The objective of the COMPUTER VISION course is to present the techniques of geometric (3d) and kinematic (movement) analysis of a scene by a vision system, from the mathematical / physical / biological principles, to the algorithmic implementation.

The purpose here is not to recognise the objects or to identify a scene, but to geometrically structure a scene and recover the motion of the objects and the camera.

However, geometry and movement are fundamental cues for image understanding.

Displacement analysis is related to 3d reconstruction by the common problem of feature matching between different views of the same object.

On the other hand, knowing the 3d geometry of the scene facilitates both the estimation and the interpretation of its objects movement.
KEY CONCEPTS

- **Visual Matching**
- **3d Reconstruction**
- **Visual Odometry**
- **Model**
“COMPUTER VISION” COURSE – SCHEDULE

Theoretical Lectures:

- 3d and Motion Perception in Biological Systems (A. Manzanera)
- Co-design approaches in Computer Vision (A. Manzanera)
- Projective Geometry, Camera matrix, Panorama construction * (P. Monasse)
- Fundamental and Essential matrices, their calculus, RANSAC algorithm * (P. Monasse)
- Local Estimation of Disparity * (P. Monasse)
- Global Estimation of Disparity * (P. Monasse)
- Multi-view Stereo * (P. Monasse)
- Face detection and analysis (K. Bailly)
- 3d and Movement prediction: Machine Learning based methods (A. Manzanera)
- Motion Estimation (optical flow) (D. Béréziat)
- Motion detection and Visual Tracking (A. Manzanera)

* Common sessions with Master MVA
“COMPUTER VISION”: PRACTICAL ASPECTS

Lecturers (by order of appearance):

- Antoine Manzanera – U2IS, ENSTA
- Pascal Monasse, – IMAGINE, ENPC
- Kévin Bailly, – ISIR, SU
- Dominique Béréziat, – LIP6, SU

Up-to-date schedule by session, slides and other resources:

http://perso.telecom-paristech.fr/~bloch/P6Image/VISION.html

Evaluation Modalities (TBC):

1. 2 or 3 practical projects on Geometrical 3d Vision
2. 1 Oral presentation on Bio + Co-conception
3. 1 practical work on Faces
4. 1 practical work on Motion Estimation
5. 1 practical work on Visual Tracking
The role of motion in biological vision
Structure and functions of the retina
Contrast perception
Local motion perception and its adaptation
Optical Flow: parallax, FoE, Time-before-contact
Global motion perception
Binocular perception of 3d
Monocular perception of 3d
The role of eye motion in vision
THE ROLE OF MOTION IN NATURAL VISION

Well, a texture…

Hmm, a point cloud?

Ugh, an over-segmented image!!!
THE ROLE OF MOTION IN NATURAL VISION

Motion is a primary cue for visual interpretation…

[PhD Fabio Martínez 2014]
Complex organisation in *layers*:
(1) Photoreceptors (cones and rods)
(2) Bipolar and Horizontal Cells
(3) Ganglion Cells (converge to the optical nerve) and Amacrine Cells.

In terms of information, there are about 100 millions of photoreceptors, for only 1 million axons in the optical nerve…

Figures from Helga Kob, Webvision
...the retina *summarises and structures* the visual information transmitted to the cortex via the optical nerve, by emphasizing essential properties of the image:

- **Contrast / Colour / Shape**
- **Movement**
- **Spatial frequencies**

Figures from Helga Kob, Webvision
CONTRAST AND LATERAL INHIBITION

A

Light Intensity

10 10 10 5 5 5

Receptors

... +1 +1 +1 +1 +1 +1

-2 -2 -2 -2 -2 -2

Connection Weights

Second-level Neurons

Output

6 (10-2-2) 6 (10-2-2) 7 (10-2-1) 2 (5-2-1) 3 (5-1-1) 3 (5-1-1)

“Mach Bands” illusion

B

Neural Activity

0 2 4 6 8

Light Intensity

0 5 10

Horizontal Position

Lateral Inhibition in photoreceptors

[from M.A. Giese 2006]
Complex cells like bipolar (graded response), or ganglion cells (spiking response potentials, on the right), aggregate the responses provided by a certain set of photoreceptors.

The set of photoreceptors connected to a complex cell is called its receptor field.

Lateral inhibition and local contrast enhancement in receptor fields are also widely invoked to explain the “Hermann Grid” illusion (top).

However this explanation is controversial, since a moderate deformation of the bands dramatically reduces the illusion (bottom).

Anyway, why do we not perceive a black spot at the gaze position?
FOVEAL AND PERIPHERAL VISION

The phenomenon is explained by the difference in size of receptor fields between the gaze position (fovea) and the periphery, also related to the spatial distribution of photoreceptors in the retina surface:

Specialisation of retina areas:

- Vision of details
- Vision of colours

\rightarrow Gaze position: fovea

- Vision of movement

\rightarrow Pre-attention area: periphery
As well as for contrast, local motion perception is performed by elementary retina mechanisms, right at the output of photoreceptors (Reichardt model, on the left), and at the level of complex cells (on the right).

Reichardt Model (1956)
Δ: Delay ; M: Multiplication
THE CASE OF THE TOAD

The toad’s visual acuity is strongly dependent on the movement.

His perception is specialised for distinguishing different kinds of movement:

No movement: no reaction

Movement in principal direction: attack

Movement in orthogonal direction: no reaction

[thanks to Peter Melzer]

[in J.P. Ewert, Neuroethology of toads, 1993]
The toad’s visual system involves extremely short sensorimotor pathways that generate behaviours essential to his survival:

[Image: Diagram showing the visual system of a toad, with labels for retina, diencephalon, and mesencephalon.]

[Jörg-Peter Ewert 1993]
THE FLIGHT OF THE BUMBLEBEE

The bees have a pair of eyes that are approximately hemispheric, made of an hexagonal mesh of photoreceptors.

Their visual system provides remarkable navigation and communication tools, by the mean of a polar representation of their environment, that allows very precise orientation and distance measures.

The vision fields of their two eyes are practically disjoint (i.e. no stereovision).

On the other hand, they perceive very well the direction and magnitude of apparent velocities (optical flow).

Spatial averaging of the optical flow allows the bees to estimate relative depths and to avoid obstacles.
OPTICAL FLOW: PARALLAX

(O,X,Y,Z) real 3d coordinates

(O,x,y) 2d retina coordinates

Perspective equation (pinhole model):

\[x = \frac{fX}{Z} \]

Time derivative (optical flow):

\[\dot{x} = f \left(\frac{\dot{x}}{Z} - \frac{X \ddot{Z}}{Z^2} \right) \]

And in the case of a pure translation along OX axis (horizontal travelling, \(\dot{Z} = 0; \dot{X} = Cte \)):

\[\dot{x} = \frac{f \dot{X}}{Z} \]

and then:

\[Z = \frac{f \dot{X}}{\dot{x}} \]

Depth is inversely proportional to the magnitude of apparent velocity.
The bees are able to navigate in small corridors by controlling the direction of their flight from the balance between the spatial averages of the optical flows perceived by their left and right eye, respectively.
The retina cells adapt quickly (a few seconds) to a certain environment, making perception relative to this environment.

Those retina-cortex (or intra-retina) feedback mechanisms allow a fast adaptation to a changing context and are typical of the *strongly differential character of perception*.

Complementary coloured perception of afterimage

After-motion Perception
MOTION PERCEPTION: FAST ADAPTATION
The toad’s sensorimotor behaviour can be modified by training.

[Jörg-Peter Ewert 1993]
OPTICAL FLOW: INTERPRETATION OF THE FoE

(O,X,Y,Z) real 3d coordinates ; (O,x,y) 2d retina coordinates

Perspective equations (pinhole model) :

\[
\begin{align*}
x &= \frac{f X}{Z} \\
y &= \frac{f Y}{Z}
\end{align*}
\]

Time derivatives (optical flow) :

\[
\begin{align*}
\dot{x} &= f \left(\frac{\dot{X}}{Z} - \frac{X \dot{Z}}{Z^2} \right) \\
\dot{y} &= f \left(\frac{\dot{Y}}{Z} - \frac{X \dot{Y}}{Z^2} \right)
\end{align*}
\]

Case of a pure translation along the optical axis OZ (\(\dot{X} = \dot{Y} = 0; \dot{Z} = Cte \)) :

\[
\begin{align*}
\dot{x} &= -f \frac{X \dot{Z}}{Z^2} = -\frac{x \dot{Z}}{Z} \\
\dot{y} &= -f \frac{X \dot{Y}}{Z^2} = -\frac{y \dot{Z}}{Z}
\end{align*}
\]

The displacement field forms a zoom on the image with a Focus of Expansion (FoE) at the optical centre O.
More generally, during a uniform translation within a static scene, velocity directions of points projected onto the retina plane converge toward a point from the projective plane called the Focus of Expansion (FoE).

Let T the 3d translation vector:

$$T = \left(-\dot{X}, -\dot{Y}, -\dot{Z} \right)$$

Let (X_0, Y_0, Z_0) a point of the scene. After a time t, it projects on the image at point (x_t, y_t), with:

$$(x_t, y_t) = \left(f \frac{X_0 + t\dot{X}}{Z_0 + t\dot{Z}}, f \frac{Y_0 + t\dot{Y}}{Z_0 + t\dot{Z}} \right)$$

$$\lim_{t \to \infty} (x_t, y_t) = (x_{\text{FOE}}, y_{\text{FOE}}) = \left(f \frac{\dot{X}}{\dot{Z}}, f \frac{\dot{Y}}{\dot{Z}} \right)$$
OPTICAL FLOW: TIME BEFORE CONTACT

\[\lambda = f \frac{\Lambda}{Z} \]

movement in a static scene:

\[\dot{\lambda} = -\frac{f\Lambda}{Z^2} \dot{Z} \]

and then

\[\frac{\lambda}{\dot{\lambda}} = -\frac{Z}{\dot{Z}} \]

time before contact
In most animal species, including humans, an escape reflex is observed when facing the 2d projection of an expanding object.

Some birds (e.g. pigeons) have neurons whose response seems highly correlated to time-before-contact.

L’arrivée d’un train en gare de La Ciotat
L. & A. Lumière (1895)
MATCHING, ESTIMATION, TRACKING?

Motion Estimation (optical flow):
- Dense estimation
- Continuous motion
- Point matching
- Focus on the observations
- Essentially *bottom-up*

Visual Tracking:
- Sparse estimation
- Discontinuous motion
- Pattern matching
- Focus on the model (prediction)
- Essentially *top-down*
<table>
<thead>
<tr>
<th>Interstimulus interval</th>
<th>Perception</th>
</tr>
</thead>
<tbody>
<tr>
<td>T < 30 ms</td>
<td>Simultaneity (no motion)</td>
</tr>
<tr>
<td>30 ms < T < 60 ms</td>
<td>Continuous motion (Phi)</td>
</tr>
<tr>
<td>60 ms < T < 200 ms</td>
<td>Displacement (Beta)</td>
</tr>
<tr>
<td>T > 200 ms</td>
<td>Events succession (no motion)</td>
</tr>
</tbody>
</table>

[from M.A. Giese 2006]
Like for shape perception, there exist *perceptual grouping* mechanisms for motion, based on different criteria (proximity, simplicity, closure to familiar shape, common fate, etc.) that imply a hierarchical perception of movement:

(1) Global movement → (2) Movement of parts

[Johansson 1950]
A partial vision of the movement (i.e. through an aperture) often creates a deceptive perception of motion.

This phenomenon is related to a fundamental constraint for estimating the optical flow: locally, the velocity can only be estimated along the spatial gradient direction.

See lecture on *optical flow*
In the *motion binding* illusion, the perceptual grouping is found at two levels:

1. Without occlusion, the association based on same translation of parallel segment pairs (*similarity + common fate*) wins.
2. With occlusion, the *simplicity* criterion (square) wins, hence allowing the perception of the real movement.

Unlike the “classical” aperture effect, it is the occlusion that allows to correctly interpret the movement in this case!

See the Flash demo:

http://web.mit.edu/persci/demos/Motion&Form/square/square-figure2-medium.html

[Mc Dermott, Weiss, Adelson 2001]
Another funny example where the perception of a global motion takes precedence over the tracking of individual objects, even very simple:

The Tusi motion
Does the presence of diameter lines change the global perception?
The distinction between left and right projections in binocular vision is an essential factor of biological 3D perception.

To do this, the visual system must match the corresponding points of the two perceived projections.
Knowing the geometry of the first focal plane, i.e. the position of the optical centre \((x_c, y_c)\), which is the projection of the aperture on the focal plane, and the focal distance \(f\), which is the distance of the aperture to the focal plane, the optical path of every point \(Q_1\) projected on the focal plane can be back-traced (back-projection of point \(Q_1\) in blue).

For a camera, these so-called *intrinsic* parameters are estimated by calibration.
The same applies for a 2d focal plane. If \(Q_1\) and \(Q_2\) correspond to the same point (matching) then their back-projections intersect at this point \(P\).

For a camera, if the 2 focal planes belong to 2 distinct cameras (stereovision), then the relative position of the 2 cameras must be estimated by calibration (\textit{extrinsic} parameters).

For 1 single camera, its displacement has to be precisely estimated (\textit{visual odometry}).

We then get:

\[
\Omega P = \Omega \Omega' \frac{\sin \Omega'}{\sin \hat{\Omega}}
\]

\[
\Omega' P = \Omega \Omega' \frac{\sin \hat{\Omega}}{\sin \hat{\hat{\Omega}}}
\]
The two lines corresponding to the optical paths are intersecting, and then coplanar.

The plane \((P\Omega\Omega')\) intersects the two focal planes on so-called \textit{epipolar lines}, that constraint the possible positions of corresponding points \(Q_1\) and \(Q_2\).

The \textit{epipolar constraint} is expressed by the \textit{fundamental matrix} \(F\) in the projective geometry framework:

\[
Q_1 F Q_2 = 0
\]

- \(Q_1 F\): Epipolar line \#2
- \(F Q_2\): Epipolar line \#1
DEPTH AND THE BINOCULAR VERGENCE

Triangulation principle:

\[
Z = D \frac{\sin \beta}{\sin(\alpha + \beta)} \\
Z' = D \frac{\sin \alpha}{\sin(\alpha + \beta)}
\]

Vergence angle:

\[
\theta = \pi - (\alpha + \beta)
\]

\[
Z = D \frac{\sin \beta}{\sin \theta} \\
Z' = D \frac{\sin \alpha}{\sin \theta}
\]
The accommodation mechanism consists in deforming the eye lens to adjust its focal in such a way that the image of the focalised object appears sharp on the retina.

Short focal: near object appears sharp on the retina plane

Long focal: far object appears sharp on the retina plane
On the contrary, the points out of the focalisation plane P_f form an image whose level of blur is proportional to their distance to P_f.

See: depth from defocus

(Note the ambiguity of the position due to the blur symmetry with respect to P_f).

Focal too long: near object appears blurred on the retina plane

Focal too short: far object appears blurred on the retina plane
Stereopsis vs 3D Display

In natural binocular vision (stereopsis), vergence and accommodation are congruent (left diagram).

It is however possible to put – more or less deliberately – in conflict these two functions (right diagram). Thanks to this mechanism, it is possible to get a sharp 3d perception using a 2d display.

[Hoffman 2008]
Šibenik City Hotel Hall (Anaglyph)
L.M. Rutherford, Full Moon, stereo pair (1864)
In parallax barrier 3D screens, an opaque vertical grid is positioned between the liquid crystal layer and the colour filters (pixels), in such a way to separate by parallax, pixels seen by the left eye from those seen by the right one.

Ex: Nintendo 3DS

[Ill. howstuffworks.com]
HUMAN DEPTH PERCEPTION: A GLOBAL VIEW

OCULOMOTOR

ACCOMMODATION

VERGENCE

VISUAL

BINOCULAR

STEREO

MONOCULAR

STATIC

DYNAMIC

PARALLAX

OCCLUSION

SIZE

SHADOW

PERSPECTIVE

[from M.A. Giese 2006]
$Z = \frac{f \dot{X}}{\dot{x}}$
STATIC MONOCULAR 3D: OCCLUSIONS

Giotto – Pentecost (c. 1305)
STATIC MONOCULAR 3D: SHADOWS

Self shadowing is a strong but ambiguous depth cue (light source position vs concavity).

Without shape prior, the concavity is determined by a prior of top lighting (left image).

When the shape prior is strong (face then convex), the concavity prior dominates the lighting prior (top-down effect, animation on the right).

See shape from shading
STATIC MONOCULAR 3D: SIZES

Georges Seurat – Un dimanche après-midi à l’Île de la Grande Jatte (1884-86)
3 STATIC MONOCULAR 3D: SIZES AND PERSPECTIVE

Stanley Kubrick – Full Metal Jacket (1987)
PERSPECTIVE: HORIZON AND VANISHING POINT

Stanley Kubrick – Full Metal Jacket (1987)
STATIC MONOCULAR 3D: SIZES VS PERSPECTIVE

Two popular examples of conflict between monocular depth cues:

The Hallway illusion

The Ame’s room
Avignon TGV station: illusory space amplification created by accelerated perspective
STATIC MONOCULAR 3D: TEXTURE GRADIENTS

[III. DrThomas @ Studyblue]
Gustave Caillebotte – Rue de Paris, temps de pluie (1877)
Gustave Caillebotte – Rue de Paris, temps de pluie (1877)
What cues do the end-to-end depth prediction networks exploit? There is no formal proof yet, but they must be multiple:

- Single-view
- Multi-views
- Photometric
- Géometric
- Context-based
- .../...

See lecture on learning-based 3d!
The analysis of our eye movements witnesses a very partial scan of the image (even without a priori, see image 1 below), and this scan seems to play a significant role in image interpretation.

[Yarbus 1967]
Our visual system *masks sudden eye movements*, so that it is impossible to perceive our own saccades in direct in a mirror, although they can be seen by another observer.
Additionally to voluntary saccades, there are *involuntary micro-movements* of low amplitude and high frequency, that play a fundamental role in the *improvement of visual acuity*.

See *super-resolution* techniques.

[Chen, Luo, Hu 2007]

[Credidio et al 2012]
Motion perception plays a major role in biological vision, for the interpretation of objects and the reconstruction of scenes geometry.

Biological vision systems, whether human or animal, use a wide variety of visual cues to perceive depth:
- Static or Dynamic
- Binocular or Monocular
- Geometry, Shade/Occlusion, Blur,…

Computer vision may also exploit different cues, as well as optical, mechanical or electronical devices, to improve motion estimation and 3d perception (see course #2 on Co-design).
REFERENCES

REFERENCES

[Steele 2014] Kenneth M. Steele, Psychology of Perception, Lecture material, Appalachian State University, Fall 2014 http://www1.appstate.edu/~kms/

