
www.elsevier.com/locate/jvci

J. Vis. Commun. Image R. 18 (2007) 130–140
ENCARA2: Real-time detection of multiple faces
at different resolutions in video streams

M. Castrillón *, O. Déniz, C. Guerra, M. Hernández

Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingenierı́a (IUSIANI), Universidad de Las Palmas de Gran Canaria,

Las Palmas de Gran Canaria 35017, Spain

Received 10 June 2005; accepted 15 November 2006
Available online 22 January 2007
Abstract

This paper describes a face detection system which goes beyond traditional face detection approaches normally designed for still imag-
es. The system described in this paper has been designed taking into account the temporal coherence contained in a video stream in order
to build a robust detector. Multiple and real-time detection is achieved by means of cue combination. The resulting system builds a fea-
ture based model for each detected face, and searches them using the various model information in the next frame. The experiments have
been focused on video streams, where our system can actually exploit the benefits of the temporal coherence integration. The results
achieved for video stream processing outperform Rowley–Kanade’s and Viola–Jones’ solutions providing eye and face data in real-time
with a notable correct detection rate, approx. 99.9% faces and 87.5% eye pairs on 26338 images.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Computer vision based people detection should be a
basic ability to include in any Vision Based Interface [1].
Several approaches have been developed in the past for
people detection attending to different elements of the
human body: the face [2,3], the head [4,5], the entire body
[6] or just the legs [7], as well as the human skin [8].

Among those body parts, the face plays a critical role in
human communication [9]. Indeed, there are different static
and dynamic features that we use to successfully interact
with other people and to identify them. In this sense, if
Human–Computer Interaction (HCI) could be more simi-
lar to human communication, HCI would be non-intrusive,
more natural and comfortable for humans [10]. As men-
tioned above, in this context the face is a main information
channel, and therefore our effort in this work has been
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focused on its detection, in order to build a data provider
for face analyzers.

Face detection is a revisited topic in the literature with
recent successful results [11–13]. However, these detectors
focus on the problem using approaches which are valid
for restricted face dimensions and, with the exception of
the first reference, to a reduced head pose range.

In this paper, we describe a real-time vision system
which goes beyond traditional still image face detectors,
adding to a state of the art object centered face detector
[13] elements in order to get a better, more robust, more
flexible and real-time multiresolution face detector. The
additions are related to: (1) the integration of knowledge
about features, particularly eye location is also provided,
present in faces, (2) the integration of the temporal coher-
ence, (3) and the advantages evidenced by the local context
in head detection for low resolution and difficult head pos-
es [14]. These abilities extend the application of standard
face detection systems, building a system which is able to
manage robustly not only typical desktop interactions
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but also surveillance situations and the transition between
both contexts, i.e. face and head detection.

2. Face detection

The standard face detection problem, given an arbitrary
image, can be defined as: to determine any face -if any- in

the image returning the location and extent of each [2,3]. Ide-
ally, the whole procedure must perform in a robust manner
for illumination, scale and orientation changes in the sub-
ject. Thus, robustness is a main aspect that must be taken
into account by any face detector developer.

Face detection methods can be classified according to
different criteria. In this paper, we have considered the
information used to model faces to classify the different
face detection techniques into two main families:

• Implicit or Pattern based: These approaches work
searching exhaustively a previously learned pattern at
every position and different scales of the input image,
see Fig. 1.

• Explicit or Knowledge based: These approaches increase
processing speed by taking into account face knowledge
explicitly and combining cues such as color, motion and
facial geometry and appearance.

Among the different approaches described in the litera-
ture, those belonging to the first family tackle the general
problem of face detection in still images achieving great
performance (and fast in recent developments) for the data-
sets available [2,3]. On the other hand, the techniques
included in the second family provide faster performance,
but only in restricted scenarios [2,3].

However, the problem of real-time face detection in the
context of video streaming has not been properly focused.
The direct application of typical face detectors to video
streams neglects the integration of information which is
implicit in the temporal behavior of the real sequence. As
an example, this direct application will analyze the frame
as if it were a still image, forgetting information provided
by previous detections such as the position, size and
appearance of the face detected.

Therefore, the approach described in this paper makes
use of elements of both families trying to get their advanta-
ges, i.e., high performance given by the first family, and
Fig. 1. The implicit based approaches shift the match
speed provided by the second family. Our approach inte-
grates the temporal coherence in the system, as it is
designed to exploit it during video processing. The integra-
tion of other cues help to improve the final system perfor-
mance and robustness.

For comparison purposes we have chosen two well-
known approaches from the first family, Rowley–Kanade’s
[15] and Viola–Jones’ [13] detectors which are described
briefly below. Both approaches are available for compari-
son purposes, and they also provide high detection perfor-
mance, but particularly the second approach is able to
perform almost at frame rate.

The reason to avoid any explicit based approach for
comparison purposes is due to the fact that implicit based
detectors provide better performance. Indeed our first face
detector, called ENCARA, was a detector based on skin
color model [16], it could perform twice faster than Vio-
la–Jones’ detector, but the reliability was reduced to specif-
ic lighting conditions. That was not a new result, indeed
skin color based approaches have the lack of robustness
for different conditions. A well known problem is the
absence of a general skin color representation for any kind
of light source and camera [17]. However, if a skin color
approach is combined with an implicit based approach,
this restriction can be avoided. This combinational para-
digm is taken into consideration in our detector.

2.1. Rowley–Kanade’s detector

Rowley–Kanade’s detector [15] uses a multilayer neural
network trained with multiple face and non-face proto-
types at different scales, considering faces in almost upright
position. The use of non-face appearance allowed to
describe better the boundaries of the facial class.

Comparative results seem to improve those achieved
previously by [18]. The system assumes a range of working
sizes (starting at 20� 20) as it performs a multiscale search
on the image. The system allows the configuration of its
tolerance for lateral views.

The process is computationally expensive and some
optimization would be desirable to reduce the processing
time. According to the authors [15], a fast version of the
system can process a 320� 240 pixel image in two to four
seconds on a 200 MHz R4400 SGI Indigo 2. They also
pointed out that color information, if available, may be
ing window on the image at different resolutions.



Fig. 3. (a) The Integral Image stores integrals over subregions of the
image, (b) features prototypes considered in [19] implementation.
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used to optimize the algorithm by means of restricting the
search area, therefore improving performance.

2.2. Viola–Jones’s detector

Recent implicit face detectors [12,13] have reduced dra-
matically the processing latency at high levels of accuracy.
Particularly the general object detector framework
described in [13], designed for rapid object detection, is
based on the idea of a boosted cascade of weak classifiers.
For each stage in the cascade, see Fig. 2, a separate subclas-
sifier is trained to detect almost all target objects while
rejecting a certain fraction of the non-object patterns
(which were accepted by previous stages).

The resulting detection rate, D, and the false positive
rate, F, of the cascade is given by the combination of each
single stage classifier rates:

D ¼
YK

i¼l

di F ¼
YK

i¼l

fi ð1Þ

Each stage classifier is selected considering a combination
of features which are computed on the integral image, see
Fig. 3a. These features are reminiscent of Haar wavelets
and early features of the human visual pathway such as
center-surround and directional responses, see Fig. 3b.
The implementation [19] integrated in the OpenCV (Open
Computer Vision Library) [20] extends the original feature
set [13]. As an example, the features achieved for the first
stage of, respectively, a frontal face detector, and a head
and shoulders detector are presented in Fig. 4. Both detec-
tors are integrated in recent OpenCV releases [20].

Under this approach, given a 20 stage detector designed
for refusing at each stage 50% of the non-object patterns (tar-
get false positive rate) while falsely eliminating only 0.1% of
the object patterns (target detection rate), its expected over-
all detection rate is 0:99920 � 0:98 with a false positive rate of
0:520 � 0:9 � 10�6. This schema allows a high image process-
ing rate, due to the fact that background regions of the image
Fig. 2. Typical training procedure for a Viola–Jones’ based classifier. Each stag
previous stage.
are quickly discarded while spending more time on promis-
ing object-like regions. Thus, the detector designer chooses
the desired number of stages, the target false positive rate
and the target detection rate per stage, achieving a trade-
off between accuracy and speed for the resulting classifier.

3. Our face detection approach: ENCARA2

As mentioned above, our approach is related to both
categories described in the previous section, as it makes
use of both implicit and explicit knowledge to get the best
of each one in an opportunistic fashion. The explicit
knowledge is based on the face geometry and the descrip-
tors extracted from a detection: color and appearance.
On the other side, the implicit knowledge is integrated
using the general object detection framework [13] which
combines increasingly more complex classifiers in a cas-
cade. The focus is extended for real-time modelling each
detected face. Therefore this information is used based on
temporal coherence to speed up the next frame processing.

3.1. The face detection loop procedure

The process used to face detection, see Fig. 5 for a sche-
matic description, has two different working modes
depending on recent face detection events reported:
e classifier is obtained using positive and negative samples accepted by the



Fig. 4. Automatically extracted features of the first stage for frontal face (object centered) and head and shoulders (local context) detection respectively
(extracted from [14]).

Fig. 5. ENCARA2 main modules.
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After no detection: This working mode, see Fig. 6 for an
overview, takes place at the beginning of an interaction ses-
sion, when all the individuals are gone from the field of
view, or if nobody is detected for a while. The approach
basically makes use of two window shift detectors based
on the general object detection framework described in
[13]. These two brute force detectors are the frontal face
detector described in [13], and the local context based face
detector described in [14]. The last one achieves better rec-
ognition rates for low resolution images if the head and
shoulders are visible. In order not to waste processing time,
see Fig. 1 to understand their processing cost, the detectors
are executed alternatively, i.e. one is applied to odd and the
other to even frames.

Faces or head and shoulders smaller than the minimum
pattern size, respectively 24� 24 and 20� 20 pixels, will
not be located by the detector. Whenever a face or head
is detected, the system models its color from the face/head
container. Then it uses that modelled color trying to detect
the facial features assuming that it is a frontal face, and
therefore they would verify some geometric restrictions.
The current implementation searches only the eyes using
different alternatives for eye detection as described in detail
in Section 3.2.



Fig. 6. No recent detection working mode.
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Finally, for each detected face, the system stores not
only its position and size, but also its average color using
red-green normalized color space [21] (considering just
the center of the estimated face container provided by
any of Viola-Jones based detectors), and the patterns of
the eyes (if detected) and the whole face. Thus, a face is
characterized by f ¼ hpos; size; red; green; leyepos; leyepattern;
reyepos; reyepattern; facepatterni.

After recent detection(s): In this working mode, see
Fig. 7 for a graphical overview, each face detected has been
modelled using different features. These features direct dif-
ferent cues which are applied opportunistically in the new
image in an order based on their computational cost and
reliability. These techniques are used to redetect a face,
thus they are focused in a sub window of the image as
expressed in Fig. 8. It must also be observed that these
techniques are applied until one of them finds a new face
coherent with the previous detection, therefore, their execu-
tion is not necessary for every frame. These considerations
will speed up the whole process.

• Eye tracking: If eye patterns are available in the face
model, a fast tracking algorithm [22] searches the mini-
mum difference in the search area as follows:
Dðu; vÞ ¼
X

Area

jIðuþ i; vþ jÞ � P ði; jÞj ð2Þ

A dynamically updated threshold is used to decide if the
eyes have been lost or not [22].

• Frontal face detector: A Viola–Jones’ based face detec-
tor [13] will be used applied in the search window only
if the tracker does not track the eyes.

• Local context face detector: If previous techniques fail,
the local context based face detector [14] is applied in
the search area.

• Skin color: If previous cues fail, the modelled skin color
is used to locate the face in the search area. If a proper
blob is located, eyes will be searched, see details in Sec-
tion 3.2.

• Face tracking: If everything else fails, the prerecorded
face pattern is tracked [22] in the search area. However,
the tracking is not allowed to be the only valid cue for
more than some consecutive frames in order to avoid
tracking problems. Instead, the other cues should con-
firm, from time to time, the human presence or the per-
son will be considered lost.

Whenever a face is detected, and its eyes were not
tracked, the skin color is used for facial features detection
as detailed in Section 3.2.

Additionally, every fifth frame one of Viola–Jones’ based
detectors is applied to the whole image in order to detect new
faces. Those new faces are compared with those already
detected by temporal coherence, removing the redundant
ones. If no faces are detected for a while, the detector switch-
es to the default After no detection working mode.
3.2. Eye detection

The process employed to detect the eyes assumes that
the face detected is a frontal face. Therefore, it could hap-
pen that ENCARA2 will not provide eye locations for
every detected face. This situation happens whenever the
system fails detecting them or if both eyes are not visible.
The eye pair detection process, graphically summarized in
Fig. 9, is as follows:

(1) Skin blob detection: The skin color modelled is used
to detect the face blob boundaries. The system heu-
ristically removes elements that are not part of the
face, e.g. neck, and fits an ellipse to the blob in order
to rotate it to a vertical position [23].

(2) Eyes location: Different alternatives are used to
locate the eyes:
(a) Dark areas: Eyes are particularly darker than
their surroundings [24].

(b) Viola-Jones based eye detector: As the eye position
can be roughly estimated and therefore restricted,
a Viola–Jones’ based eye detector provides fast
performance. The detector searches eyes with a



Fig. 7. After recent detection working mode.

Fig. 8. The search area used for each detected face in the next frame is
defined as an expansion of the previous face detection container.

Fig. 9. Eye detection process.
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minimum size of 16� 12 pixels. For small faces,
they are scaled up before performing the search.

(c) Viola-Jones based eye pair detector: If other cues
fail, the eye pair detection can provide another
estimation for eye positions in order to apply
again steps (a and b). The minimum pattern size
searched is 22� 5.

(3) Normalization: Eye positions, if detected, provide a
measure to normalize the frontal face candidate to
a standard size.

(4) Pattern Matching Confirmation: Once the likely face
has been normalized, its appearance is checked in
two steps making use of Principal Component
Analysis (PCA) [25]. Two PCA spaces were built
using a face dataset of 4000 facial images extracted
from internet and annotated by hand.
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(a) Eye appearance test: A certain area (11� 11)
around both eyes in the normalized image is pro-
jected to a PCA space and reconstructed. The
reconstruction error [26] provides a measure of
its eye appearance, and can be used to identify
incorrect eye detections.

(b) Face appearance test: A final appearance test
applied to the whole normalized image. The
image is first projected to a PCA space, and later
its appearance is tested using a Support Vector
Machine (SVM) classifier [27].
3.3. Multiple face detection: Detection threads

The approach considers the possibility of multiple face
detection, as no restriction is imposed in that sense. As
mentioned above, each face detected is described using
some features, which serve for video streams to relate the
detection information achieved in consecutive frames, espe-
cially when multiple individuals are present. During the
video stream processing, the face detector gathers a set of
detection threads, IS ¼ fdt1; dt2; . . . ; dtng. A detection
thread contains a set of continuous detections, i.e. detec-
tions which take place in different frames but are related
by the system in terms of coherence of position, size and
pattern matching. Thus, for each detection thread, the face
detector system provides a number of facial samples,
dtp ¼ fx1; . . . ; xmpg, which correspond to those detections
for which also the eyes were located.

Viola–Jones’ based detectors have some level of false
detections. For that reason a new detection thread is creat-
ed only after the eyes have been also detected. The use of
color and tracking cues after a recent detection is reserved
to detections which are already considered part of a detec-
tion thread. In this way, spurious detections do not launch
cues which are not robust enough, in the sense that they are
not able to recover from a false face detection.
4. Experiments

4.1. Static images

ENCARA2 has not been designed to improve still imag-
es detection with the exception of providing additional eye
locations. Indeed due to the fact that no temporal coher-
ence can be used, its performance in that context combines
the results achieved for the standard Viola–Jones’ face
detector [13] and the local context based face detector
[14]. We forward the reader to those works to get precise
information for static images results. In any case, we would
like to present some results in Fig. 10, to clarify the differ-
ent detection levels that ENCARA2 provides. Three differ-
ent kinds of detections are possible: (a) Pure Viola–Jones’
based frontal face detections (white containers), (b) frontal
faces whose eyes were also detected by means of additional
color processing (gray containers), and (c) Viola–Jones’
based head and shoulders detection (two concentric
containers).

4.2. Video streams: Desktop scenarios

The strength of our approach is mainly exploited in
video stream processing thanks to cue integration. Seven-
ty-four sequences corresponding to different individuals,
cameras and environments with a resolution of 320 · 240
were recorded and processed. The results described in
Table 1 describe the performance achieved processing
sequences which present a single individual sat and speak-
ing in front of the computer or moderating a TV news pro-
gram, see Fig. 11 for some samples. Therefore, the face
pose is mainly frontal, but it is not controlled, i.e. lateral
views and occlusions due to arm movements are possible.
Therefore the eyes are not always visible. The total set con-
tains 26,338 images, presenting all of them a single face eas-
ily detected by a human.

In order to check the detectors performance, the
sequences have been manually annotated, therefore the
face containers are available for the whole set of images.
However, eye locations are available only for a subset of
4059 images. The eyes location allows us to compute the
actual distance between them, which will be referred below
as EyeDist. This value will be used to estimate the goodness
of eye detection.

Two different criteria have been defined to establish
whether a detection is correct:

Correct face criterium: A face is considered correctly
detected, if the detected face overlaps at least 80% of the
annotated area, and the area difference is not doubled.

Correct face criterium: The eyes of a face detected are
considered correctly detected if for both eyes the distance
to manually marked eyes is lower than a threshold that
depends on the actual distance between the eyes, EyeDist.

The threshold considered was EyeDist/4 similarly to [28].
The same authors confirm in [29], that their threshold is
reasonable for further face analysis.

Table 1 presents the results obtained after processing
the whole set of sequences with the different detectors,
i.e. 26,338 images. The correct detection ratios (TD) are
given considering the whole sequence, and the false detec-
tion ratios (FD) are related to the total number of detec-
tions. Rowley’s detector is notably slower than the others,
but it provides eye detection for the 78% of detected faces,
feature which is not considered by Viola–Jones’ detector.
As for our detector, it is observed that it performs more
than twice faster than Viola–Jones’ detector, and almost
ten times faster than Rowley’s. This performance is
accompanied by a number of correct detections for faces
and eyes which is always greater, in absolute value, than
any of the other two approaches. It is observed that eye
detection reflects a larger improvement in comparison to
Rowley’s detector. False detections are in many cases
associated to detections which have not been properly
sized.



Fig. 11. Sample sequences.

Table 1
Results for face and eye detection processing using a PIV 2.2 Ghz

Rowley Viola Our detector

TD (%) FD (%) TD (%) FD (%) TD (%) FD (%)

Faces 89.27 2.16 97.69 8.25 99.92 8.07
Left eye 77.51 0.8 0.0 — 91.83 4.04
Right eye 78.18 1 0.0 — 92.48 3.33
Proc. time 422.4 ms 117.5 ms 45.6 ms

Fig. 10. Detection examples for some CMU database samples [12] and images extracted from Internet.
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In at least 10 of the sequences there were detections
which correspond to non face patterns (provided by
Viola–Jones’ detectors). However these detections were
correctly not assigned to any detection thread as the eyes
were not found and their position, color and size were
not coherent with any active detection thread.

Only for three sequences with a single individual, the
detection thread was not unique. This means that the sys-
tem could not consider as continuous the presence of the
individual in the video stream. In these sequences this
was due to the fact that at a certain point a detection thread
was incorrectly fused with an erroneous detection in the
current frame. However, in all the cases the detection
thread was shortly considered lost, and therefore some
frames later the still present face was newly detected, and
a new detection thread created. This is a really interesting
result considering the large changes in pose experimented
in many of the sequences.
4.3. Cue integration benefits

The integration of different cues is exemplified in Fig. 12.
In that Figure, detections depicted were not provided by
Viola–Jones’ based detectors: (a) Grey squared faces have
been detected using eye tracking, (b) dark ones by means
of head tracking (the last possibility), and (c) white faces
by means of color detection. Indeed after an initial detec-
tion, the other cues were able to manage the pose changes
without losing the face/head. It must be observed that eyes
are located only for frontal poses in the current
implementation.

Cue combination helps the system to fit the real-time
restriction. Both Rowley’s and Viola–Jones’ detectors per-
form an exhaustive search in the image at different scales,
see Fig. 1. Each approach employs a different technique
for matching but in any case they depend on the image res-
olution and the number of scales considered typically the



Fig. 12. Pose changes can be managed by means of cue combination.
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image is repeatedly downsampled 1.1 times until a minimal
size is reached, see Fig. 1. Thus, the processing cost per
frame:

Viola Cost ¼ oðSingle Viola matching cost � width

� height � nscalesÞ ð3Þ

Table 1 evidences that the cost of a single matching opera-
tion is greater using Rowley’s approach. For that reason
we have chosen Viola–Jones’ approach as the implicit base-
ment for our development. ENCARA2 in the worst case, if
no faces have been detected, will behave similarly to a stan-
dard Viola–Jones’ detector. But whenever there is a detec-
tion the cost per frame will be modified:

ENCARA2 Cost

¼ Oðnfacesdetected � Eyestrackingcost

þ ViolaA Cost in windowþ ViolaB Cost in window

þ Color based cost þ Head tracking CostÞ ð4Þ

Observe that this cost is again the worst case, which hap-
pens when no cue is able to redetect a face. In the desktop
context considered in the experiments that worst case is
typically not present. Indeed the value reflected in 4 is in
general lower if the other cues integrated: Tracking, Color
and Subwindow detection, are able to detect. Therefore,
every frame does not require all the processing just till
the face is again detected.

Eye stracking cost¼Oð2�Eye matching cost� subwindow width

� subwindow heightÞ ð5Þ
Viola Cost in window¼OðSingle Viola matching cost�window width

�window height�nscalesÞ ð6Þ
Color based cost¼Oðwindow width�window height

þEye detection costÞ ð7Þ
Head tracking cost¼OðHead matching cost

�window width�window heightÞ ð8Þ
Fig. 13. Detection results in a test se
The results described in Table 1, show that cue integration
reduces for typical desktop scenarios sequences, the time
consumption in 1/3, adding the possibility of eye detection
in many frontal views.

For multiple individuals sequences, the system needs
more time as more faces are tracked simultaneously, in
our experiments around 20 ms. per individual added to
the image. This effect can be reduced by decreasing the
number of times per second that new faces are searched
in the whole image.

A multiple face detection example is presented in
Fig. 13. From left to right: (1) Both faces are detected
and their eyes, (2) the Viola based detectors failed detect-
ing the right face, it is detected by tracking the face pat-
tern, (3) the left face is detected using skin color and the
right one by means of the local context face detector, (4)
the same for the left face, the right one is found by track-
ing, (5) face pattern tracking is not allowed to be the only
valid cue for many consecutive frames, so the right face
detection thread is considered missed, and (6) the right
face recovers its vertical position and is fused with the
latent detection thread.

4.4. Video streams: Unrestricted scenarios

Preliminary experiments have been performed also for
sequences which are not restricted to a desktop context.
Some results achieved for detection at different resolutions
can be observed in Figs. 14 and 15.

The face location for the sequence corresponding to
Fig. 14 has been manually annotated. Table 2 presents
the detection rates summary. For Viola–Jones’ detector
the detection rate hardly reaches 30%. This is due to the
fact that the face is in many frames not frontal, and/or
its resolution is reduced, situation which easily fools state
of the art face detectors. Rowley’s face detector would
present the same problem. On the other hand the local con-
text detector is able to get a better detection rate. Our
quence with multiple individuals.



Fig. 14. Sample detections corresponding to an indoor sequence (320� 240 pixels).

ig. 15. Sample detections corresponding to an outdoor sequence
20� 576 pixels).

M. Castrillón et al. / J. Vis. Commun. Image R. 18 (2007) 130–140 139
F
(7
Table 2
Results for the indoor sequence, see Fig. 14

Detector Detection rate (%) False detection rate (%)

Object centered [13] 30.5 0.0
Local context [14] 66 1.4
Our detector 81.8 0.3
system, which integrates both detectors added to the tem-
poral coherence, outperforms clearly both approaches
applied to a context closer to reality.
5. Conclusions and future work

We have presented an approach for face detection in
video streams which makes use of a cascade combination
in an opportunistic fashion of different classical face detec-
tion approaches for video stream, but integrating some ele-
ments of temporal coherence. Therefore, we pursue to
integrate the benefits of both families of face detection
approaches: the robustness of implicit approaches and
the speed of explicit approaches. The final system provides
faster and better detection rates outperforming well known
face detection systems. Detection rates achieved, 99.9% fac-
es and 97% eye pairs detected on 26338 images, reported an
error rate of 8 and 4% according to different error detection
criteria extracted from the literature.

Additionally, the system is able to detect multiple faces
and their eyes providing for the experiments an average
processing rate of 45.6 ms per frame which makes the sys-
tem suitable for further processing in the field of perceptual
user interfaces. A demo application and a library for com-
parison purposes are provided under request to the
authors.

Future work will focus on the improvement of the color
module, and the detection of additional facial and context
features in order to provide more elements to manage an
unrestricted individual performance. For example, the
inclusion of the individual identity and/or his clothes color
model will help in situations where different individuals
present extreme poses and overlap.
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