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Abstract

This paper addresses the issue of face detection and tracking in the context of a mobile videoconferencing application. While the

integration of such technology into a mobile videophone is advantageous, allowing face stabilization, reduced bandwidth

requirements and smaller display sizes, its deployment in such an environment may not be straightforward, since most face detection

methods reported in the literature assume at least modest processing capabilities and memory and, usually, floating-point

capabilities. The face detection and tracking method which is presented here achieves high performance, robustness to illumination

variations and geometric changes, such as viewpoint and scale changes, and at the same time entails a significantly reduced

computational complexity. Our method requires only integer operations and very small amounts of memory, of the order of a few

hundred bytes, facilitating a real-time implementation on small microprocessors or custom hardware. In this context, this paper will

also examine an FPGA implementation of the proposed algorithmic framework which, as will be seen, achieves extremely high

frame processing rates at low clock speeds.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The main aim of videoconferencing is to enhance
aural communication through the addition of visual
information in the form or real-time or near-real-time
video of the faces of the users. Third-generation video-
enabled mobile handsets have the potential to change
the limitations of the conventional phone, in both
business and private use, but the visual communication
technology has to be integrated seamlessly into the
terminal, so that its use does not create additional and
unnecessary complications for users. More specifically,
such terminals are hand-held and usually non-station-
ary, so speakers have to ensure that the camera is
pointing in the correct direction, which can be a
distraction to a conversation and possibly negate the
benefits of the added video. Another problem is picture
instability caused by the relative motion between the
hand-held camera and the speaker, which may not be
successfully compensated for by the viewer. One other
issue is the required bandwidth, which can be drama-
tically reduced through the encoding and transmission
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of only the part of each video frame which contains the
object of interest, i.e. the face of a speaker, instead of the
entire frames. In turn, this eliminates the need for
unnecessarily large display units that accommodate the
entire field of view of the cameras and also facilitates the
appropriate scaling of the face images to the display
dimensions, so that a complete face image is always
presented to the viewers.
The deployment of real-time face detection and

tracking technology in mobile videophones has the
potential of addressing all the aforementioned issues.
The problem of automatic face detection is by no means
a new one but it is only in recent years, with the
continuous increase in sophistication and decrease in
cost of computer and video acquisition systems, that this
difficult topic has been extensively addressed by
researchers, resulting in the development of numerous
and diverse face detection methodologies with widely
varying characteristics, such as robustness to illumina-
tion variations, scale changes, viewpoint changes and
computational complexity. With regards to computa-
tional complexity, a number of techniques have been
reported in the literature which entail undemanding
implementations, in the context of modern computer
systems, but still usually assume the availability of
modest processing power, memory, floating-point ar-
ithmetic capabilities, etc.
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While such requirements may be reasonable in some
applications, this will not generally be the case for
mobile videoconferencing, considering the limitations of
the general purpose processing hardware present in such
power-limited devices, which will also have to be shared
with other tasks such as video coding/decoding [1] and
error management [2], along with the demand for an
ever-decreasing physical size for the handsets. In this
context, this paper presents a high-speed, high-perfor-
mance and low-cost face detection and tracking method.
The proposed approach is robust to illumination
variations and geometric changes, such as scale and
viewpoint changes, and entails a very low computational
load. More specifically, the algorithm entails only
integer operations, most of which are additions of a
very low dynamic range, and very low memory
requirements, in the order of only a few hundred bytes.
These characteristics make the proposed method suita-
ble for implementation on simple microprocessor
architectures and also facilitate a custom hardware
implementation. Hence, this paper will also examine an
FPGA-based custom hardware implementation of the
proposed algorithmic framework which, as will be seen,
combines a low implementation cost with very high
processing speeds at low clock speeds.
The rest of this paper is organized as follows. The

following section will give a general overview of the face
detection problem and very briefly examine the main
approaches which have emerged towards addressing it.
Our proposed face detection and tracking method will
then be presented in detail. Then, the FPGA design and
implementation of the proposed method will be
considered, following which a discussion of the salient
points of this work will conclude the paper.
2. Face detection methodologies

Historically, the problem of face detection cannot be
described as a new one, since it has been an active area
of study in the computer vision arena for more than 20
years. However, it is only in recent years, with the
continuous increase in sophistication and decrease in
cost of computer and video acquisition systems, that this
difficult topic has been extensively addressed by
researchers, resulting in the development of numerous
and diverse face detection methodologies. The face
detection problem may be generally defined as follows.
Given an arbitrary digital image, the aim is to determine
the location of all the faces (if any) in this image,
regardless of the 3-dimensional position and orientation
of a human head (provided that at least a partial face is
still projected onto the image plane), presence or
absence of structural components (such as beards,
moustaches and glasses), facial expressions, partial
occlusions of the face, and imaging conditions (such as
changes in the scene illumination and shadows).
Although, given the state of the art, a solution to the
above problem is theoretically not unfeasible, in
practice, the problem of face detection acquires a
definition within each specific application, which usually
implies a reduced set of design parameters and a more
practical solution. As to what such application areas
might be, examples include video conferencing, video
coding, crowd monitoring, area surveillance, person
recognition, identity verification, and automated lip-
reading, to name but a few.
Although different researchers provide different

categorizations for the various face detection methodol-
ogies proposed over the years [3,4], most methods may
be broadly categorized as appearance-based or feature-
based. Appearance-based approaches [5–21] treat face
detection more as a pattern recognition problem and do
not generally incorporate human knowledge regarding
face appearance and facial characteristics, but rely on
techniques from statistical analysis and machine learn-
ing in order to ascertain the characteristics of human
faces. It is, therefore, not surprising that the set of
appearance-based face detection methods which appear
in the literature is actually based on well-established
pattern recognition techniques. The methods which fall
into this category employ techniques such as principal
component analysis [5–10], factor analysis and linear
discriminant analysis [11], neural networks [13–16],
support vector machines [17,18] and hidden Markov
models [19–21].
With feature-based methods faces are detected in

images through the detection of facial features such as
the eyes, the eyebrows, the nose and the mouth, or parts
or combinations thereof [22–39]. Such detection meth-
ods usually rely on combinations of low-level image
processing operations, such as edge detection and spatial
filtering, used in conjunction with a priori heuristic rules
regarding the structure of the human face. Within this
category, a subdivision to three classes may be
performed. These three categories are top-down, bot-
tom-up and colour-based methods. With top-down
methods, faces are detected in an image by first
obtaining face candidates based on the known global
appearance of a face and then verifying these candidates
by searching for specific facial features, or combinations
or parts thereof, within each one [22,23]. Conversely, the
characteristic of bottom-up methods is that they initially
search an image for facial feature candidates or, more
generally, low-level features, and then attempt to group
those candidates into constellations which represent
faces [25–31].
Finally, the facial feature in question with colour-

based methods [32–39] is primarily the colour of the
human skin. The advantage of skin colour-based face
detection methods is that, while computationally effi-
cient, they are generally robust to scale and in-plane
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Fig. 1. Organization of the proposed face detection and tracking

method.
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rotation transformations of the face, viewpoint changes,
complex backgrounds, illumination changes and are
suitable for the detection of multiple faces in an image.
For this reason, colour-based techniques may be used
on their own or in more sophisticated systems which
also incorporate other feature-based or appearance-
based techniques. Various studies [35,37,38] have
demonstrated that the skin of different people and with
different ethnicities, e.g. Caucasian, Asian and African,
differs significantly more with respect to intensity rather
than chrominance. Therefore, colour-based face detec-
tion methods usually transform the original 3-dimen-
sional RGB colour space to a chrominance–luminance
space and then employ only the 2-dimensional chromi-
nance space for segmentation. Skin colours are detected
in an image by employing a skin colour model, derived
from training skin samples. This model usually takes the
form of a Gaussian or mixture of Gaussian density
functions which model the skin clusters in the chosen
colour space, or is simply a histogram in the chosen
colour representation system, whereby histogram pro-
jection is employed for skin detection. An even more
straightforward alternative which appears in the litera-
ture [34] is to examine the skin colour histogram and
derive thresholds for the colour components, which
make up a skin ‘‘bounding box’’, although this
approach may produce less satisfactory results.
Fig. 2. Example QCIF image containing two faces. This is a typical

image for a mobile videoconferencing setting.

Fig. 3. Subsampled version of the image of Fig. 2 using a 16� 16

subsampling mask.
3. Face detection and tracking algorithm

The proposed face detection and tracking method
adopts the colour-based face detection philosophy, due
to its combined high performance and computational
efficiency potential. Fig. 1 shows that the proposed
method may be decomposed into three main stages,
namely subsampling, skin filtering and face detection/
tracking.

3.1. Subsampling

The first step is the subsampling of the original digital
video frame, whereby the image is divided into non-
overlapping blocks of a fixed size and the pixels values
within each block and each colour band are averaged to
produce a single pixel in the subsampled image. The aim
of this subsampling is twofold. First, it aims at reducing
the amount of data for the subsequent processing,
facilitating a faster implementation. Secondly, the
subsampling step results in the generation of larger skin
patches which, in turn, decrease the susceptibility of the
method to the existence of facial features, such as a
moustache, and structural features, such as glasses.
Clearly, the subsampling factor must be carefully chosen
in order to reach a balance between computational
efficiency and detection performance. For example, our
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current implementation assumes a video signal of QCIF
resolution, i.e. 176� 144 pixels, for which 16� 16 pixel
subsampling, resulting in a 11� 9 pixel video frame,
achieves this balance. As an example, Fig. 2 shows a
QCIF image containing the faces of two people and
Fig. 3 shows its subsampled version as described above.
Note that all the face images have been ‘‘cartoonized’’
for the purposes of this paper in order to hide the
identities of the subjects.

3.2. Skin filtering

The subsampling of the original video frame is
followed by the conversion of the subsampled image
from its original colour space to a second colour space
for the purpose of colour-based skin detection. The
current implementation assumes that the original video
is in RGB format, most commonly provided by video
cameras. Desirable characteristics of the second colour
space, which is used for skin filtering, include some
degree of insensitivity to illumination variations and the
clustering of the skin colours of different people and
with different ethnicities (e.g. Caucasian, Asian and
African) in one or more relatively compact regions. To
this end, a number of appropriate colour coordinate
systems have been proposed in the literature, including
the normalized rg chromaticity space [39], CIE LUV
(discarding the Luminance component) [35], HSV and
HSI (discarding the Value and Intensity components,
respectively) [34,36], STV (discarding the Value compo-
nent) [33], among others. The colour representation system
employed here is a 2-dimensional adaptation of the 3-
dimensional log-opponent colour space IRgBy which has
been successfully used for the purpose of skin detection
[40], termed LogRG for simplicity and defined as

L1 ¼ LðGÞ þ LðRGBmaxÞ;

L2 ¼ LðRÞ � LðGÞ þ LðRGBmaxÞ ð1Þ

with LðxÞ ¼ log10ðx þ 1Þ 106 2�15

and RGBmax¼ maximum grey value:

Assuming a 24-bit colour depth for the original RGB
frame, the combined colour transformation and scaling
formulae of (1) produce L1 and L2 values in the range
[73 y 146] and [0 y 146], respectively. The function
L(x) may be efficiently implemented as a lookup
operation into a 256 byte (256� 8-bit) table. We have
found that this colour representation system compares
favourably to two colour spaces which are commonly
used for skin detection, namely the 2-dimensional
normalized rg and HS (of HSL) colour spaces.
More specifically, of the two main approaches

towards colour-based skin detection, i.e. histogram
projection and the creation of a Gaussian-based skin
colour model, the former is adopted here. A recent study
[37] has shown that histogram-based models are not
only more computationally efficient than Gaussian-
based models, but also offer slightly higher detection
performance. With the histogram-based approach, a
skin colour histogram is first created offline using
manually segmented skin pixels. The bin values are then
normalized to some range, e.g. the integer range [0 y

255]. During skin detection, an unknown pixel is
projected to the skin colour histogram and the
corresponding bin value is obtained, with a higher value
indicating an increased likelihood that the unknown
pixel is a skin pixel.
Thus, we created skin colour histograms in the

LogRG, rg and HS spaces using a training database of
B4.99� 106 skin pixels, representing various Caucasian
skin tones under unconstrained natural and artificial
illumination conditions. Two different evaluations were
then performed. First, an evaluation database of
B2.19� 106 skin pixels was used in conjunction with a
non-skin database of B42.28� 106 pixels to assess the
performance of the models. This skin evaluation
database represents various Caucasian skin tones under
unconstrained natural and artificial illumination condi-
tions, while the non-skin database was created from
randomly selected images not containing humans. In
this evaluation, both the LogRG and the rg skin colour
models achieved an equal error rate (EER) of B6%,
with the HS model achieving a higher EER of B8%.
The minimum false rejection (FR) was found to be
B0.13% for LogRG, with a corresponding maximum
false acceptance (FA) of B31.42%, B0.17% for rg,
with a corresponding maximum FA of B37.76%, and
B0.02% for HS, with a corresponding maximum FA of
B36.87%. In general, we found the three models
performing equally well, except in terms of the
maximum FA, where the LogRG model performs
significantly better. In the second evaluation, we
addressed the issue of a more drastic deviation from
the skin tones used for the creation of the skin colour
models. Thus, a new evaluation database ofB1.66� 106

skin pixels was employed, which represents various non-
Caucasian skin tones (i.e. African, Asian, Middle-
Eastern, etc.) under unconstrained natural and artificial
illumination conditions. This was used in conjunction
with the same non-skin database described above. In
this evaluation, the EER was found to beB14% for the
LogRG model, B16% for the rg model and B15% for
the HS model. The minimum FR was found to be
B5.03% for LogRG, with a corresponding maximum
FA of B31.42%, B6.16% for rg, with a corresponding
maximum FA ofB37.76%, andB2.73% for HS, with a
corresponding maximum FA of B36.87%. As before,
we found the three models performing comparably. This
second evaluation also verifies the fact the models are
robust not only to illumination variations but also to
very different skin tones, arising from people of different
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ethnicities. Obviously, an additional advantage of the
LogRG colour system, especially for a hardware
implementation, is the simplicity of the calculations
that it entails for a conversion from RGB ( just three 8-
bit integer additions and two table lookup operations),
as well as the fact that only the R and G planes of the
original video frame need subsampling, which also
facilitates a faster and more economic implementation.
With our face detection and tracking system, each

pixel value in the subsampled LogRG frame is projected
to a LogRG skin colour histogram and the correspond-
ing bin value is obtained, with a higher value indicating
an increased likelihood that the unknown pixel is a skin
pixel. A threshold is then used to give rise to a binary
skin probability value, i.e. 0 for skin and 1 for non-skin.
In terms of implementation, especially for a custom
hardware implementation, two optimizations are possi-
ble. First, instead of using a skin colour histogram in
conjunction with a threshold, a thresholded binary
histogram may be used instead. This greatly reduces the
storage requirements for the model. Secondly, a useful
property of the LogRG skin colour model is that skin
colours are concentrated in a relatively small area of the
entire plane. Hence, only that area needs to be
incorporated in the skin colour model, with values lying
outside it being automatically assigned a skin colour
probability of 0. In this implementation, the ranges of
the colour coordinates L1 and L2 used in the skin model
are [115 y 146] and [73 y 88], respectively, giving rise
to a 32� 16 window. This further reduces the storage
requirements for the model. Consequently, the skin
filtering process is reduced to a lookup operation into a
64 byte (512� 1-bit) memory, created by vectorizing the
aforementioned region of the complete colour plane. As
an example, the result of this operation, referred to as a
skin map, on the image of Fig. 3 may be seen in Fig. 4.
Despite the robustness of the skin colour model to

illumination variations and the incorporation of various
skin tones captured under varying illumination condi-
tions, colour-based skin detection may produce non-
optimal results under changing illumination conditions
Fig. 4. Skin map for the subsampled image of Fig. 3.
when a static skin colour model is employed. This gives
rise to the need for an adaptive model which may be
calibrated to the skin tone of different people and to
different lighting conditions. With the proposed system
this calibration is user initiated and relies on LogRG
converted pixels of the original frame instead of its
subsampled version, and more specifically, on the pixels
which are contained within a small predefined region of
fixed size, e.g. 20� 20 pixels. Obviously, the user of the
system which incorporates the algorithm will be aware
of the dimensions and location of this region and of
the fact that it should contain a skin sample for
successful calibration. An alternative to this approach
is the automatic and continuous adaptation of the
skin colour model based on the skin region identified in
each frame, although this would still require a user
initiated calibration at the beginning of the operation
of the system. Although this method is currently
under investigation, the known difficulty with such
an approach is that the algorithm can ‘‘lock on’’
and calibrate from a non-skin but skin-colour-like
region, or part thereof, resulting in a cumulative
error and, finally, the complete instability of the skin
colour model, whereby user intervention will again be
required [39].
One difficulty with the proposed skin colour model

adaptation approach is that the calibration area may
often contain a number of pixels which do not
correspond to skin and should not be used in the
calibration of the model. Since manual segmentation is
not as easy an option as for the offline skin colour model
creation process, the adverse effects of this problem are
alleviated by requiring that RXG and RXB for a pixel
to be used in the calibration process, a heuristic rule that
has been found to be generally applicable to different
skin types and most common lighting conditions. More
specifically, it was found that this simple rule applies to
B99.86% of all the skin pixels used during the skin
colour model creation and evaluation, i.e. B8.84� 106

skin pixels representing Caucasian/Asian/African/Mid-
dle-Eastern/etc. skin tones under unconstrained natural
and artificial illumination conditions. Thus, for the
adaptation of the model, the calibration pixels which
adhere to the aforementioned heuristic are transformed
to the LogRG space as described above and incorpo-
rated into the skin colour model. A question that arises
is how these values are incorporated into the existing
model in view of the fact that this model is comprised of
binarized values. In the general case, the adaptation of
the pre-thresholded model requires the creation of an
equivalent calibration model followed by the fusion of
the two models, e.g. simple averaging, weighted aver-
aging, simple averaging after sinking of the original
model, so that the new data can have a significant
impact, etc. With our binarized model such a process is
not an option.
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Fig. 5. The skin map of Fig. 4 after spatial filtering.
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The solution which we have identified entails a
form of compression of the pre-thresholded model.
More specifically, all the colours of the original model
may be separated into four different categories or
bands, namely C0yC3, each of the four bands encoding
(i) the 0/1 skin colour probability for the given
colour, (ii) how this probability will change during
an initial sinking process before the model is cali-
brated, and (iii) how this probability will again
change based on the number of occurrences of the
given colour within the calibration area during the
model adaptation process. In more detail, C0 repre-
sents LogRG colours which have a skin colour
probability of 1 in the original model and will re-
main unchanged during the calibration. C1 represents
LogRG colours which have a probability of 1, which
will be changed to 0 when the calibration step is initiated
and then changed back to 1 if the given colour
is encountered once during the calibration process.
The logic for C2 is the same as for C1, but two
encounters are required to update probabilities
from 0 to 1. Finally, C3 pixels have an original skin
colour probability of 0 which will remain 0 when
the calibration step is initiated and will be changed
to 1 if the given colour is encountered three times
during the calibration process. The storage of this
information allows not only the efficient adaptation
of the skin colour model, but also the recovery of
the original model at any point, and the entire
model requires only 320 bytes (512� 5-bit) of storage.
It should be noted that, although the original
model may be calibrated any number of times,
it is not possible to calibrate an already calibrated
model. However, this is not a major drawback since
we have found that this kind of repeated adap-
tation actually degraded the overall performance
of the algorithm after this operation had been pre-
formed a few times. Clearly, this compression of
the original model is not unique, but has been chosen
to strike a balance between performance and efficiency,
in terms both of storage and of associated computa-
tions. One could chose different compression para-
meters, e.g. increase number of bands, to strike a
different balance.
Finally, an interesting point one might raise regarding

the deployment of this method in a mobile videophone
handset is how the user controlled model adaptation
process can actually be monitored by a user, especially
while communicating with a second party, since the
handset display will be showing the video transmitted by
the other handset. A simple solution to this is to
optionally superimpose a scaled down version, e.g. at
25% or 33%, of the tracked face of each handset on the
same handset at one of the corners of the display,
allowing users to simultaneously view the other person
as well as the video that they are transmitting.
3.3. Face detection/tracking

The creation of the skin map is followed by a spatial
filtering process for the purpose of noise reduction. With
the current implementation, this filtering is a neighbour-
hood operation and entails resetting a skin pixel to a
non-skin pixel if it has less than four skin pixels among
its eight neighbours and setting a non-skin pixel to a
skin pixel if all of its eight neighbours are skin pixels.
The result of this filtering on the skin image of Fig. 4
may be seen in Fig. 5.
A connected component analysis algorithm is then

applied to the spatially filtered skin map. The most
common and effective algorithm of this type is
commonly referred to as a ‘‘floodfill’’ operation which,
in its most general form, entails a recursive implementa-
tion and is computationally demanding. The algorithm
which is currently employed aims at computational
simplicity, for the benefit of both a real-time software-
based implementation as well as to facilitate a fast and
efficient hardware implementation, and produces dis-
tinct skin regions by assigning different numerical tags
to skin pixels. These tags are subsequently assigned to
different groups in order to form skin regions. Briefly,
the skin image is scanned left-to-right and top-to-
bottom and each skin pixel is assigned a numerical tag
T0yTn. The determination of this tag is based on the
tags of four of its neighbours, namely the three pixels
above and the one pixel immediately to the left. Because
of the scanning method employed, examining the other
neighbours would serve no purpose, since no tags will
have been assigned to them at this point. If one or more
of the aforementioned neighbours is a skin pixel, then
the skin pixel under consideration adopts the tag of the
lowest numerical value among the tags of its neighbours,
e.g. if the choice is between T0 and T1, then T0 is chosen
for the pixel under consideration. If none of the
aforementioned neighbours is a skin pixel, a new tag is
assigned to the pixel in question, e.g. if T0 and T1 have
been previously used, the pixel under consideration is
assigned T2.
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Fig. 6. The result of connected component analysis on the filtered skin

map of Fig. 5. Two skin groups have been identified, namely G0 and

G1.
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The grouping algorithm also maintains a tag-group
association array, which indicates to which of the skin
groups G0 y Gn the pixels of a given tag correspond to.
When a new tag is generated for a pixel with no skin
neighbours, it automatically becomes associated with
the skin group of the same numeric value, e.g. T2 with
G2. Now assume, for example, that a pixel is assigned
tag T1, associated with skin group G1, and that
subsequent processing reveals that this pixel is actually
neighbouring a T0 pixel, associated with skin group G0.
Rather than changing the tags of all the T1 pixels to T0,
the tag-group association array is updated to indicate
that T1 is also associated with skin group G0. Then,
when the processing of the skin image is complete, the
tag-group association array reveals which skin pixels
make up each group. For example, Fig. 6 shows the final
output of the connected component analysis process on
the spatially filtered skin image of Fig. 5.
This simple grouping algorithm has some limitations.

Only a small number of tags can be created, especially
for a custom hardware implementation. The current
implementation employs eight tags (T0yT7), one of
which (T7) is reserved for non-skin pixels. This number
of tags was chosen with a 11� 9 pixel skin image in
mind, arising from the 16� 16 pixel subsampling of the
original QCIF video frame. Although it is theoretically
possible for an 11� 9 pixel skin image to require more
than the effective seven tags for its skin pixels, extensive
testing showed that, in practice, that situation does not
easily arise. In fact, in over 100 h of operation of our
prototype system at 30 frames/s, this situation never
actually arose. In the unlikely event that this situation is
encountered its effects will still not be detrimental since
it will simply result in the abandonment of the
processing of just one particular frame, whereby the
position of the tracked face may be interpolated from
previous frames. Furthermore, it should be noted that
the computationally simple grouping algorithm which is
currently employed is targeted to our face detection and
tracking problem and is limited when compared to more
complicated connected component analysis algorithms,
i.e. it may occasionally be unsuccessful in connecting all
the pixels of highly irregular shapes. Nevertheless, the
skin maps of human faces do not generally give rise to
highly irregular shapes, especially for image dimensions
in the order of tens of pixels and after spatial filtering,
while the real-time operation of the system does not
allow such errors to become apparent. During the
extensive evaluation of our prototype, as mentioned
above, such connected component analysis problems did
not become evident.
Having identified the disjoint skin regions of the skin

map, the next step is the calculation of certain statistics
of each skin group, which are then used by the face
tracking process. These statistics are the zeroth order
geometric moment m00, i.e. the mass, and the first-order
moments m10 and m01 [41], and are calculated as

m00 ¼
X

x

X
y

f ðx; yÞ;

m10 ¼
X

x

X
y

x � f ðx; yÞ;

m01 ¼
X

x

X
y

y � f ðx; yÞ; ð2Þ

where f ðx; yÞ is the skin map

and f ðx; yÞ ¼
1 for skin pixels;

0 for non-skin pixels:

(

Another optimization is that the calculation of these
statistics need not be performed at such late a stage in
the processing. More specifically, with the current
implementation these statistics are actually calculated
during the scanning of the skin image for the purpose of
tag assignment and for the pixels of each separate tag
rather than each separate group. Then, when the whole
skin image has been processed, the information stored in
the tag-group association array is used to calculate the
statistics for the skin groups as sums of the statistics of
the appropriate skin tags. Following the calculation of
the statistics for each skin region, the centroid of each
region is calculated as

%x ¼
m10

m00
; %y ¼

m01

m00
: ð3Þ

The centroids of the skin regions for the image of Fig. 2
are shown in Fig. 7. The face tracking process is based
on distance and mass measurements. Thus, the distance
between the centroid of each skin region and the
centroid of the face of the previous frame is calculated
as the maximum axis distance d, given by

d ¼ maxðdx;dyÞ;

with dx ¼ j %x � %xprevj; dy ¼ j %y � %yprevj;
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Fig. 8. The selected region for encoding and transmission is identified

by the bounding rectangle.

Fig. 9. An example of how the transmitted image appears on the

display of the handset of a second user. The small image at the bottom

right corner shows the identified face region of the second user,

allowing both users to simultaneously view the other person as well as

the video that they are themselves transmitting.

Fig. 7. The identified face centroids for the example image are

indicated by the crosses.
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where ð %x; %yÞ is the centroid of a skin region

of the current frame; ð4Þ

and ð %xprev; %yprevÞ is the centroid of the face of the

previous frame:

The skin group which produces the smallest distance d

is selected as the tracked face of the current frame,
unless that skin region does not also have the largest
mass among the skin regions for 10 consecutive frames.
In that case, the selected face becomes the maximum
mass face rather than the minimum distance face. This
allows the system to always ‘‘lock on’’ to the most
prominent skin region which, given the targeted mobile
videophone application, is most likely to be the region of
interest, while the hysteresis function employed for the
switching from one region to another prevents flickering
among skin regions of similar sizes. Also, another
special situation is the absence of any skin pixels
following the spatial filtering of the skin probability
map and before grouping. In this event, the system
assumes the last known face to be the current face. The
same applies in the event that the processing of a frame
needs to be abandoned due to the exhaustion of all the
available skin tags as described earlier.
Finally, the coordinates of the centre of the tracking

window are calculated. With the current implementa-
tion, these are not the same as the coordinates of the
centroid of the selected face for each frame. The reason
for this is that those coordinates are calculated on a
11� 9 skin image and scaling them up to the dimensions
of the original image will result in the display window
moving in increments of 16 pixels, resulting in a poor
visual effect. Instead, the display coordinates are
calculated as the average of the centroid coordinates
of the face region for the current frame and a number of
previous frames, the total number of frames used in the
averaging process currently being set to eight. This
allows smooth face tracking, as well as smooth switch-
ing between faces. With regard to the size of the tracking
window, this may be easily obtained from the area of the
tracked face or it may be fixed to a pre-determined size.
Keeping in mind our target mobile videophone applica-
tion, and the associated display size limitations for the
videophone handsets, the current system assumes a fixed
tracking window of quarter QCIF resolution with
portrait aspect ratio, i.e. 72� 88 pixels. As an example,
for the image of Fig. 2 and assuming the face on the
right is selected as the tracked face, the region selected
for encoding and transmission is identified by the
bounding rectangle in Fig. 8. Fig. 9 shows how the
transmitted image appears on the display of the handset
of a second user, with the small image at the bottom
right corner showing the identified face region of the
second user, allowing both users to simultaneously view
the other person as well as the video that they are
themselves transmitting.
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4. FPGA implementation

The face detection and tracking method presented in
the previous section has been designed to achieve high
performance at a low computational cost, relying only
on simple integer arithmetic operations and table
lookup operations, which facilitates its deployment on
small microprocessors or custom hardware. This section
will examine the custom hardware realization of the
proposed algorithmic framework, and more specifically,
an FPGA implementation, which has been carried out
as a feasibility study towards a VLSI implementation.
The FPGA family used is the ALTERA APEX20K,
although this is not restrictive, since the features that
have been utilized are basic and common across most
contemporary FPGA devices. This FPGA design can be
viewed as comprising three main modules, correspond-
ing to the three main algorithmic stages of the previous
section, namely subsampling, skin filtering and face
detection/tracking.

4.1. Subsampling

The circuit presented here has been designed and
optimized for the processing of QCIF 176� 144 pixel
24-bit RGB images using a 16� 16 mask. Although the
subsampling of the original frame is a neighbourhood
rather than a pixel-based operation, the circuit has been
designed so that it is able to process data directly from a
camera without reliance on frame storage. The module
assumes that pixels are delivered on a row-by-row basis,
as is usually the case, e.g. left-to-right and top-to-
bottom, and colour band values are delivered sequen-
tially rather than in parallel, e.g. in an R-G-B order.
Fig. 10 shows that the module is effectively comprised

of two accumulator units, namely ACC1 and ACC2.
12-bit
reg.

12-bit
reg.

12-bit
adder

16-bit
adder

16-bit
reg.

16-bit
reg.

Block Sum R,G

Pixel R,G

22 registers

ACC2

ACC1

Subsampling

Fig. 10. Organization of the subsampling circuit.
ACC1 accumulates the R and G pixel values which make
up each row of each block of pixels. As seen earlier, only
the R and G planes of the original frame require
subsampling, since the B component is not used in the
subsequent colour conversion and skin filtering process.
Taking advantage of the fact that these pixel values are
delivered sequentially and in a fixed order, ACC1 does
not contain two complete accumulators but is comprised
of a single 12-bit full adder and a 2� 12-bit shift
register. The second accumulator unit ACC2 accumu-
lates the final sum for each row of each pixel block as
produced by ACC1 and therefore calculates the R and G
pixel value sums for entire pixel blocks. Similarly to the
previous accumulator unit, ACC2 is made up of a 16-bit
adder and a 22� 16-bit shift register. The size of all the
components has been chosen so that an overflow does
not occur for the aforementioned image and mask
characteristics. The upper byte of each final block sum
produced by ACC2 contains a required pixel value for
the subsampled image. The processing time for each
pixel byte is a single clock cycle and the module can
process values continuously, regardless of transitions
between rows or frames. The appropriate control of the
register enable signals also allows the module to be
paused at any point and for any number of clock cycles,
allowing it to adapt to different camera timings and
specifics. Overall, the control logic for this circuit is
minimal. This architecture was found to be very effective
for the image and subsampling mask characteristics
mentioned earlier. Clearly, changing those characteris-
tics may require modifications in order to achieve the
most efficient implementation.

4.2. Skin filtering

The skin filtering circuit processes the subsampled
image values as they are produced by the subsampling
circuit and does not require the storage of the complete
image. According to the previous algorithmic descrip-
tion, the tasks of this circuit are to transform the R and
G values of the 11� 9 subsampled image or 176� 144
original image to the LogRG colour space and then use
the new colour values to obtain skin colour probabilities
or to adapt the original skin colour model to the current
skin tone and lighting conditions, respectively. Conse-
quently, the circuit has two distinct modes of operation,
namely skin filtering and skin colour model calibration.
Before considering the implementation of the skin

filtering module, it is useful to consider the implementa-
tion of the skin colour model itself. As seen earlier, the
skin model requires 320 bytes (512� 5-bit) of storage.
More specifically, this is organized into three memory
components. The first is a 512� 1-bit RAM which holds
the probability values for the current model. This will be
referred to as ‘‘Skin Model Array 1’’ or ‘‘SMA1’’. There
is also a 512� 2-bit ROM which holds the category that
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each colour belongs to in the original model, as
discussed earlier. This memory element will be referred
to as ‘‘Skin Model Array 2’’ or ‘‘SMA2’’. Finally, a
512� 2-bit RAM is also required to keep track of how
the categories of the different colours are updated as the
skin colour model calibration proceeds and, conse-
quently, how the skin colour probabilities should be
changed. This will be referred to as ‘‘Skin Model Array
3’’ or ‘‘SMA3’’.
Although both modes of operation rely on the same

hardware, it is more convenient to first consider the skin
filtering datapath, as shown in Fig. 11. The first step is
the logarithmic transformation L(x) of (1) of the R and
G subsampled image values. This simply entails a
lookup into a 256� 8-bit ROM which outputs the
values L(x) as 8-bit integers. The processing time for
each value is a single cycle, and the appropriate control
circuitry allows zero or any number of cycles between
the delivery of the two values of each RG pair. The
remainder of the skin filtering process requires two
cycles. In the first of these two cycles, Cycle 0, the
logarithmically transformed R and G values are
transformed to the LogRG colours L1 and L2 according
to (1). Both values are also appropriately offset so that
they can be used as lookup addresses to SMA1 for the
retrieval of a skin colour probability. In the final cycle of
the skin filtering process, Cycle 1, the lower five bits of
L1 are appended to the lower 4 bits of L2 to form a 9-bit
address for an asynchronous read of the skin model
memory SMA1, which outputs a binarized skin colour
probability, with 1 corresponding to a skin pixel and 0
Logarithmic
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Projection
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Fig. 11. The skin filtering datapath.
to a non-skin pixel. An additional check is also
performed to determine whether the complete L1 and
L2 values are actually within the model range and, if not,
the skin colour probability is cleared to 0. The circuit is
pipelined and, consequently, there can be zero or any
number of clock cycles between the delivery of any two
RG pairs, regardless of row or frame transitions.
The calibration datapath of the skin filtering circuit

can be seen in Fig. 12. The first step in the skin colour
model adaptation process (not shown) is the combined
retrieval and sinking of the original model probabilities,
based on the colour category information stored in
SMA2, which are then stored in SMA1. Also, the colour
category information of SMA2 is loaded into SMA3.
The combinatorial logic for these operations is trivial, as
discussed in the algorithmic description section. Similar
to the skin filtering process, the first step in the
processing of a pixel during calibration is the logarith-
mic transformation of the R and G original pixel values,
as described above for the subsampled values. Some
additional checks are also performed to ensure that the
pixel in question should be used in the calibration
process, as shown in Fig. 12. The remainder of the
calibration process requires two more clock cycles. The
first of those cycles, Cycle 0, sees the calculation of the
LogRG colours L1 and L2 in exactly the same fashion as
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Fig. 12. The skin colour model adaptation datapath.
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for the skin filtering procedure. In the next cycle, the L1

and L2 values are used to access SMA1. Then, if it has
been determined that the pixel should be used in the
calibration process, the temporary colour category
information of SMA3 is updated and, if appropriate,
the corresponding skin probability stored in SMA1 is
also updated. The retrieval of the original skin colour
model, without sinking and subsequent calibration, is
also straightforward with this organization. As before,
the pipelining of this path allows zero or any number of
clock cycles between the delivery of pixel bytes or RGB
triplets, regardless of row or frame transitions.

4.3. Face detection/tracking

The tasks of the face detection/tracking circuit are to
spatially filter the 11� 9 binary skin map produced by
the previous stage in the system, perform connected
component analysis, calculate statistics for each skin
region, identify the skin region in the current frame
which corresponds to the face of the previous frame and
calculate the centre of the face display window. As for
the previous circuits, the face detection module pro-
cesses the skin map values as they are produced by the
skin filtering circuit and does not require the storage of
the complete map.
Fig. 13 shows the organization of this module and the

actions which are performed in each cycle of operation.
In Cycle 0, the skin probability value produced by the
skin filtering module is stored in a 25� 1-bit shift
register, which will be referred to as the ‘‘skin
probability shift register’’. The module assumes that
the skin map is delivered as a series of values and is not
available as a complete image and, consequently, this
register is required to store a continuously shifting part
of that map in order to accommodate its spatial filtering,
which is a neighbourhood operation. For the first 12
pixels of the first frame in a sequence of frames this
storage is the only operation performed, since 13 skin
values are required to complete the neighbourhood of
the first one. In Cycle 1, the skin map pixel being
processed is spatially filtered. This process relies on an
adder tree to calculate the sum of the skin probabilities
of the neighbourhood of the pixel being processed in a
single cycle, which directly gives the number of
neighbouring skin pixels, along with some logic to
decide the skin or non-skin status of the pixel after
filtering. The tag for the filtered pixel is also calculated
during Cycle 1 and stored in a 13� 3-bit shift register,
which will be referred to as the ‘‘tag shift register’’. As
discussed earlier, the determination of the tag for a skin
pixel requires the examination of the tags of four of its
neighbours, which is the reason that tags are stored in a
shift register, i.e. so that the circuit maintains a
continuously shifting sequence of the tag assignments
in the image. If none of the neighbours is a skin pixel,
i.e. they are all assigned the non-skin tag T7, a new tag is
assigned to the skin pixel being processed. Otherwise,
the skin pixel being processed takes the numerically
lowest tag among the tags of the neighbourhood. The
circuit also maintains an 8� 3-bit register array, which
will be referred to as the ‘‘tag-group association register
array’’, which keeps a record of the skin group that each
tag corresponds to. This array is initialized so that all
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Table 1

Design summary for the FPGA implementation of the proposed face

detection and tracking system

Device ALTERA EP20K1000EBC652-1

Total pins 35

Total logic elements 3173/38,400 (8.26%)

Total flip-flops 972

Total ESB bits 4608/327,680 (1.41%)

Total memory 697.5 bytes

CLK fmax 33.13MHz
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eight tags correspond to group G7, i.e. the non-skin
group. When a new tag is assigned to a skin pixel, the
appropriate tag-group association is also stored in this
register array during Cycle 1, e.g. T0 to G0, T1 to G1 and
so on.
In the following four cycles of operation, i.e. Cycles

2–5, the tag-group association array is updated for the
tag of each of the four neighbourhood skin pixels of the
previous cycle. The statistics m00, m10 and m01 of (2) are
also updated for each tag during Cycle 2. These values
are stored in three register arrays, and more specifically,
an 8� 7-bit register array for m00 which will be referred
to as the ‘‘m00 register array’’ and two 8� 9-bit register
arrays for m10 and m01, respectively, which will be
referred to as the ‘‘m10 register array’’ and the ‘‘m01

register array’’. The depth of the arrays has been chosen
so that an overflow does not occur for the image size
under consideration. As can be seen from (2), the
calculation of m00, m10 and m01 is trivial and effectively
requires just one addition for each statistic and for each
pixel processed.
The subsequent processing cycles are applicable only

for the processing of the last pixel in a skin map. As can
be seen from Fig. 13 the next step in the operation of the
circuit is the grouping of the stored statistics over eight
clock cycles, i.e. during Cycles 6–13. This simply
requires the summation of the statistics of the tags
which correspond to each group based on the informa-
tion stored in the tag-group association register array.
The implementation of this part of the circuit uses three
adder trees and some simple additional logic for the
calculation of the statistics of each of the eight groups in
a single cycle, with the results stored back to the m00,
m10 and m01 register arrays.
The calculation of the x coordinate of the centroid of

each skin group according to (3) is performed over nine
cycles, i.e. during Cycles 14–22. A 9-bit� 7-bit two-stage
pipelined integer divider is used for this, with the
division for group G0 spanning cycles 14 and 15, G1

spanning cycles 15 and 16 and so on. The results are
stored back into the m10 register array. The same process
is performed during Cycles 22–30 for the calculation of
the y coordinate of the centroid of each skin group, with
the results stored back to the m01 register array. The
next seven cycles, i.e. Cycles 31–37, are used to identify
which of the seven skin regions represented by groups
G0–G6 is spatially closest to the face of the previous
frame as well as the largest among those skin regions.
The identification of the closest face requires only some
simple logic for the implementation of the distance
equations of (4).
In Cycle 38, the face of the current frame is selected

between the closest and the largest face based on the
simple set of rules discussed in the algorithmic descrip-
tion section. If the circuit ‘‘run out’’ of skin tags during
the processing of the frame or no skin pixels were found
after filtering, the face of the previous frame is assumed
to be the face of the current frame. Finally, the
coordinates of the centre of the window for transmission
and display are calculated during Cycle 39 as the
average of the face centroids for the current and the
previous seven frames, which are stored in two 8� 4-bit
shift registers, and are scaled to the dimensions of the
original video frame. As discussed earlier, the module
does not actually dictate what the dimensions of the
tracking window should be, due to the fixed size of the
mobile videophone device.

4.4. Circuit statistics

The entire circuit has been implemented almost
exclusively using behavioural VHDL. The only excep-
tions are four memory modules, i.e. the 512� 1-bit
SMA1 RAM, the 512� 2-bit SMA2 ROM, the 512� 2-
bit SMA3 RAM and the 256� 8-bit logarithmic
transformation ROM, and the 9-bit� 7-bit integer
divider, which have been implemented using VHDL
parameterized library components. Table 1 shows the
statistics for the implementation of this circuit on an
ALTERA EP20K1000EBC652-1 device. These figures
include 46 flip-flops for I/O synchronization. The total
memory requirements of the system are less than 700
bytes. Assuming uninterrupted pixel byte delivery, a
processing speed of B434 frames/s is obtained for a
clock speed of B33MHz. This is directly derived from
the timing of the subsampling module, which is the
bottleneck of the complete circuit, despite its pixel value
per clock cycle processing time, i.e. the pixel delivery
mechanism is the actual limitation of the system. It is,
therefore, obvious that the circuit has the potential of
achieving speeds far higher than real-time video proces-
sing requirements even at low clock speeds.
5. Discussion and conclusions

This paper considered the issue of face detection and
tracking in the context of mobile videoconferencing. The
advantages of deploying such a method in a larger
mobile videoconferencing system are numerous and
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include improved visual effect through face stabiliza-
tion, reduction in the bandwidth requirements through
the encoding and transmission of only the stabilized face
rather than of the entire video frames, and the
facilitation of smaller display sizes for the hand-held
terminals which, in turn, facilitates smaller terminals.
The advantage of the proposed face detection and
tracking method is that, while robust to illumination
variations and geometric changes such as scale and
viewpoint changes, it entails a very low computational
complexity. It comprises mainly integer additions and
memory lookup operations, and minimal memory
requirements, allowing a high-speed implementation
on simple microprocessor architectures as well as a
custom hardware implementation. The custom hard-
ware realization of the proposed method was examined
in terms of an FPGA-based implementation, which
demonstrated its low cost in terms of logic and memory
(less than 700 bytes) in conjunction with its frame
processing capability at low clock speeds (over 400
frames/s at B33MHz).
Although the frame processing capability of our

custom hardware implementation far exceeds the
requirements for a mobile videoconferencing application
and, indeed, real-time video broadcasting processing
requirements, it demonstrates the applicability of the
algorithmic and hardware design philosophy to high-
speed applications. Another possibility is the high-speed
processing of multiple video frames by multiplexing
multiple video sources into the system, through the
replication of key components in the hardware system
and the multiplexing of the majority of the existing
hardware. Finally, based on the material presented here
it is obvious that the proposed approach may also be
applicable to other colour-based detection and tracking
tasks.
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