Sorbonne Université
M2 IMA - "UE VISION"
Object Tracking in videos

Antoine Manzanera
ENSTA-Paris
Object Tracking and Video Analysis

Three kinds of image processing primitives in Video analysis:

Detection
Separate mobile pixels from the static background

Estimation
Calculate the apparent velocity of each pixel

Tracking
Match spatial structures from frame to frame
Content and Goals of the lecture

- Present the characteristics, challenges and difficulties of object tracking in image sequences.
- Present the components of a tracking algorithm, and the main categories of object tracking methods.
- Explain the principles of observation and prediction that found the different approaches.
Lecture outline

1. Introduction
 - Context and Objectives
 - Problem statement
 - Fundamental Components

2. Observations and detection
 - Global or local matching
 - Similarity between Distributions
 - Hough Transforms

3. Tracking a distribution
 - Mean-Shift Algorithm

4. Predictive Filtering
 - Kalman Filter
 - Particle Filtering
Application fields

Smart videosurveillance
- Geofencing / Abnormal activity
- Aggression / distress detection / crowd surveillance
- Dynamic (e.g. gait) biometry

Human-Machine Interfaces
- Visual command
- Avatar control
- Language sign

Bio-medical applications
- Gait analysis
- Elderly monitoring
- Sport analysis
Object Tracking

Context

- Mobile camera
- Mobile / deformable objects

Localisation vs Segmentation

The goal of object tracking is to localise an object initially defined (how?) by calculating in each video frame the spatial support (which one?) circumscribing the object.
Spatial support of the object

The representation support of the object is determining in terms of: Flexibility / Precision / Complexity / Invariance...

On the right, some typical examples:
(a) One point, (b) Several points, (c) Bounding box, (d) Ellipse, (e) Silhouette, (f) Contour, (g) Parts, (h) Skeleton.

From [Jalal12]
Tracking: difficulties and challenges

Examples taken from the dataset of the [VOT14] competition.

- Rotations, scale changes
- 3d and deformable Objects
- Similar Objects
- Complex and varying Background
- Occlusions
- Illumination changes
- Poor contrast
- Motion blur
- Sudden movements
Tracking: difficulties and challenges

Examples taken from the dataset of the [VOT14] competition.

- Rotations, scale changes
- 3d and deformable Objects
- Similar Objects
- Complex and varying Background
- Occlusions
- Illumination changes
- Poor contrast
- Motion blur
- Sudden movements
An object tracking algorithm is made of two fundamental elements:

- **Prediction**: provides, for each video frame, an initial location hypothesis of the tracked object. This hypothesis is usually based on a *dynamical model* (e.g.: kinematics) of the object and the background (camera).
- **Detection**: refines the localisation of the object using *observations* extracted from the image. This refinement is usually based on an *appearance model*.
Tracking can usually be expressed through the general framework:

\[\arg \max_{\theta \in S} P(\Theta_t = \theta/\Theta_{t-1} = \theta', X_t = x) \]

where \(S \) represent the state space; \(\theta \) is a multi-dimensional state configuration, which can include (explicitly or implicitly) position, velocity, object category, etc, of the tracked objects; \(X_t \) represents the observation from the image space.
The actual balance between prediction and detection is very depending on the type of algorithms, and can even be dramatically broken in favour of either of the two:

- **Tracking by detection**: The tracking is entirely made by the detector: no location hypothesis required.

- **Track before detect**: The tracking is essentially provided by the prediction and can work even in case of extremely degraded visibility conditions (occlusion, noise, small size...).
Global (di)similarity measures are applied between two vectors T and X of the same dimension n, one of which being the model (template) of the object, (usually) represented by a rectangular patch, and the other a patch extracted from the current image, that corresponds to a location hypothesis.
Global dissimilarity measures

Minkowski Distances

\[D_k(T, X) = \sum_{i < n} |T_i - X_i|^k \]

Distances SAD \(D_1 \) or SSD \(D_2 \) are very popular for matching patches. These are dissimilarity measures whose value hardly depends on the size \(n \) and on the content of images.

The detection algorithm then consists in searching within a location hypotheses space \(\{X^h\}_{h \in H} \) to find the one that minimises the dissimilarity:

\[\lambda = \arg \min_{h \in H} D_k(T, X^h) \]

- Model temporally adaptive
 - Sensitive to deformations
 - Sensitive to illumination variations
Tracking by SAD Minimisation
Tracking by SSD Minimisation
Tracking by SSD Minimisation
Correlation (Pearson) coefficient

The normalised dot product between two centred patches varies between -1 (total dissimilarity) and +1 (perfect match). Let \(\tilde{X} \) be the average value of \(X \) in its support.

\[
\chi(T, X) = \frac{\sum_{i<n} (T_i - \tilde{T})(X_i - \tilde{X})}{\sqrt{\sum_{i<n}(T_i - \tilde{T})^2 \sum_{i<n}(X_i - \tilde{X})^2}}
\]

The detection algorithm then consists in searching within a location hypotheses space \(\{X^h\}_{h \in \mathcal{H}} \) to find the one that maximises the correlation:

\[
\lambda = \arg \max_{h \in \mathcal{H}} \chi(T, X^h)
\]

+ Robust to illumination variations
 - Sensitive to deformations
Tracking by ZNCC Maximisation
Tracking by ZNCC Maximisation
An algorithm of optical flow or point tracking can estimate the apparent displacements of all (or many) points \(\{t_j\}_{j \in T} \) of the model in the current image, by locally matching each point \(t_j \) to its counterpart \(y_j \) in the next image. The detection can then be performed by a statistics on the matched points \(Y = \{y_j\} \), for example the (2d) median:

\[
\lambda = \arg \min_{m \in Y} \sum_{y \in Y} ||m - y||
\]
Similarity between distributions

Bhattacharyya Index

This index, whose value is between 0 and 1 (perfect match) measures the similarity between two distributions. Let H_T and H_X be the normalised histograms respectively associated to the model and to a location hypothesis:

$$B(H_T, H_X) = \sum_v \sqrt{H_T(v)H_X(v)}$$

- Robust to any deformation
- Sensitive to illumination variations
- Poorly discriminant geometrically
Tracking by distribution
Tracking by distribution
Generalised Hough Transforms (AKA "Implicit Shape Models") are object representations based on co-occurrence of local elements.

Modelling

- The model (template) T is sampled to a set of points $\{t_i\}_i$.
- For each point t_i, is computed:
 - an appearance index $\lambda(t_i)$ (e.g.: colour, orientation, curvature...).
 - a vector $v(t_i)$ corresponding to the relative position of t_i with respect to the centre of template T.
 - (possibly) a confidence index $\omega(t_i)$.
- The previous set of triplets is structured (array, search tree, random tree...) using the appearance index λ.
Construction of the R-Table

The R-Table is a shape model, constructed from a prototype. Let Ω be an arbitrary centre of the prototype. Every point M of the prototype is indexed by a geometrical feature i, corresponding to the row indices of the R-table. The R-table is constructed by adding the displacement vector $\overrightarrow{M\Omega}$ in the line of index i. For example consider the following contour points as a prototype, indexed by the normal direction to the contour, quantised to 8 values:
Construction of the R-Table

<table>
<thead>
<tr>
<th>Index</th>
<th>List of vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(−2 −3) (−1 −3) (0 −3) (1 −3) (2 −3) end</td>
</tr>
</tbody>
</table>

![Diagram showing the construction of the R-Table with vectors and indices.](image-url)
Construction of the R-Table

<table>
<thead>
<tr>
<th>Index</th>
<th>List of vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(−2 −3) (−1 −3) (0 −3) (1 −3) (2 −3) end</td>
</tr>
<tr>
<td>1</td>
<td>(2 −3) (3 −2) (1 0) (2 1) (3 2) end</td>
</tr>
</tbody>
</table>
Construction of the R-Table

<table>
<thead>
<tr>
<th>Index</th>
<th>List of vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(−2, −3) (−1, −3) (0, −3) (1, −3) (2, −3) end</td>
</tr>
<tr>
<td>1</td>
<td>(2, −3) (3, −2) (1, 0) (2, 1) (3, 2) end</td>
</tr>
<tr>
<td>2</td>
<td>(3, −2) (3, −1) (3, 0) end</td>
</tr>
</tbody>
</table>

and so on...
The R-Table can be constructed using different supports, and different appearance indexes:

Support: Contour
Index: Normal

Interest points: Patch codebook
All pixels: Gradient orientation
Generalised Hough Transforms: Detection

In a Generalised Hough Transforms, each point, according to its appearance, indicates, by a list of votes, a set of location hypotheses of the object centre. The centres that got maximal number of votes are considered as the most probable positions.

Detection

- For each point \(x \) of the image, calculate its appearance index \(\lambda(x) \).
- For all points \(t_j \) of the model such that \(\lambda(t_j) = \lambda(x) \), increment the vote map \(H(x + v(t_j)) + = \omega(t_j) \).
- The most probable object position is \(\text{arg max}_x H(x) \).
Generalised Hough Transform: Object Detection

Initial: $H(x) = 0$ everywhere.
For all image point x, let $\lambda(x)$ the quantised derivative.
For all occurrence j of the R-Table associated to $\lambda(x)$, do:

$$H(x + \delta^{j}_{\lambda(x)}) += \omega^{j}_{\lambda(x)}$$

The best object candidates are then located at the maxima of H
(Right: Hough transform and the 10 best candidate cars).
Introduction to the Mean-Shift

Mean-Shift 1/2

The Mean-Shift is an iterative algorithm for estimating the mode of a distribution. For each iteration:

- $S = \{x_i\}_i \subset \mathcal{E}$ a set of points in a Euclidian space.
- $K : \mathcal{E} \rightarrow \mathbb{R}_+$ a kernel function, that determines the contribution of each point.
- $m(x) = \frac{\sum_S K(x - x_i)x_i}{\sum_S K(x - x_i)}$ the current average around x.
- $v(x) = m(x) - x$ the mean-shift vector.
Mean-Shift 2/2

The Mean-Shift algorithm iteratively displaces the point \(x \) toward the local average. For each iteration (contd):

- \(x \leftarrow m(x) \)
- The algorithm converges when \(x = m(x) \)
- The Mean-Shift trajectory is \(\{x, m(x), m(m(x)), \ldots\} \)
The kernel K, that determines the contribution weight of the different points in the average, is usually isotrope in the Euclidian space, i.e.:

\[K(y) = k(||y||). \]

k is usually non increasing and derivable; the Gaussian kernel is often used:

\[k(y) = e^{-y^2}, \text{ i.e. } K(y) = e^{-||y||^2}. \] (1)

The kernel function K is related to a regularisation criterion used in the estimation of a distribution (Parzen’s kernel technique).
Let f be a (quantized) value of the image in one point (Gray level, colour, or any scalar feature calculable in each pixel). Estimating the distribution associated to f in the neighbourhood of the current point x defined by the support S can be made as follows:

$$h_x(u) = \frac{\sum_S k(||x - x_i||)\delta^f_u(x_i)}{\sum_S k(||x - x_i||)}$$

with $\delta^\nu_u = 1$ if $u = \nu$ and $\delta^\nu_u = 0$ if $u \neq \nu$.

\[(2) \]
If $h_R(u)$ corresponds to a reference distribution (i.e. the model), its similarity with the current local distribution can be estimated using Batthacharyya’s index:

$$B_x = \sum_u \sqrt{h_x(u)h_R(u)}.$$

The principle of Mean-Shift consists in using smooth distributions, in order to make the similarity function regular enough so that its behaviour can be predicted from its spatial derivatives (Taylor’s Formula).
Similarity and Batthacharyya’s index

A first order approximation of Batthacharyya’s index around the first estimation point x_0 provides:

$$B_x \approx \frac{1}{2} \sum_u \sqrt{h_{x_0}(u) h_R(u)} + \frac{1}{2} \sum_u h_x(u) \sqrt{\frac{h_R(u)}{h_{x_0}(u)}}$$

$$\approx \frac{1}{2} B_{x_0} + \frac{1}{2} \sum_S \omega_i k(||x-x_i||) \sum_S k(||x-x_i||).$$

The 1st term being independent of x, maximising B_x is equivalent to maximising the 2nd term, with:

$$\omega_i = \sum_u \sqrt{\frac{h_R(u)}{h_{x_0}(u)}} \delta_u f(x_i) = \sqrt{\frac{h_R(f(x_i))}{h_{x_0}(f(x_i))}}$$

(3)
Mean-Shift Tracking Algorithm

Mean-Shift Tracking

input: \(\{y, h_R(u)\} \) (previous frame).

1. Calculate the histogram \(h_y(u) \) in current frame (Eq. 2).
2. Calculate the weights \(\omega_i \) in each point of the support (Eq. 3).
3. mean-shift: Calculate the new position \(x \):

\[
x = \frac{\sum_S \omega_i g(||y - x_i||)x_i}{\sum_S \omega_i g(||y - x_i||)}
\]

(4)

avec \(g(x) = -k'(x) \) (Eq. 1).

4. If \(||x - y|| < \varepsilon \), stop. Else \(y \leftarrow x \), and go back to step (1).

output: Final position \(x \) and a new reference histogram (model) \(h_R(u) = h_x(u) \).
Object Tracking using Mean-Shift

- **Support:** interior of an ellipse.
- **Value space:** quantized RGB $16 \times 16 \times 16$.
- **Average number of Mean-Shift iterations:** 4 (See graph on the right).
- **Works of Comaniciu, Ramesh et Meer** [Comaniciu03].

![Graph of Mean-Shift iterations per frame.](image)
Predictive Filtering

Kalman Filter
State estimation technique based on prediction and correction steps through linear stochastic equation, optimal under the assumption of Gaussian distribution of the state space.

Condensation algorithm
State estimation technique based on sampling the state space posterior distribution from the visual observation, and iteratively propagating new samples from successive images.
The principle of the Kalman is to estimate the state $\Theta \in \mathbb{R}^n$ of the discrete time process governed by the linear stochastic equation:

$$\Theta_t = A\Theta_{t-1} + BU_t + W_{t-1}$$

using a measurement $X_t \in \mathbb{R}^m$ that relates to Θ as follows:

$$X_t = H\Theta_t + V_t$$

A is a $n \times n$ matrix relating two states at consecutive times. B is an (opt.) $n \times l$ matrix related to a control input $U \in \mathbb{R}^l$. H is a $m \times n$ matrix relating the state to the measurement. V and W are ind., white Gaussian centered random vectors:

$$p(V) \sim \mathcal{N}(O, R); \ p(W) \sim \mathcal{N}(O, Q)$$
Kalman Filter algorithm - from [Welsh01]

Init. Start with initial estimates of $\hat{\Theta}_0$ and P_0.

Then for $t > 0$:

<table>
<thead>
<tr>
<th>Kalman Filter (1) Prediction phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Project the state ahead</td>
</tr>
<tr>
<td>$\hat{\Theta}t^- = A\hat{\Theta}{t-1} + BU_t$</td>
</tr>
<tr>
<td>2. Project the error covariance ahead</td>
</tr>
<tr>
<td>$P_t^- = AP_{t-1}^tA + Q$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kalman Filter (2) Correction phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compute the Kalman gain</td>
</tr>
<tr>
<td>$K_t = P_t^- tH(HP_t^- tH + R)^{-1}$</td>
</tr>
<tr>
<td>2. Update estimate with new measurement</td>
</tr>
<tr>
<td>$\hat{\Theta}_t = \hat{\Theta}_t^- + K_t(X_t - H\hat{\Theta}_t^-)$</td>
</tr>
<tr>
<td>3. Update the error covariance</td>
</tr>
<tr>
<td>$P_t = (I - K_tH)P_t^-$</td>
</tr>
</tbody>
</table>
Kalman Filtering, Implementations

Order 0 Model

- State $\Theta_t = (x_t, y_t)$, Observation $X_t = (x_t, y_t)$.
- Transition Matrix $A = I_2$; Observation Matrix $H = I_2$.

Order 1 Model

- State $\Theta_t = (x_t, y_t, v^x_t, v^y_t)$, Observation $X_t = (x_t, y_t)$.
- Transition Matrix $A = \begin{pmatrix} 1 & 0 & \delta_t & 0 \\ 0 & 1 & 0 & \delta_t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.
- Observation Matrix $H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$.
Condensation algorithm [Isard98]

Iterate:
input: \{s_{t-1}^{(n)}, \pi_{t-1}^{(n)}, c_{t-1}^{(n)}\}_{n \leq N} the set of \(N\) old samples
output \{s_{t}^{(n)}, \pi_{t}^{(n)}, c_{t}^{(n)}\}_{n \leq N} the set of \(N\) new samples

1. Select a sample \(s_{t}^{(n)}\) as follows:
 - select (uniformly) a random number \(r \in [0, 1]\)
 - find the smallest \(j\) for which \(c_{t-1}^{(j)} \leq r\)
 - set \(s_{t}^{(n)} = s_{t-1}^{(j)}\)

2. Predict the new sample \(s_{t}^{(n)}\):
 \[s_{t}^{(n)} = \arg \max P(\hat{\Theta}_t = s / \Theta_{t-1} = \hat{s}_{t}^{(n)})\]

3. Correct from the measure and update the current weight:
 \[\pi_{t}^{(n)} = P(X_t / \Theta_t = s_{t}^{(n)}), \text{ normalizing so that } \sum_{i \leq N} \pi_{t}^{(i)} = 1\]
 then recompute the cumulative distribution:
 \[c_{t}^{(0)} = 0; c_{t}^{(n)} = c_{t}^{(n-1)} + \pi_{t}^{(n)} (1 \leq n \leq N)\]
Condensation algorithm, cont.

from [Isard98]
Object Tracking - Conclusion

Prediction

- Allows to estimate the initial state (position, size, ...).
- Dynamical model: likelihood, kinematics, ...
- Sets a trade-off between innovation (data) and prediction (model).

Observation

- Appearance model: colour, orientation, features ...
- Global description: vector, distribution, co-occurence, ...
- Discrimination vs Invariance.
- Evaluates the possible states around the initial (predicted) state.
[Jalal12] A.S. JALAL and V. SINGH
The State-of-the-Art in Visual Object Tracking
Informatica 36 (2012) 227-248

[VOT14] M. KRISTAN et al.
The Visual Object Tracking VOT2014 challenge results

[Comaniciu03] D COMANICIU, V. RAMESH and P.MEER
Kernel-based object tracking
Bibliography - Predictive filtering

[Isard98] M. ISARD and M. BLAKE
CONDENSATION - CONditional DENSity propagATION for visual tracking

[Welsh01] G. WELSH and G. BISHOP
An Introduction to the Kalman Filter
Tutorial of ACM SIGGRAPH (2001)