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Introduction
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IoT not only a « software » issue

HW architecture
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IoT device « networking » architecture

Physical world

SW

HW

HW
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IoT device « hardware » architecture
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Experimentation
boards and platforms
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A range of boards
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TI eZ430-RF2500

● TI starter kit
● MSP430F2274, 16 MHz RISC

● 32 KB flash, 1 KB RAM
● CC2500 radio

● IEEE 802.15.4 2.4 GHz compliant
● Ceramic chip antenna
● 50 m range LOS
● Temp sensor, push button, 2 LEDs
● Analogue and digital IOs 
● USB interface for programming
and data exchange
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OpenMote-B

● TI CC2538 SoC
● ARM Cortex M3
● 512 KiB Flash, 32 KiB RAM
● 2.4 GHz radio, IEEE 802.15.4 compliant

● Atmel RF86RF215 radio
● 868/915 MHz and 2.4 GHz
● supports all IEEE 802.15.4g modulations

● Temp/humidity sensor
● User button, 4 LEDs
● Current monitoring jumpers
● Contiki, RiOT, OpenWSN support

www.openmote.com
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Pycom board

● ESP32 processor
● Native MicroPython interpreter
● File system, USB
● Interactive execution over serial port
● File synchronisation and

detached execution
● Proprietary form factor and connector

● FiPy
● Dual-core LX6 processor, ULP co-processor
● 520 KB RAM, serial 8 MB Flash + 4 MB RAM
● LTE-m/NB1 + Sigfox + LoRaWAN
+ BT4.2 + WiFi b/g/n
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Large experimentation platforms
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FIT/IoT-Lab platform

● opened Nov 2014
● 2700 nodes over 6 sites
● 4 diff. architectures

● MSP430, Cortex M3, A8 processors
● 868 MHz, 802.15.4 2.4 GHz radios

● some mobile nodes
● trains, robots

www.iot-lab.info
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Energy source,
energy consumption
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Energy source for sensor node
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Rechargeable batteries performance

● Performance 
has doubled 
over two 
decades

2009

2000

1990

1950

A. Patil, et al., “Issue and challenges facing rechargeable thin film lithium batteries”,
Materials Research Bulletin, vol. 43, 2008, 1913-1942
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Solar energy harvesting

By ZyMOS - ZyMOS, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1352608

● Solar radiance
● 1 kW/m2 = 100 mW/cm2

● Solar cell efficiency
● Organic : 8-10%

● perovskites: 20%
● Silicon : 12-18%
● Research: 40%

● Harvesting
● 1 - 10 mW/cm2 sunlight
● 10 - 100 µW/cm2 indoors

● Maximum Power Point ?

PV cell
 i v
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Vibration energy harvestings

S. Boisseau, G. Despesse and B. Ahmed Seddik, Electrostatic Conversion for Vibration Energy Harvesting, 
Small-Scale Energy Harvesting, Intech, 2012

C = ε.S /d ; Q = CV ; dE = V.dQ
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Energy storage for sensor node

● Primary battery
● Shelf life
● Limited current

– voltage drop, aging
– requires parallel capacitor

● Temperature
● Temporary storage

● Rechargeable battery
– Yield ~ 90%,  limited current
– A few A.h under 3.7 V

● Supercap
– high current, 95% yield,
– a few F capacity

Primary
battery

Capacitor
Voltage

regulator

Harvester Supercap

Recharg.
battery

Voltage
regulator
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Scavenging electronics

● Goals
● Deal with variable source
  voltage, power

● Control storage charge/discharge
● Deliver regulated voltages to loads

● Example : AEM10940
● Cold start at 0.38 V and 11 uW source
● Sustained operation at 0.1 V source
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MPTT operation
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Thin Film Lithium batteries on Silicon

https://www.cymbet.com/wp-content/uploads/2019/02/Sensors-Expo-2013-Engineering-Ultra-low-power-SoC-sensors.pdf
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Battery chips used as any other chip

Stev Grady, Cymbet Coorporation, “Powering Wearable Technology and Internet of Everything Devices”,
https:// www.cymbet.com/wp-content/uploads/2019/02/Powering-Wearable-Technology-and-the-Internet-of-Everything-WP-72-10.1.pdf
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Multiple chips in package

● https://www.cymbet.com/wp-content/uploads/2019/02/Sensors-Expo-2013-Engineering-Ultra-low-power-SoC-sensors.pdf

● CBC3150
● 0.2 J, 1 kohm Rint
● 3.3 V, 10 uA typ output
● 2.5 – 5.5 V input
● 9 * 9 mm
● $3 (2018)
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Energy consumption
● Mostly dissipated into heat

● Except actuation energy, radiation energy

● Static dissipation
● Analogue (linear) electronics

– Radio
– Sensors
– Energy management

● Digital electronics (CMOS)
– Leakage

● Dynamic dissipation
● Digital electronics (CMOS)

– Voltage changes on digital signals : E = ½ C V2
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Dynamic power consumption
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CMOS logic

● Voltage-based logic
● “1” = 3.3V, “0” = 0V

● Current only needed to 
fill or drain output 
capacitance

C
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Energy stored in capacitor

Vdd
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Energy supplied by system
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Summary

C

Vdd

0 V

v(t)

t

● Energy supplied on rising edge and 
not stored is dissipated

● ½ C . V2 

● Stored energy is
dissipated on falling edge

● ½ C . V2 
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Integration, energy benefit
● Dynamic power consumption

● E // C V2

● C from 100 fF to 10 pF
● Standard input-output voltages
● Lower core voltages

10 pF

1 pF

100 fF

3.3 V

1,2 V
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Static power consumption
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Steady current flow

● Analogue electronics
● Current is constant by design

● Digital electronics
● Leaks at junctions, channels

● Only cure is to turn power off
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Typical supply current measurement
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Microcontrollers
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Microcontroller typical block diagram
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Microcontroller low-power features
● Instruction word size

● Compact instruction set
– Native 8 bit (x86, AVR)
– Compact 16 bit (ARM Thumb,
MSP430)

● Selective disabling of functions
● Clock gating, power gating
● Low-power vs startup time tradeoff

● Several oscillators
● Ext. crystal, 32 kHz, internal RC

● Several voltage regulators
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Microcontroller energy consumption

● I. Tsekoura et al., "An evaluation of energy efficient microcontrollers," 2014 9th International Symposium on Reconfigurable and 
Communication-Centric Systems-on-Chip (ReCoSoC), Montpellier, 2014, pp. 1-5. doi: 10.1109/ReCoSoC. 2014.6861368

1 nJ / cycle
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Low power operation
● Dynamic power consumed

● P // V2.f

● Fixed approach
● Pick required frequency
● Pick required voltage

– Pick voltage regulator
● Design for worst case

● Variable frequency, fixed voltage
● On-Off clock?
● Continuously variable frequency?
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Min energy operation
● Dynamic power consumed

● P // V2.f

● Task Duration = n. 1/f
● Energy = P * Duration

// n V2
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Min energy operation
● Dynamic power consumed

● P // V2.f

● Task Duration = n. 1/f
● Energy = P * Duration

// n V2

● Operate as slowly as possible
● Control voltage accordingly

● Leakage/steady current not 
accounted for

deadlines Freq.
control Volt.

control
V

f
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Microcontroller leakage current
● In standby mode,

just a giant diode

● Don't buy more 
memory than you 
really need

30 µW
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Spectrum, PHY layer and 
radio chips
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Licensed-exempt spectrum
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Licensed-exempt spectrum
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License-exempt, but still regulated

● Maximum power, power density
● Duty cycle
● Usage
● E.g. DECT 1.9 GHz band, only to be used for DECT
● E.g., 862-870 MHz unlicensed band (CEPT ERC  Rec 70-03)
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Unlicensed frequency bands (1/2)

● 2.4 GHz ISM band
● 2.400-2.4835 GHz world-wide, 4W EIRP maximum
● Microwave owens, 802.11 (WiFi), 802.15.4, Bluetooth, prop. radios
● fairly polluted
● line of sight propagation
● short antennas

● UHF 900 MHz band
● continent specific : 868 MHz Europe, 902-928 MHz USA, 915 Japan
● W-MBus, Zwave, LoRa, SigFox, prop. radios 

● UHF 400 MHz band
● continent specific, 433 MHz in Europe

● VHF 169 MHz band
● better indoor penetration, long antennas
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ETSI Indoor Limit
FCC Indoor Limit

Part 15 Limit

Unlicensed frequency bands (2/2)

● 5 GHz UNII band
● IEEE 802.11a
● silicon-only transceiver less efficient

● 60 GHz
● Very short transmission range
● Silicon transceiver still to be designed

● Ultra-Wide Band
● legal since 2003 in the USA

● 3.1 – 10.6 GHz
● -41,3 dBm/MHz max avg
● 0 dBm/50 MHz max peak

● good opportunity for positioning
● opportunity for new radio design
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Licensed spectrum
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Telecom operator cellular IoT systems

● 3GPP Release-13 (June 2016)
● 10-20 dB coverage extension, reduced UE complexity/cost
● 10 years on 5 W.h battery (Power Saving Modes, extended DRX)

● EC-GSM (2G improvement)
● Extended-coverage through blind repetition
● Base station and UE software upgrade
● 350 bps – 240 kbps, 200 kHz bandwidth

● LTE-M (4G improvement)
● 10 kbps – 1 Mbps, 1.08 MHz bandwidth

● NB-IoT (new radio for 4G)
● Narrowband (180 kHz bandwidth), 20 kbps – 250 kbps
● 3 modes of operation : LTE in-band, LTE guard band or standalone

● 5G
● Will use LTE-M and NB-IoT, NR-Lite radio for Rel 17 (2022)
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Telecom operator bands (3GPP)

● 2G (EC-GSM)
● 900 MHz, 1800 MHz

● 4G (NB-IoT, LTE-M)
● 850 MHz, 2.6 GHz

● 5G
● 700 MHz, 3.6 GHz, 26 GHz
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PHY layer
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PHY layer block diagram
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WPAN: IEEE 802.15.4 -2003 PHY

● 900 MHz and 2.4 GHz bands
● 16 channels in 2.4 – 2.4835 GHz, 5 MHz spacing, 250 kbps

– O-QPSK 2Mcps DSSS

● sensitivity
● 2.4 GHz : better than -85 dBm at 1% PER

● at least -3 dBm output power
● about 30 m range

● turn around-time
● 12 symbol periods

● used in Zigbee,
W-HART, ISA100

A survey of wireless technologies coexistence in WBAN: Analysis and open research issues - Scientific Figure on ResearchGate.
Available from: htps://www.researchgate.net/figure/Frequency-channels-of-IEEE-80211g-and-802154-in-the-24-GHz-band_fig4_271741147
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Long Range Wide Area Low Power PHY

● Sigfox
● 868 MHz band, 100 Hz channel, 100 bps, BPSK, 25 mW
● All-proprietary system, originally unidirectional
● https://build.sigfox.com/sigfox-device-radio-specifications
● Single world-wide network
● Simple IoT device, complexity in the network
●

● LoRa
● 868 MHz, 125 kHz channel, chirps, 300bps-5kbps, dynamic adaptation
● LoRa Alliance www.lora-alliance.org

● LoRaWAN 1.1 spec public, does not describe PHY layer 
● Semtech still sole chip vendor

Figure on ResearchGate. 
https://www.researchgate.net/figure/A-snapshot-of-LoRa-transmission-that-shows-up-down-and-data-chirps-as-seen-on_fig1_331294324

https://build.sigfox.com/sigfox-device-radio-specifications
http://www.lora-alliance.org/
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Practical implementation
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Typical radio transceiver architecture
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Radio transceiver in analogue world
● 5€ radio chip

 
● Minimal external electronic 

components

● Antenna implementation
● PCB tracks : free, fair perf
● Discrete : 0.5€, good perf

● Resonnator
● Quartz crystal : 0.5€
● Temperature compensation
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Energy optimizations at PHY layer

● Semiconducteur technology
● well-known Moore's law does not really apply to analogue or RF 
electronics

– bias current pretty much constant
– voltage can't go below a few Vt 

● Frequency band
● Higher operating frequencies require more bias current in linear circuits

● Receive sensitivity
● lower gain can do with lower bias current in linear circuits
● bypass some filtering stages
● low-performance wake-up receiver (totally passive?)

● Short wake-up, carrier sensing, sync and turn-around time
● spend less time in un-productive states



D64 - 14/04/22   

Other ideas for PHY layer

● Transmit power control
● transmit at minimal power required for correct decoding

– reduces interference to other nodes
– power saving is marginal below 0dBm

● Transmit speed
● Shannon's law C = B log2 (1+S/N) suggests that
less energy is required for slow transmission

– just in time transmission[1]

● but (real) receivers will have to stay on longer
● Brand new architectures

● Non-standard electronics (weak inversion CMOS)
● MEMS/NEMS passive receivers
● Impulse-based UWB radios (cf. infra)

[1]. B. Prabhakar, E. Uysal, A. El Gamal, "Energy-efficient transmission over a wireless link via lazy packet scheduling," Proc. of the IEEE INFOCOM, Anchorage, 2001
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Radio chips
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Transceivers gallery

● IEEE 802.11 (WiFi)

● Sub-GHz narrowband
● TI/ChipCon CC1020
● TI CC1200

● IEEE 802.15.4-2003
● Freescale MC13192
● TI CC2538 (SoC)

● Research directions
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IEEE 802.11 (WiFi) radios

● 802.11b
● 2.4 GHz, DSSS, 1-11 Mbps

● 802.11a,g
● 5 GHz, 2.4 GHz, OFDM, 54 Mbps

● typical power consumption [1]

● i.e.  150 nJ/bit transmitted, 90 nJ/bit received

● Microchip RN1723 802.11b,g (2016) 
● 40 mA Rx, 120 mA Tx @ 0dBm (190mA @+12dBm), 3.3V
● 2-10 nJ/bit received

[1] Shih et al, "Reducing Energy Consumption of Wireless, Mobile Devices Using a Secondary Low-Power Channel". MIT RR March 03

@ 11 Mbps
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CC 1020

● Monolithic narrowband UHF transceiver
● dual-band 400 and 900 MHz
● FSK/GSK and ASK/OOK
● -20 +10 dBm output power
● 0.45 -153 kbps
● 12.5 – 500 kHz channels

● Digital RSSI
● Received Signal Strengh Indicator
● Carrier Sense threshold and status bit
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CC1020

350nJ/bit rec.
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CC 1200 (2013)

● Monolithic narrowband VHF/UHF transceiver
● 169, 400 and 868/900 MHz
● FSK/GSK/MSK/OOK
● +16 dBm output power
● Tx 46mA @+14dBm
● Rx 19-23 mA
● 2.0 – 3.6 V supply

● 40 kHz RC int. oscillator
● WakeOnRadio
● AES128 accelerator
● Auto-ACK



D71 - 14/04/22   

Freescale MC13192

● IEEE 802.15.4 2003 compliant
● -30 dBm (min) to 0 dBm (typ) output power,  (+3.6 dBm) max
● transmit 34 mA @ 0dBm (under 2.7 V)
● receive 37 mA  (under 2.7V)
● several power-down modes 1-500 µA

● 7 external components
● On-chip voltage regulator
● Some MAC support on-chip

● timers
● automatic ACKnowledge hardware generator

400nJ/bit rec.
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MC13192 states and power consumption
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CC2538 System-on-Chip

● 2012
● IEEE 802.15.4 2003 radio

● +7 dBm output power
● transmit 24 mA @ 0dBm (2.0 – 3.6 V)
● receive 20 mA
● several power-down modes 1-500 µA

● ARM Cortex-M3 32 MHz processor
● 128 - 512 KB Flash
● 16+16 KB RAM

● 32 MHz xtal / 16 MHz RC /
32 kHz xtal / 32 kHz RC

● $5 in 1k quantities
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Summary table

● Active power 10 – 100 mW
● Duty cycling needed to meet long lifetime

● Long range = slow = high energy per bit (up to 1 mJ/bit) 

Band Std Rx current Sensitivity Tx current
@ 0dBm

CC1021
(2003)

868 MHz FSK, GSK. OOK 18 mA ~ -110 dBm 22 mA

CC1201
(2013)

868 MHz FSK, GSK, MSK, OOK 19 – 23 mA ~ -115 dBm 28 mA

MC13192
(2003)

2.4 GHz IEEE 802.15.4 37 mA -92 dBm 34 mA

CC2538
(2012)

2.4 GHz IEEE 802.15.4 20 mA - 96 dBm 24 mA

LTC5800
(2013)

2.4 GHz IEEE 802.15.4 4.5 mA - 93 dBm 5.5 mA

SX1276 868 MHz LoRa, FSK 11 mA -136/-118 dBm
@ 125kHz BW

20 mA
@ +7dBm
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Radio research
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Research directions
● Wake-up radios

● Lower sensitivity: non-detection
● Interference: false positives
● Separate frequency:
different propagation

● Same frequency: collision avoidance
● IEEE 802.11ba, 5G wake-up sequence

● Ultra-low voltage design
● Weak inversion mode
● Use of switches for mixers

● Passive electronics
● Micro-electromechanical resonators

● Passive transmitter
● UWB impulses, short times
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Passive radios (1/2)

● Passive receivers
● Galena (lead-sulfite) receivers (1894, J.C. Bose)
● Single Carbon Nanotube receivers
● NEMS/MEMS-based receivers
● Passive mixers

By Hihiman - Own work, CC BY-SA 3.0 
https://commons.wikimedia.org/w/index.php?curid=5228955

Rutherglen C., Burke P., 2007, “Carbon Nanotube Radio”. Nano 
Lett., 7 11 (November 2007), 32963299 , 0028-0836
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Passive radios (2/2)

● Passive transmitters
● Passive RFIDs
● Illumination source can also be 
unknowing third party.

● LoRaWAN passive transmitter
● 2.8 km range reported

V. Talla, M. Hessar, B. Kellogg, A. Naja, J. R. Smith, S. Gollakota.
LoRa Backscatter: Enabling The Vision of Ubiquitous Connectivity. IMWUT, 2017
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Ultra Wide Band

● Benefits
● Robust to narrow-band 
interference

● Robust to multipath
● Licence-free

● IEEE 802.15.4a Task Group, went into Revision 2007 
● 100 kbps – 6.8 Mbps, 100 m
● Focus on low power radio, ranging

● A few chips available
● BeSpoon.com (CEA-Leti spin-off), Decawave

ETSI Indoor Limit
FCC Indoor Limit

Part 15 Limit
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Ultra Wide Band impulse radio

● Transmission
● 1 ns pulses, wideband
● Pulse shaping, filtering
● Time-dithering
● On-Off, Polarity or Position modulation

● Reception
● Expected pulse time windows
● Coherent or non-coherent detection
● Several pulses per bit of information

● Ranging
● RF time of flight

Pulse 
width

PRP: Pulse 
Repetition Period

Pulse 
width

PRP: Pulse 
Repetition Period

Pulse 
width

PRP: Pulse 
Repetition Period
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Ultra Wide Band impulse radio

● Amenable to ultra low 
power consumption

● very few linear 
circuits

● idle most of the time
● Wideband electronics 

settles quickly
● Receiver circuits can be 

turned off between 
expected pulses 

● Including between 
multipath replicas

Ouvry, L.; Masson, G.; Pezzin, M.; Piaget, B.; Caillat, B.; Bourdel, S.; Dehaese, N.; Fourquin, O.; Gaubert, J.; Meillere, S.; Vauche, R., "A 4GHz 
CMOS 130 nm IR-UWB dual front-end transceiver for IEEE802.15 standards," Proceedings of the 21st IEEE International Conference on 
Electronics, Circuits and Systems (ICECS), pp.798,801, Marseille, France, Dec. 2014.
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Cheaper radios (1/2)

● In-package Bulk Acoustic Wave (BAW) resonator
● TI CC2652RB (Feb 2019)

● BT, 15.4 radio, Zigbee stack
● 48 MHz BAW, 40 ppm accuracy
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● Crystal-less radio
● Network-based synchonization

● On-chip antenna
● Deemed viable above > 10 GHz

B. Wheeler et al., "Crystal-free narrow-band radios for low-cost IoT," 2017 IEEE Radio Frequency 
Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 228-231.doi: 

10.1109/RFIC.2017.7969059

Cheaper radios (2/2)

M. Pons et al., "Study of on-chip integrated antennas using standard silicon technology for short 
distance communications," 2005 European Microwave Conference, Paris, 2005, pp. 4 pp.-1714.
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Conclusions
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E
ne

rg
y

Memory

Microcontroller

Logic

Radio

Sensor/act

Sensor Node energy balance
● Energy

● monitoring/conversion/control
● battery
● from environment

– solar cell
– vibrations
– heat

● Radio
● low power
● highly efficient
● unlicensed

● Computation
● hard-wired
● microprocessor/controller

● Sensing/Actuation

5 kJ (CR2450)
10-100 pJ/op (8b)

100nJ/bit rec'd (25kbps, -105dBm, BER 10-3)
1µJ/bit transmitted (25kbps, +10dBm)

200-400 nJ/instr (ARM9 32b 300 MIPS)
100pJ/inst (Tiempo TAM16 16b 4MIPS)
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Transmission vs. Computation
● Wireless transmission = 0.1 µJ - 1mJ per bit
● Microcontroller computation = 0.1 - 10 nJ per instruction

● Saving 1 bit on the air is worth 100 computation instructions

● Trend to reducing communication cost
● by using more computation
● smart protocols, compression

● The opposite in wired (fiber) networks !
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End of Session
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