrange multiplier λ0 ∈ R if and only if (x0, y0, λ0) is
solution of : 

∂L
∂x (x , y , λ) = 0
∂L
∂y (x , y , λ) = 0
∂L
∂λ (x , y , λ) = 0

(6)

with L = f + λg
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Introduction to Principal Component Analysis
(PCA)[Jolliffe1986]

So we want to maximize: arg maxwj ,‖wj‖2=1 w
T
j Vwj subject to the

constraint ‖wj‖2 = 1.
Thanks to Lagrange multiplier proposition we can rewrite the
objective function as:

L(wj , λ) = wT
j Vwj − λ(wT

j wj − 1), (7)

where λ ∈ R. Since we want to maximize this function, we have to
derive it and equal it to zero:
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Introduction to Principal Component Analysis (PCA)

∂L
∂wj

(wj , λ) = 2Vwj − 2λwj = 0.

So, we finally obtain as solution

Vwj = λwj . (8)

Thus, the principal component wj that satisfies the objective
function is an eigenvector of the covariance matrix V , and the one
maximizing L(wj , λ) is the one with the larger eigenvalue. Then we
can have all the wj by computing the SVD of V .

Gianni FRANCHI Unsupervised Learning 20 / 62



Introduction
Dimensionality Reduction

Clustering

Curse of dimensionality
Principal Component Analysis (PCA) - A linear method
Kernel Principal Component Analysis
Multi Dimensional Scaling (MDS)
TSNE
Autoencoder

Covariance matrix
We have F = {vi}ni=1 ∈ RD . For i ∈ [1, n] and j ∈ [1,D] let us
write vi ,j the j−th coefficient of vi . The empirical covariance
matrix is

V =


Var(v.,1) Covar(v.,1, v.,2) . . . Covar(v.,1, v.,D)

Covar(v.,2, v.,1) Var(v.,2) . . . Covar(v.,2, v.,D)
...

. . .
...

...
Covar(v.,D−1, v.,1) . . . Var(v.,D−1) Covar(v.,D−1, v.,D)
Covar(v.,D , v.,1) . . . Covar(v.,D , v.,D−1) Var(v.,D)


with

Var(v.,j) = (1/n)
n∑
i

v2
i,j −

(
(1/n)

n∑
i

vi,j

)2

with

Covar(v.,j1 , v.,j2) = (1/n)
n∑
i

vi,j1vi,j2 −

(
(1/n)

n∑
i

vi,j1

)(
(1/n)

n∑
i

vi,j2

)
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Introduction to Principal Component Analysis (PCA)

There are different approaches to choose the reduced dimension d .
One technique consists of evaluating the proportion of the original
variance kept

Prop =
d∑

j=1

λj/

D∑
j=1

λj

We will write Wd the square matrix of size D containing the d
eigenvectors corresponding of the higher eigenvalues, and all the other
columns are null. Then thanks to the Eckart-Young theorem
[Eckart1936] it is possible to quantify the error of reduction of
dimension such as :

ErrPCA = ‖V −W T
d VWd‖2F =

D∑
j=d+1

λ2
j (9)

Gianni FRANCHI Unsupervised Learning 22 / 62



Introduction
Dimensionality Reduction

Clustering

Curse of dimensionality
Principal Component Analysis (PCA) - A linear method
Kernel Principal Component Analysis
Multi Dimensional Scaling (MDS)
TSNE
Autoencoder

PCA Algorithm

Init. Start with initial data F = {vi}ni=1 ∈ RD .

PCA Evaluation

1 Calculate the covariance of F we call it V
2 Evaluate the SVD of V , we call {wj}Dj=1 the set eigenvectors and {λj}Dj=1 the

set eigenvalues.
3 Order the eigenvalues, eigenvectors in the descending order.
4 Take the d first eigenvectors such that Prop reachs your criterion
5 Project the data in your new basis.
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Kernel trick [Smola1998]

Definition
By definition a kernel is a function K : X × X → R which is
symmetric and hermitian.

However most of the time we work with positive definite kernel
kernel.

Definition
K is called a positive definite kernel if ∀{x1, . . . , xn} ∈ X n and
∀{α1, . . . , αn} ∈ Rn, the following non-negativity condition holds:∑n

i=1
∑n

j=1 αiα
∗
j K(xi , xj) ≥ 0.
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Kernel trick [Smola1998]

Definition
A Hilbert space H is a vector space with a real or complex inner
product space that is also a complete metric space with respect to
the distance function induced by the inner product, that means that
every Cauchy sequence in H a limit in H.

Moore-Aronszajn Theorem
K is a positive definite kernel if and only if there exists a Hilbert
space H and a mapping φ : X → H such that
K(xi , xj) =< φ(xi ), φ(xj) >H
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Kernel trick [Smola1998]

Kernel trick: Representer Theorem
Let X be a set endowed with a positive definite kernel K, and HK
the corresponding RKHS, and x1, . . . , xn ⊂ X a finite set of points.
Let Ψ : Rn+1 → R be a function of n + 1 variables, strictly
increasing with respect to the last variable. Then, any solution to
the optimization problem:

min
g∈HK

Ψ(g(x1), . . . , g(xn), ‖g‖HK), (10)

admits a representation of the form:∀x ∈ X ,
g(x) =

∑n
i=1 αiK(xi , x) where ‖g‖HK =

√
< g , g >HK .
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Kernel PCA [Smola1998]

Let us consider a set vector vi ∈ RD ∀i ∈ [1, n] where n represents
the number of vectors. Let us map our data into another space H,
that may have some interesting properties :

φ =

{
RD → H

vi → φ(vi )
(11)
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Kernel PCA

The goal of the kernel PCA (KPCA) is to find the set
{wj , j ∈ [1,D]} that minimize the quantity :

min(
1
n
×

n∑
i

‖φ(vi )− < φ(vi ),wj >HK .
wj

‖wj‖2HK
‖2HK) ∀j ∈ [1,P](12)
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Kernel PCA

By doing the same calculus as on the PCA we have:

L(wj , λ) =
1
n
×

n∑
i

< φ(vi ),wj >
2
HK −λ.(‖wj‖2HK − 1) (13)

where λ ∈ R. Thanks to the Representer Theorem wj can be
written as:

wj =
n∑

l=1

αl ,jφ(vl) (14)

L(αj , λ) =
1
n
×

n∑
i

(
n∑

l=1

αl,j < φ(vi ), φ(vl) >HK)2 − λ.
∑

(k,l)∈[1,n]2
αl,jαk,jK(vl , vk)− 1)
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Kernel PCA [Smola1998]

The problem can be rewrite in a matrix way by:

L(αj , λ) =
1
n
αt
j ×K2 × αj − λ.(αt

j ×K × αj − 1) (15)

with αj ∈ RD
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Importance of the Kernel choice

The advantage of the kernel trick is that we can use different
kernels without having to compute explicitly the mapping φ(vi ).
Thanks to that, we can use a huge variety of kernels. The most
popular kernels are:

The polynomial kernel : K(vi , vj) = (< vi , vj >RD +c)P ,
where P is the degree of the kernel and c is a constant;

The rbf kernel or gaussian kernel : K(vi , vj) = e
−‖vi−vj‖

2
RD

2σ2 ,
with parameter σ. This kernel bring the data in a space of
infinite dimension.
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Importance of the Kernel choice

(a) (b) (c)

(d) (e) (f)

Figure: (a) Two concentric spheres synthetic manifold, (b) Polynomial
KPCA with p = 5, (c) Gaussian KPCA with σ,(d) Gaussian KPCA with
5.σ,(e) Gaussian KPCA with 8.σ, (f) Gaussian KPCA with 15.σ.
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Importance of the Kernel choice

(a) (b) (c)

(d) (e) (f)

Figure: (a) The flower synthetic manifold, (b) Polynomial KPCA with
p = 5, (c) Gaussian KPCA with σ,(d) Gaussian KPCA with 5.σ,(e)
Gaussian KPCA with 8.σ, (f) Gaussian KPCA with 100.σ.
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Multi Dimensional Scaling MDS [Cox2008]

Multidimensional scaling is an data mining technique used to
decrease the dimensionality of the data by retaining the pairwise
distance between the data so : F = {vi}ni=1 −→ F ′ = {v ′i }ni=1,
with ‖vi − vj‖ ' ‖v ′i − v ′j ‖ ∀i , j ∈ [1, n]2, where ‖vi − vj‖ represents
the euclidean distance between vi and vj . So the main objective
function is:

Φ(F ′) =
∑

i ,j∈[1,n]2
(‖v ′i − v ′j ‖22 − ‖vi − vj‖22) (16)

Figure: Here for the illustration D = 2.
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Other classical dimensionality reduction

Independent component analysis (ICA) [Comon1994]
Factor Analysis [Harman1976]
Local linear embeddings (LLE) [Chenping2009]
t-distributed stochastic neighbor embedding (TSNE)
[Laurens2008]
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t-distributed Stochastic Neighbor Embedding (TSNE)
[Maaten2008]

t-SNE is an unsupervised machine learning algorithm for visualizing
high-dimensional data by projecting each point into a
two/three-dimensional map. This method can find non-linear
connections contrary to PCA. It relies on three steps:

We calculate the similarities of points in the initial
large-dimensional space.
We create a smaller dimensional space in which we will
represent our data.
We optimize the mapping of points on the lower dimension
space.

Gianni FRANCHI Unsupervised Learning 36 / 62



Introduction
Dimensionality Reduction

Clustering

Curse of dimensionality
Principal Component Analysis (PCA) - A linear method
Kernel Principal Component Analysis
Multi Dimensional Scaling (MDS)
TSNE
Autoencoder

TSNE - step 1 [Maaten2008]

Given a set of n high-dimensional objects vi ∈ RD ∀i ∈ [1, n], the
first step computes probabilities pij that are proportional to the
similarity of objects vi and vj .
For i 6= j , they define

pj |i =
exp(−‖vi − vj‖2/2σ2)∑
k 6=i exp(−‖vi − vk‖2/2σ2)

Note that pij =
pi|j+pj|i

2n . The bandwidth of the Gaussian kernels σi
is called the perplexity and it is a parameter.
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TSNE - step 2 [Maaten2008]

The goal of t-SNE is to learn a mapping v ′i ∈ Rd ∀i ∈ [1, n] that
reflects the similarities pij as well as possible. Usually, d is set to 2
or 3 if we want to use the dimension reduction for visualization.
Similarly to step 1, we calculate the similarities qij of the points in
the newly created space by using a t-Student distribution instead of
a Gaussian one. In the same way, we obtain a list of similarities qij :

qij =
(1 + ‖v′i − v′j‖2)−1∑

k

∑
l 6=k(1 + ‖v′k − v′l‖2)−1
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TSNE - step 3 [Maaten2008]

We use the Kullback-Leiber divergence to make the joint probability
distribution of the new data points v′i in the low dimension as
similar as possible to the one from the original dataset. Hence, we
minimize the Kullback Leibler divergence between the distributions
P and Q:

KL (P ‖ Q) =
∑
i 6=j

pij log
pij
qij

The minimization of the Kullback Leibler divergence is done thanks
to the gradient descent algorithm.
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Autoencoder [Hinton2006]

Autoencoder is a neural network designed to learn an identity
function in an unsupervised way to reconstruct the original input
while compressing the data in the process

Figure: A simple autoencoder 1.

1https://lilianweng.github.io/
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Autoencoder [Hinton2006]

Let us consider F = {vi}ni=1 −→ F ′ = {v ′i }ni=1

Let us write gφ the encoder DNN. φ represents the weights of
the DNN.
Let us write fθ the decoder DNN. θ represents the weights of
the DNN.
v ′i = fθ(gφ(vi ))

There are various metrics to quantify the difference between two
vectors, such as cross entropy when the activation function is
sigmoid, or as simple as MSE loss:

L(φ, θ) = 1/n
n∑
i

‖vi − fθ(gφ(vi ))‖2 (17)
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Robust Autoencoder [Vincent2008]

Since the autoencoder might be facing the risk of "overfitting" when
there are more network parameters than the number of data. A solution :
corrupt partially the input ( adding noises or random masking of input
values).

Figure: A Robust autoencoder 2.

2https://lilianweng.github.io/
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Clustering

Let us consider F = {vi}ni=1

We consider that there is a set of C distributions Pk with
k ∈ [1,K ]

We consider that all the vi i ∈ [1, n] are a realisation or of one
of the Pk with k ∈ [1,K ]

we don’t have information on K on the general case and on
the Pk .

Our goal:
1 Identify the number of clusters. (At least have a number of

cluster that make sense)
2 Gather the data of F into clusters without having any

information.
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K-means [Kanungo2002]

Let us assume we have choosen a value for K .
Let us build a new variable zi with i ∈ [1, n], that assign to each vi
a cluster.

∀i ∈ [1, n] zi = k if we assign vi to the class k. (18)

The objective in K-means can be written as follows:

L(z , µ) = arg min
z,µ

‖vi − µzi‖
2 with µk =

1
|Ck |

∑
i∈Ck

vi (19)

with Ck = {vi , ∀i ∈ [1, n] | zi = k} .
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K-means Algorithm [Kanungo2002]

Init. F (n nb of variables), K nb of clusters
Initialize each centroid with random values

Repeat (For a given number of iterations)
1 Assignment. Assign each observation to the group with the

closest centroid
2 Update. Recalculate centroids from individuals attached to the

groups
3 Evaluate if the loss has reached a threshold value.
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K-means [Kanungo2002]

Figure: Example K-means 3.

3https://www.irit.fr/ Yoann.Pitarch/
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K-means [Kanungo2002]

Advantages:
1 Scalability: Ability to process very large dataset. Only the

centroids coordinates must be stored in memory.
2 Easy to understand and interpret

Disadvantages
1 The computing time may be high because we process many

times each individual.
2 There is no guarantee that the algorithm reaches the global

optimum of the loss.
3 The solution depends on the initial values of the centroids.
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K-means issues [Kanungo2002]

Figure: Example of a bad initialization 4.

4https://www.irit.fr/ Yoann.Pitarch/
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K-means and dissimalarities [Kanungo2002]
We have illustrated the K-means with the Euclidean distance, yet other
dissimilarity measures can be used:

1 Cosine distance: It determines the cosine of the angle between the
point vectors of the two points in the n dimensional space

d(x , y) =
x .y

‖x‖ ∗ ‖y‖
2 Manhattan distance: It computes the sum of the absolute

differences between the co-ordinates of the two data points.

d(x , y) =
∑
n

|x i − y i |

3 Minkowski distance: It is also known as the generalised distance
metric. It can be used for both ordinal and quantitative variables.

d(x , y) = (
∑
n

|xi − yi |
1
p )p
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DBSCAN [Martin1996]

Basic idea
Clusters are dense regions in the data space, separated by
regions of lower object density
A cluster is defined as a maximal set of density-connected
points
Discovers clusters of arbitrary shape and number of cluster

Figure: Example of a dbscan results.
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Neighborhood

To measure the density of a point we need to define the
Neighborhood.

Definition
The ε− Neighborhood of a point v for a given distance d , is the
composed of all the point within a radius ε from v . Hence we can
write this set:

Nε(v) = {x , d(x , v) ≤ ε}
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Core points

Given ε and an integer MinPts, DBSCAN categorizes the points into
three exclusive categories (core points, outliers, and border points)

Definition
A point is a core point if it has more than a specified number of
points (MinPts) within ε− Neighborhood.

So v is a core point if Nε(v) > MinPts.
These are points that are at the interior of a cluster
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Density-reachability

Definition
An object q is directly density-reachable from object p if p is a core
object and q is in p’s ε− Neighborhood.

Figure: p is directly density-reachable from q. q is not directly
density-reachable from p. (https://cse.buffalo.edu/ jing/)
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Density-reachability

Two points p and q are directly density-reachable if there is a chain
that connect these points.

Figure: p is directly density-reachable from q. q is not directly
density-reachable from p.(https://cse.buffalo.edu/ jing/)
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Border points- Outlier points

Definition
A border point has fewer than MinPts within Eps, but is in the
neighborhood of a core point.

Definition
An outlier (noise) point is any point that is not a core point nor a
border point.
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Clustering with DBSCAN

A cluster C is a maximal subset of point v such that all points of C
are density-connected two by two. A set is said to be maximals if
any reachable density point from an element of this set also belongs
to this same cluster.
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Results of DBSCAN

Figure: from https://cse.buffalo.edu/ jing/
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DBSCAN vs kmeans

K-Means algorithm is sensitive towards outlier. Outliers can skew
the clusters in K-Means in very large extent.

Figure: from https://www.geeksforgeeks.org/
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