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Abstract

Image segmentation is an important processing step in many image, video and computer vision applications. Extensive research has
been done in creating many different approaches and algorithms for image segmentation, but it is still difficult to assess whether one
algorithm produces more accurate segmentations than another, whether it be for a particular image or set of images, or more generally,
for a whole class of images. To date, the most common method for evaluating the effectiveness of a segmentation method is subjective
evaluation, in which a human visually compares the image segmentation results for separate segmentation algorithms, which is a tedious
process and inherently limits the depth of evaluation to a relatively small number of segmentation comparisons over a predetermined set
of images. Another common evaluation alternative is supervised evaluation, in which a segmented image is compared against a manually-
segmented or pre-processed reference image.

Evaluation methods that require user assistance, such as subjective evaluation and supervised evaluation, are infeasible in many vision
applications, so unsupervised methods are necessary. Unsupervised evaluation enables the objective comparison of both different segmen-
tation methods and different parameterizations of a single method, without requiring human visual comparisons or comparison with a
manually-segmented or pre-processed reference image. Additionally, unsupervised methods generate results for individual images and
images whose characteristics may not be known until evaluation time. Unsupervised methods are crucial to real-time segmentation eval-
uation, and can furthermore enable self-tuning of algorithm parameters based on evaluation results.

In this paper, we examine the unsupervised objective evaluation methods that have been proposed in the literature. An extensive eval-
uation of these methods are presented. The advantages and shortcomings of the underlying design mechanisms in these methods are dis-
cussed and analyzed through analytical evaluation and empirical evaluation. Finally, possible future directions for research in
unsupervised evaluation are proposed.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Image segmentation is a fundamental process in many
image, video, and computer vision applications. It is often
used to partition an image into separate regions, which ide-
ally correspond to different real-world objects. It is a criti-
cal step towards content analysis and image understanding.

Many segmentation methods have been developed, but
there is still no satisfactory performance measure, which
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makes it hard to compare different segmentation methods,
or even different parameterizations of a single method.
However, the ability to compare two segmentations (gener-
ally obtained via two different methods/parameterizations)
in an application-independent way is important: (1) to
autonomously select among two possible segmentations
within a segmentation algorithm or a broader application;
(2) to place a new or existing segmentation algorithm on a
solid experimental and scientific ground [1]; and (3) to
monitor segmentation results on the fly, so that segmenta-
tion performance can be guaranteed and consistency can be
maintained [2].
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Fig. 1. The hierarchy of segmentation evaluation methods. Our emphasis
in this paper is on the unsupervised objective evaluation.
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Designing a good measure for segmentation quality is a
known hard problem—some researchers even feel it is
impossible. Each person has his/her distinct standard for
a good segmentation and different applications may func-
tion better using different segmentations. While the criteria
of a good segmentation are often application-dependent
and hard to explicitly define, for many applications the dif-
ference between a favorable segmentation and an inferior
one is noticeable. It is possible (and necessary) to design
performance measures to capture such differences.

Although development of image segmentation algo-
rithms has drawn extensive and consistent attention, rela-
tively little research has been done on segmentation
evaluation. Most evaluation methods are either subjective,
or tied to specific applications. Some objective evaluation
methods have been proposed, but the majority of these have
been in the area of supervised objective evaluation, which are
objective methods that require access to a ground truth ref-
erence, i.e. a manually-segmented reference image. Con-
versely, the area of unsupervised objective evaluation, in
which a quality score is based solely on the segmented
image, i.e. it does not require comparison with a manu-
ally-segmented reference image, has received little attention.

The key advantage of unsupervised segmentation evalu-
ation is that it does not require segmentations to be com-
pared against a manually-segmented reference image.
This advantage is indispensable to general-purpose seg-
mentation applications, such as those embedded in real-
time systems, where a large variety of images with
unknown content and no ground truth need to be seg-
mented. The ability to evaluate segmentations indepen-
dently of a manually-segmented reference image not only
enables evaluation of any segmented image, but also
enables the unique potential for self-tuning.

The class of unsupervised objective evaluation methods
is the only class of evaluation methods to offer segmenta-
tions algorithms the ability to perform self-tuning. Most
segmentation methods are manually tuned; the parameters
for the segmentation algorithm are determined during sys-
tem development, prior to system deployment, based on
the set of parameters that generate the best overall segmen-
tation results over a predetermined set of test images. How-
ever, these parameters might not be appropriate for the
segmentation of later images. It would be preferable to
have a self-tunable segmentation method that could
dynamically adjust the segmentation algorithm’s parame-
ters in order to automatically determine the parameter
options that generate better results. Pichel et al. [72]
recently proposed one such system, which uses unsuper-
vised evaluation methods to evaluate and merge sub-opti-
mal segmentation results in order to generate the final
segmentation. Supervised segmentation evaluation meth-
ods only enable this capability on images for which a man-
ually-segmented reference image already exists. Only
unsupervised objective evaluation methods, which do not
require a reference image for generating a segmentation
evaluation metric, offer this ability for any generic image.
This paper provides a survey of the unsupervised evalu-
ation methods proposed in the research literature. It pre-
sents a thorough analysis of these methods, categorizing
the existing methods based on their similarities, and then
discusses their specific differences. A number of empirical
evaluations are performed, comparing the relative perfor-
mance of nine of these unsupervised evaluation methods.
Finally, based on the analysis and experimental results,
we propose possible future directions for research in unsu-
pervised segmentation evaluation.

The remainder of this paper is organized as follows: In
Section 2, we provide an overview of different kinds of seg-
mentation evaluation methods. In Section 3, we give a
detailed analysis of the unsupervised evaluation methods
that have been proposed in the literature, categorizing the
different methods based on the techniques they use to gen-
erate their evaluation scores. Section 4 performs a number
of experiments that empirically evaluate nine of the existing
unsupervised segmentation evaluation methods in a variety
of different situations. Further analysis of these methods
are presented in Section 5. Section 6 reviews new multi-
level unsupervised evaluation methods that combine the
results of the existing methods to achieve better overall per-
formance. Finally, conclusions and future directions for
research in unsupervised evaluation methods are discussed
in Section 7.
2. Segmentation evaluation

2.1. The hierarchy of current evaluation methods

Many image segmentation methods have been proposed
over the last several decades. As new segmentation meth-
ods have been proposed, a variety of evaluation methods
have been used to compare new segmentation methods to
prior methods. These methods are fundamentally very dif-
ferent, and can be partitioned based on five distinct meth-
odologies, as shown in Fig. 1.

Depending on whether a human evaluator examines the
segmented image visually or not, these evaluation methods
can be divided into two major categories: Subjective Evalu-

ation and Objective Evaluation. In the objective evaluation
category, some methods examine the impact of a segmenta-
tion method on the larger system/application employing



1 While the use of synthesized images as reference images for discrep-
ancy testing offers one potential solution to this problem, Haralick [9]
argues that evaluations based on synthetic data can seldomly be
generalized.
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this method, while others study the segmentation method
independently. Thus, we divide objective evaluation meth-
ods into System-level Evaluation and Direct Evaluation.
The direct objective evaluation can be further divided into
Analytical Methods and Empirical Methods, based on
whether the method itself, or the results that the method
generated are being examined. Finally, the empirical meth-
ods are divided into Unsupervised Methods and Supervised

Methods, based on whether the method requires a ground-
truth reference image (as described later) or not.

Notice that these categories are not mutual exclusive.
Evaluation methods might use techniques from multiple
categories. For example, Shin et al. [68,69] use both super-
vised evaluation and system-level evaluation. As discussed
below, evaluation measures from each category have their
own particular limitations. Using evaluation methods that
combine techniques from multiple categories is
encouraged.

The details of each of these categories is discussed
below.

2.2. Subjective evaluation

The most widely used type of evaluation method is sub-
jective evaluation, in which the segmentation results are
judged by a human evaluator. The disadvantage of such
methods is that visual or qualitative evaluation are inher-
ently subjective (hence their namesake). Subjective evalua-
tion scores may vary significantly from one human
evaluator to another, because each evaluator has their
own distinct standards for assessing the quality of a seg-
mented image. Furthermore, the results of the evaluation
can depend upon the order in which evaluators observe
the segmentation results, so obtaining an unbiased under-
standing of the effectiveness of a segmentation algorithm
is a difficult task. It requires a large intensive visual evalua-
tion study. To minimize bias, such a study necessarily
involves visual comparative evaluation of an algorithm’s
segmentation results over a large set of test images by a large
group of human subjects. The set of test images must be suf-
ficiently large to be representative of the category of images
targeted by the segmentation algorithm. Likewise, the
group of human evaluators must be sufficiently large to be
representative of the typical human observer. And to reduce
favoritism between different algorithms and parameteriza-
tions, the testing must be performed under a well-designed
set of guidelines [3]. Consequently, subjective evaluation is
a very tedious and time-consuming process, and intrinsi-
cally, such methods cannot be used in a real-time system
to pick between segmentation algorithms or even different
parameterizations of a single segmentation algorithm.

2.3. System-level evaluation

Alternate methods popular in systems/applications
employing segmentation are to examine the impact of dif-
ferent segmentation methods on the overall system. This
approach enables the researchers or system designers to
argue that one segmentation method is better than another
on the basis of the empirical system results (e.g.[68] com-
pares edge-based methods in an object recognition system).

Unfortunately, this evaluation method is indirect. When
the steps following segmentation generate superior results,
it does not necessarily mean that the segmentation results
were superior, and vice versa. The system-level results from
different segmentation methods simply indicate that the
characteristics of the results were more favorable for that
particular system (e.g. a system might favor fewer regions
or rectangular regions, even if more accurate segmenta-
tions have larger numbers of segments or irregularly-
shaped regions).
2.4. Analytical methods

Analytic methods [4,71] assess segmentation algorithms
independently of their output, evaluating them based on
certain properties of the segmentation algorithms, such as
processing strategy (parallel, sequential, iterative, or
mixed), processing complexity, resource efficiency, and seg-
mentation resolution, which are usually not deemed effec-
tive for assessing the segmentation quality (e.g. in Liedtke
[11]). In other words, analytical methods are only applica-
ble for evaluating algorithmic or implementation proper-
ties of segmentation algorithms. These properties are
generally independent of the quality of an algorithm’s seg-
mentation results, so these properties are not considered
effective at characterizing the performance difference
between segmentation algorithms.
2.5. Supervised evaluation methods

Supervised evaluation methods [5,6], also known as rel-

ative evaluation methods [7] or empirical discrepancy meth-
ods [4], evaluate segmentation algorithms by comparing the
resulting segmented image against a manually-segmented
reference image, which is often referred to as a gold stan-

dard [8] or ground-truth. The degree of similarity between
the human and machine segmented images determines the
quality of the segmented image.

One potential benefit of supervised methods over unsu-
pervised methods (discussed below) is that the direct com-
parison between a segmented image and a reference image
is believed to provide a finer resolution of evaluation, and
as such, discrepancy methods are commonly used for
objective evaluation. However, manually generating a ref-
erence image is a difficult, subjective, and time-consuming
task.1 Besides, for most images, especially natural images,
we usually cannot guarantee that one manually-generated
segmentation image is better than another. In this sense,
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comparisons based on such reference images are somewhat
subjective.

A variety of discrepancy measures have been proposed
for segmentation evaluation. Most early discrepancy meth-
ods evaluated segmented images based on the number of
misclassified pixels versus the reference image, with penal-
ties weighted proportional to the distance to the closest
correctly classified pixel for that region [10–14]. Another
group of discrepancy methods are based on the differences
in the feature values measured from the segmented images
and the reference image [15–20]. These methods have been
extended to accommodate the problem when the number
of objects differs between the segmented and reference
images [21–25]. There are also a variety of discrepancy
methods for the evaluation of edge-based image segmenta-
tion methods [26–28,68,30–35]. Finally, Everingham et al.
[36] proposed a method to comprehensively evaluate seg-
mentation algorithms using the Pareto front. Instead of
using a single discrepancy metric and evaluating effective-
ness in a discrepancy space, it performs evaluation in a
multi-dimensional fitness/cost space with multiple discrep-
ancy metrics.
Table 1
The unsupervised evaluation methods

Name Source Publication date

DWR Weszka, Rosenfeld [11] 1978
Busy Weszka, Rosenfeld [11] 1978
g Otsu [39] 1979
3. Unsupervised evaluation methods

Whereas supervised methods evaluate segmented images
against a reference image, unsupervised evaluation meth-
ods [45], also known as stand-alone evaluation methods
[38] or empirical goodness methods [4] do not require a ref-
erence image, but instead evaluate a segmented image
based on how well it matches a broad set of characteristics
of segmented images as desired by humans.

Unsupervised evaluation is quantitative and objective. It
has distinct advantages, perhaps the most critical of which
is that it requires no reference image. A manually-created
reference image is intrinsically subjective and creating such
a reference image is tedious and time-consuming, and for
many applications, it is hard or maybe even impossible.
The ability to work without reference images allows unsu-
pervised evaluation to operate over a wide range of condi-
tions (or systems) and with many different types of images.
This property also makes unsupervised evaluation uniquely
suitable for automatic control of online segmentation in
real-time systems, where a wide variety of images, whose
contents are not known beforehand, need to be processed.
PV Levine and Nazif [40] 1985
NU Sahoo et al. [41] 1988
SM Sahoo et al. [41] 1988
SE Pal and Bhandari [16] 1993
F Liu and Yang [42] 1994
F 0 Borsotti et al. [43] 1998
Q Borsotti et al. [43] 1998
FRC Rosenberger and Chehdi [44] 2000
VCP Correia and Pereira [18] 2003
Zeb Chabrier et al. [45] 2004
ECW Chen and Wang [46] 2004
E Zhang et al. [47] 2004
VEST Erdem et al. [2] 2004
3.1. Current unsupervised methods

Although supervised methods are the most widely used
objective quantitative evaluation methods, some unsuper-
vised methods have been proposed. Many of the early
methods in this area focused only on the evaluation of fore-
ground-background segmentation, or only on gray-level
images. However, many of these methods contain theory
that is beneficial to multi-segment images, and may be
adapted to color image segmentation evaluation by revisit-
ing the fundamental theory and re-engineering the methods
according to the new constraints.

We first summarize the unsupervised evaluation meth-
ods proposed in the literature, and then describe the crite-
ria they use in more depth. These methods are named and
listed in Table 1.

DWR measures the gray-level difference between the origi-
nal image and the output image after thresholding.
It was proposed to evaluate thresholding-based seg-
mentation techniques that separate the foreground
object from the background.

Busy is based on the measure of ‘‘busyness’’ in the image,
with the assumption that the ideal objects and back-
ground are not strongly textured and have simple
compact shapes.

g measures both intra- and inter-region variance of the
foreground object and the background, allowing the
segmentation algorithm to select the threshold that
maximizes the inter-region variance.

PV is a set of segmentation measures that constitute a
performance vector (PV). The PV vector stores the
factors characterizing the segmentation, including
region uniformity, region contrast, line contrast, line
connectivity, and texture.

NU improved upon PV by enhancing the region unifor-
mity measure in PV to use a normalized region uni-
formity measure.

SM is a shape measure. It is defined as the sum of the
gradients at each pixel whose feature value exceeds
both the segmentation threshold and the average
value of its neighbors.

SE is an entropy-based segmentation evaluation mea-
sure for intra-region uniformity based on the sec-
ond-order local entropy.

F measures the average squared color error of the seg-
ments, penalizing over-segmentation by weighting
proportional to the square root of the number of
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segments. It requires no user-defined parameters and
is independent of the contents and type of image.

F 0 was proposed to improve F, because F was found to
have a bias towards over-segmentation, which is the
characteristic of producing many more regions than
desired within a single real-world object. Since F
favors segmentations with a large number of small
regions, F 0 extended F by penalizing segmentations
that have many small regions of the same size.

Q improves upon F 0 by decreasing the bias towards
both over-segmentation and under-segmentation
(i.e. having too few regions to represent all the
real-world objects in the image).

FRC is an evaluation criterion which takes into account
both the global intra-region homogeneity and the
global inter-region disparity. FRC has two imple-
mentations, one designed for non-textured images
and one for textured images.

Zeb is an evaluation criterion based on the internal and
external contrast of the regions measured in the
neighborhood of each pixel.

ECW is a composite evaluation method for color images.
It uses intra-region visual error to evaluate the degree
of under-segmentation, and uses inter-region region

visual error to evaluate the degree of over-
segmentation.

E is an evaluation function based on information the-
ory and the minimum description length principle
(MDL). It uses region entropy as its measure of
intra-region uniformity, which measures the entropy
of pixel intensities within each region.2 It uses layout

entropy, the entropy indicating which pixels belong
to which regions,3 to penalize over-segmentation
when the region entropy becomes small. There is
no explicit metric for inter-region disparity, rather
the inter-region disparity measure is implicit in the
combination of region entropy and layout entropy,
which counteract each other to provide a balance
between over-segmentation and under-
segmentation.

A few evaluation metrics have also been designed to
evaluate the segmentation performance of video. These
methods use similar metrics to image segmentation evalua-
tion, but typically extend them with metrics to account for
inter-frame similarities and differences, such as that attrib-
uted to object motion. By modifying these metrics to elim-
inate the temporal inter-frame metrics, these methods can
also be used for image segmentation evaluation. In these
methods:

VCP consists of a set of metrics for both intra-object mea-
sures (e.g. shape regularity, spatial uniformity, etc.)
and inter-object measures (such as contrast). Fur-
2 In other words, region entropy is the ‘‘intensity’’ entropy of a region.
3 In other words, layout entropy is the ‘‘size’’ entropy of a region.
thermore, each object in the image is weighted
according to its Relevance, which is an estimate of
how much the human reviewer’s attention is
attracted to that object.

VEST is a metric measuring the spatial color contrast along
the boundary of each object.

3.2. The criteria of unsupervised evaluation

What constitutes a good segmentation? Haralick and
Shapiro [48] proposed four criteria:

(i) Regions should be uniform and homogeneous with
respect to some characteristic(s)

(ii) Adjacent regions should have significant differences
with respect to the characteristic on which they are
uniform

(iii) Region interiors should be simple and without holes
(iv) Boundaries should be simple, not ragged, and be spa-

tially accurate

The first two criteria examine characteristics of objects
in the image, so we call them Characteristic Criteria,
whereas the last two criteria are based on how likely each
region is regarded as a single object by people, thus we call
them Semantic Criteria. Many segmentation evaluation
methods are based, either explicitly or implicitly, upon
the characteristic criteria, perhaps because the semantic cri-
teria are highly application- or object-dependent. For
example, criterion (3) may not hold for the segmentation
of strongly textured images, and (4) is usually not appro-
priate for natural images.

These criteria have become the de facto standard for
unsupervised image segmentation evaluation. Although
not all evaluation methods in Table 1 explicitly claim what
criteria their metrics are based on, these metrics can be lar-
gely divided into three categories: those for measuring
intra-region uniformity (criterion 1), those for measuring
inter-region disparity (criterion 2), and those for measuring
semantic cues of objects, such as shape (criterion 3 and 4).
These metrics are then combined in some fashion, such as
through the weighted sum of inter- and intra-region metrics
or through the division of intra-region metrics by inter-
region metrics, to give a composite effectiveness measure.

These metrics are instantiated differently for each
method. These metrics, and how they are utilized in each
of the existing methods, are summarized in Table 2. The
details of these metrics are presented in the following subsec-
tions and their mathematical definitions are given in Appen-
dix A (For the complete mathematical definitions of these
evaluation methods, please refer to the original papers.).

3.3. Intra-region uniformity metrics

Intra-region uniformity metrics are based on criterion
(1). It is an intuitive and effective way to evaluate segmen-



Table 2
The details of proposed unsupervised evaluation methods

Name Intra- region Inter-region Intra-and inter-region Semantic metrics

Metrics Combination Metrics Combination Combination

DWR [11] Color error Sum — — — —
Busy [11] Texture Sum — — — —
g [39] Squared color error Sumw (size) Region color difference Sumw (size) Intra ‚ inter —
PV [40] Squared color error Sumw (size) Region color difference Sumw (HVS) Show both —

Texture Sum
NU [41] Squared color error Sum — — — —
SM [41] — — — — — Shape
SE [16] Entropy — — — — —
F [42] Squared color error Penal (sum) — — — —
F 0 [43] Squared color error Penal (sum) — — — —
Q [43] Squared color error Penal (sum) — — — —
FRC [44] Squared color error Sumw (size) Region color difference Sumw (size) Intra � inter —

Texture Sumw (size) Barycenter distance Sumw (size)
VCP [18] Texture Sumw (HVS) Local color difference Sumw (HVS) Sumw (weights) Shape
Zeb [45] Color error Sumw (size) Local color difference Sumw (length) (Intra‚inter)jinter —
ECW [46] Color error Sum Region color difference Sumw (length) Sumj (show both) —
E [47] Entropy Sumw (size) Entropy — Sum –
VEST [2] — — Local color difference Sumw (length) — —

‘‘j’’ is or; sum is unweighted sum; sumw(x) denotes summing per-region measures weighted by x; and penal(sum) denotes summary with some additional
function applied to improve performance.
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tation performance by measuring its intra-region unifor-
mity, so almost all unsupervised methods contain metrics
to capture it. While a variety of intra-region uniformity
metrics have been proposed, all are based on four quanti-
ties: color error, squared color error, texture, and entropy.
3.3.1. Metrics based on color error

Evaluation method ECW computes the intra-region
color error, Eintra (see Eq. (A4) in Appendix A), as the pro-
portion of misclassified pixels in an image. A misclassified
pixel is defined as a pixel whose color error (in L*a*b

space) between its original color and the average color of
its region is higher than a pre-defined threshold.

Evaluation method Zeb uses internal contrast, Ii (A5),
to measure the uniformity of each region. Ii is defined as
the average MaxContrast in that region, where MaxCon-

trast is the largest luminance difference between a pixel
and its neighboring pixels in the same region.

Evaluation method DWR (A3) is designed for evaluating
foreground/background segmentation methods based on
thresholding. It measures the difference between the gray-
level of the original image and the segmented image after
thresholding.
4 Although all six metrics constituting PV are defined on a per-area
basis, the ones other than U and texture measure Ra are related to
boundaries and pixels on different sides of boundaries, thus inter-region in
nature.
3.3.2. Metrics based on squared color error

Evaluation method g was also defined for evaluating
foreground/background segmentation methods based on
thresholding. Its intra-region uniformity measure, the
within-class variance, r2

W (A6), is the sum of the squared
color error of the foreground object and the background,
weighted by their respective sizes.

Evaluation method FRC uses D(I) (A9) as its measure of
intra-region uniformity. In the version of FRC designed for
non-textured images, D(I) is computed as the average
squared color error of each region weighted by its size.

Evaluation method PV uses the gray-level uniformity
measure, U (A7), to describe intra-region uniformity.4

For a gray-scale image, U is a measure of the weighted
sum of the squared gray-level error of each region.

Evaluation method NU was also defined for evaluating
foreground/background segmentation methods based on
thresholding. It’s region uniformity measure, the normal-

ized uniformity measure, NU (A8), is the normalized sum
of the squared color error of the foreground object and
the background.

Methods F (A10), F 0 (A11) and Q (A12) are based on
the average squared color error of each region, although
different penalties, either additive and multiplicative, are
used to counteract over-segmentation (and under-segmen-
tation, in the case of Q). Both F and F 0 use the sum of
the squared color error of each region, averaged by the
square root of region size, whereas Q averages the squared
color error by the logarithm of its size (plus 1).
3.3.3. Metrics based on texture

Evaluation method Busy measures the ‘‘busyness’’ of an
image, assuming that a ‘‘smoother’’ image is preferred. The
‘‘busyness’’ of an image is computed as either the sum of
the absolute values of 4- (or 8-) neighbor Laplacians, or
is based on the gray-level co-occurrence matrix of the
image. Both metrics actually measure the texture or edges



5 A segmentation layout is an image used to describe the result of a
segmentation. It has the same dimensions as the segmented image, and
uses different colors to denote different segments. In a segmentation
layout, any two pixels in the same segment have the same color, and any
two pixels in different segments have different colors.
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across the whole image, so Busy effectively only measures
global texture uniformity, not individual region uniformity.

Evaluation method PV used the texture measure, R

(A13), to describe intra-region texture uniformity. It com-
putes the texture uniformity based on the average number
of regions per section of the segmented image. Like Busy,
PV also only provides a measure of global texture unifor-
mity, not individual region uniformity.

Evaluation method VCP uses spatial uniformity to evalu-
ate the intra-region uniformity, which includes two metrics,
SI (A14) and textvar (A15). SI measures the standard devia-
tion of the Sobel coefficients of each region, and text var is
computed as the weighted sum of the variances of the pixels’
color (YUV components) in each region. So VCP uses the tex-
ture within each region as the measure of uniformity.

Evaluation method FRC, as mentioned above, uses D(I)
(A9) as its measure of intra-region uniformity. In the ver-
sion of FRC designed for textured images, the same equa-
tion is used for D(I), but instead of computing the
squared error from the color components, the squared
error is computed from a set of texture attribute vectors
computed over a sliding window.

3.3.4. Metrics based on entropy

Evaluation method SE uses an entropy-based segmenta-
tion evaluation metric, H(2) (A16), as its measure of intra-
region uniformity. H(2) is based on the second-order local
entropy. It measures intra-region uniformity as the entropy
over the co-occurrence matrix containing the probabilities
for pixel intensity pairs i and j, for all values of i and j.

Evaluation method E uses region entropy, Hr (A17), as
the measure of intra-region uniformity, which is computed
as the entropy for the pixels’ luminance values over all pix-
els within a region.

3.4. Inter-region disparity metrics

Inter-region disparity metrics are based on criterion (2).
All inter-region disparity metrics basically use one of four
features: average color difference between regions, local
color difference along boundaries, barycenter distance,
and layout entropy.

3.4.1. Metrics based on average color between regions

Evaluation method g uses the between-class variance, r2
B

(A18), as the disparity measure, which is the squared differ-
ence of the average color between the foreground object
and the background.

Evaluation method PV uses the region contrast, C

(A19), to describe the inter-region disparity. C is the sum
of the per-region contrast measures, weighted by a function
approximating the human contrast sensitivity curve. The
per-region contrast measure is the weighted sum of the dif-
ferences between the average color of this region and its
adjacent regions divided by the sum of their average colors.

Evaluation method FRC uses DðIÞ (A20) as its measure
of global inter-region disparity. In the version of FRC
designed for non-textured images, DðIÞ is computed as
the average of the weighted sum of DðRiÞ over all regions,
Ri. For each region, DðRiÞ is computed as the difference in
the average gray-level between region Ri and other regions
in the image, divided by the number of gray levels in the
image.

Evaluation method ECW uses Einter (A21) to measure the
inter-region color difference, which is defined as the
weighted proportion of pixels whose color difference
between its original color and the average region color in
the other region is less that a pre-defined threshold. The
weights are based on the boundary length between the
region and each of the separate regions.
3.4.2. Metrics based on difference of local color along

boundaries

Evaluation method VCP uses contrast (A22) as the mea-
sure of inter-object disparity. It is defined as the normalized
sum of the local contrast for the pixels on the boundary of a
region, where the local contrast of each pixel is the sum of
the largest differences between its Y, U and V components
and that of its four neighbors.

Evaluation method Zeb uses external contrast Ei (A23)
to measure the inter-region disparity. Ei is defined as the
average MaxBorderContrast for all border pixels in that
region, where MaxBorderContrast is the largest difference
in luminance between a pixel and its neighboring pixels
in separate regions.

Evaluation method VEST (A24) measures the spatial
color contrast along the boundary of each region. Its key
component is the difference between the average colors of
the pixel neighborhoods (a pixel and its neighboring pixels
in the same region) on opposing sides of a boundary line,
averaged by the total number of normal lines [2] drawn
on the object boundary.
3.4.3. Metrics based on barycenter distance

Evaluation method FRC, as mentioned above, uses DðIÞ
(A25) as its measure of global inter-region disparity. In the
version of FRC designed for textured images, an alternate
definition of DðIÞ is used, which is computed as the sum
of the disparity between two regions. The disparity is com-
puted as the Euclidean distance between the barycenters of
the two regions, divided by the magnitude of their barycen-
ters. DðIÞ indirectly measures the complexity of the
segmentation.
3.4.4. Metrics based on layout entropy

Evaluation method E uses layout entropy, Hl (A26), as
the measure of inter-region disparity. Hl is defined as the
entropy of the pixels in a segmentation layout.5 Hl does
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not evaluate inter-region disparity directly, but instead
works together with the region entropy, Hr (A17), to take
disparity into account.

3.5. Shape measures

Shape measures are more semantically meaningful than
uniformity or disparity measures, but they are highly
dependent on the applications and the type of images.
For example, while shape information is very beneficial
for the segmentation of ‘‘sunset’’ images, it will work
poorly when it is added to evaluate the segmentation of
‘‘mountain’’ or ‘‘waterfall’’ images.

Evaluation method SM (A27) utilizes a shape measure
that is the sum of the gradients at each pixel whose feature
value exceeds the segmentation threshold and the average
value of its neighbors.

Evaluation method VCP uses a few shape regularity

metrics to measure geometrical properties of objects, such
as compactness (A28), circularity (A29), and elongation

(A30).

3.6. Combining into composite metrics

The metrics just defined in Sections 3.3, 3.4 and 3.5 are
usually defined on a per-region basis. The evaluation of the
whole image requires the combination of the metrics for
each individual region. Furthermore, most of the unsuper-
vised evaluation methods consist of both inter-region met-
rics and intra-region metrics. Some of them also
incorporate shape metrics. The way each unsupervised
measure combines these metrics is critical for its evaluation
performance.

There are two key aspects regarding how the various
measures are combined. The first aspect addresses how
the individual measures for each region are combined into
one composite metric for intra-region uniformity, inter-
region disparity, or shape. The second aspect addresses
how the separate composite metrics (intra-region unifor-
mity, inter-region disparity, and shape) are combined into
a single overall evaluation metric.

For the first aspect, which addresses how the individual
measures for each region are combined, there are five dif-
ferent combination methods used. These are discussed
below, and also detailed for each specific evaluation mea-
sure in Table 2:

3.6.1. Unweighted sum of the individual per-region measures

Evaluation methods DWR, Busy, NU, ECW, and PV

use an unweighted sum to combine the individual mea-
sures for each region into a single composite metric for
intra-region uniformity. DWR sums the gray-level color
error for each region of all regions. Similarly, ECW sums
the per-region color differences, and NU sums the per-
region squared color errors over all regions. And finally,
Busy and PV sum their per-region texture metrics across
all regions.
3.6.2. Sum of the individual per-region measures, weighted by

their size

Most methods based on squared color error weight the
regions according to their size in order to sum the individ-
ual measures. Such methods include the intra-region mea-
sures of g and FRC, and the gray-level uniformity
measure (U) of PV. Zeb and E6 use this method for com-
bining their per-region intra-region uniformity measures.
g and FRC also use this method to sum their per-region
inter-region disparity measures.

3.6.3. Sum of the individual per-region measures, weighted by

the Human Visual System (HVS)

Combining the measures for each region using equal
weight, as in (1), or weighting them by their size, as in (2)
are straightforward, but oftentimes different objects in an
image may attract different degrees of attention from
human viewers. Consequently, some measures compute
weights based on the HVS, such as the weights that
approximate the human contrast sensitivity curve for C

in PV, and the relevance weight in VCP. The relevance
reflects the importance of an object in terms of the HVS,
and can be computed by the combination of a set of met-
rics expressing the features that tends to capture the view-
er’s attention, including texture, compactness, circularity,
elongation, size of region, and the average value of Y

and V components for every pixel in the region.

3.6.4. Sum of the individual per-region measures, weighted by

boundary length
Some of the methods generate their composite inter-

region disparity measure by weighting the per-region
inter-region disparity values by the length of the adjacent
boundaries. This is particularly common in those methods
that use the local color difference in the neighborhood of
the boundaries, such as in Zeb, ECW and VEST.

3.6.5. Sum of the individual per-region measures, with a
penalty

Some of the methods do not measure inter-object dis-
parity, but instead use a penalty to make over-segmented
images unfavorable. These methods include F, F 0, and Q.

For the second aspect of combining, which addresses
how to combine the intra-region measures with the inter-
region measures, there are currently four different ways
to combine them. These are discussed below, and also
detailed for each specific evaluation measure in Table 2:

(i) one approach is to sum the metrics so that inter- and
intra-region metrics can complement each other,
either in an unweighted fashion, such as in E and
ECW, or using weights, as in VCP.

(ii) another alternative is to simply return the individual
metrics separately (i.e. essentially not combining the
metrics), either in a table, as in PV, or in a graph,
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as in ECW.When both inter- and intra-region metrics
are measuring color differences, larger inter-region
errors and smaller intra-region errors are preferred.
Consequently, such methods may combine them in
one of the following ways:

(iii) taking the ratio of the intra-region and inter-region
measures by dividing them, as in g and Zeb:

ðintra-region unif Þ � ðinter-region dispÞ

(iv) taking the difference of the intra-region and inter-
region measures by subtracting them, as in FRC:
ðintra-region unif Þ � ðinter-region dispÞ
3.7. Edge-based segmentation evaluation

Image segmentation methods can be largely divided into
three categories: pixel-based methods, region-based meth-

ods, and boundary-based methods. Pixel-based methods

group the pixels with similar features, such as color or tex-
ture, without considering the spatial relationship among
pixel groups (consequently, regions formed with these seg-
mentation methods can be non-contiguous.) Examples of
these methods include clustering [49], adaptive K-means
method [50], and histogram thresholding [51], among oth-
ers. In region-based methods, objects are defined as regions
of pixels which have homogeneous characteristics. Region-
based methods group the pixels according to their similar-
ities and spatial connectedness. Examples of these methods
include split-and-merge methods [52], and region-growing
methods [53], among others.

The third category of segmentation methods, boundary-

based methods, are quite distinct from pixel- and region-
based methods. In boundary-based methods, objects are
defined as pixels surrounded by closed boundaries. In con-
trast with pixel-based and region-based methods, bound-
ary-based segmentation methods offer the potential
advantage that pixels within a closed boundary can have
significant variations in their characteristics; i.e. regions
may be more heterogeneous in feature values, whereas
pixel- and region-based methods are more homogeneous
in feature values. Hence, boundary-based methods offer
the potential for isolating complex or compound objects
into a single region, whereas pixel- and region-based meth-
ods are usually unable to do this. Examples of boundary
detection methods include edge-flow [54], and color snakes
[55], among others.

Unfortunately, the advantage of boundary-based meth-
ods for segmentation presents a problem for unsupervised
segmentation evaluation methods. This is the problem of
discerning whether an edge corresponds to a region bound-
ary, or is simply an intra-region edge. Consequently, to
date, edges have not been used with unsupervised evalua-
tion methods. Edges have been used in some supervised
evaluation methods [56], which have ground truth refer-
ence images that include edges, but in unsupervised evalu-
ation methods, edges are currently used only for measuring
the characteristic features of regions, after the regions have
already been determined. An example is the PV evaluation
method, which uses edges as a measure of texture, specify-
ing line contrast and line connectivity. Again, the problem
with edges in unsupervised evaluation is determining
whether an edge is a region boundary or simply an edge
within a region. Edges (before they are connected as
boundaries to form regions) are simply an intermediate
product of feature extraction. While this is not necessarily
an insurmountable problem, it is one that has as yet not
been tackled by the unsupervised segmentation evaluation
research community.

4. Experiments

We performed four sets of experiments to examine the
performance of these unsupervised segmentation evalua-
tion metrics. These four experiments were designed to dem-
onstrate the effectiveness and bias of these evaluation
measures over various types of images and across different
segmentation algorithms. The first experiment examines
the performance of the evaluation measures on synthetic
images. The second and third experiments examine the per-
formance of the metrics on machine segmentations, with
the former comparing segmentations produced by the same
segmentation algorithm (with varying numbers of seg-
ments), while the latter compares segmentations produced
by different segmentation algorithms. The final experiment
examines the performance of the evaluation metrics in
comparing machine segmentations to manually-generated
human segmentations.

Since subjective segmentation evaluation (over a suffi-
cient-sized set of human evaluators) is commonly accepted
as producing the highest-quality evaluation results, in each
of these experiments we used a group of human evaluators
(with diverse backgrounds) to subjectively evaluate the seg-
mentation results. The consensus of these evaluators pro-
vides a subjective measure of the quality of each
segmented image. These subjective evaluations are then
used for comparison with the objective quality results from
the unsupervised evaluation methods on each segmented
image. The better unsupervised evaluation methods are
those that demonstrate performance closer to the subjec-
tive evaluation results.

These experiments examine the performance of nine
evaluation metrics: F, F 0, Q, E, Vs, Vm, ECW, Zeb, and
FRC. The remaining evaluation measures are not used
because they are unsuited to general image segmentation.
The majority of the other evaluation measures only target
evaluation of gray-scale images or foreground-background
segmentations. The one exception, VEST, is also not used in
these experiments, as it is only a partial evaluation metric,
measuring only inter-region disparity; it does not consider
intra-region uniformity. So, the metrics F, F 0, Q, E, VCP,
ECW, Zeb, and FRC constitute the full set of metrics that
are suitable for use with standard color images and
multi-region segmentation algorithms. For VCP, we imple-
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mented both variations, Vs and Vm, which differ in the
weights used to combine their intra- and inter-region met-
rics [57].
Fig. 3. Segmentation layouts for synthetic images.
4.1. Experiment 1: Synthetic images

First we compare the performance of the unsupervised
segmentation evaluation methods on three sets of synthetic
images from the Brodatz album [58]. Each of the three sets
of images contains 100 images, and each synthetic image
has five regions. The images in set 1 contain five regions,
each with uniform color. For the images in set 2, two of
their five regions are highly textured, and the three remain-
ing regions are of uniform color, with noise. Finally, in set
3, all five regions in each of the images are highly textured.
Example images from these sets are shown in Fig. 2. Image
sets 2 and 3 are from [59].

Since there are 5 distinct regions in each of the synthetic
images, it is evident that the optimal segmentation for all of
these images is segmentation layout 5 in Fig. 3, which con-
tains exactly 5 segments, one for each region in the syn-
thetic images. So clearly this segmentation result should
be identified by the evaluation measures as the best seg-
mentation for the synthetic images. In addition to the opti-
mal segmentation, we use three under-segmented layouts
and three over-segmented layouts for examining the perfor-
mance of the evaluation metrics. To produce the under-seg-
mented layouts, we merged some of the regions in the
optimal segmentation (segmentation layout 5) to generate
the three under-segmented layouts, which are shown as lay-
outs 2–4 in Fig. 3, with 2, 3 and 4 segments, respectively. In
a similar fashion, we generated the three over-segmented
layouts by further dividing some of the regions in the opti-
mal segmentation layout. These are shown as layouts 6–8
in Fig. 3, with 6, 7 and 8 segments, respectively.

These 7 segmentation layouts provide 7 different possi-
ble segmentations for the images in the three synthetic
image sets. Upon applying the unsupervised segmentation
evaluation measures to these 7 segmentation layouts, each
Fig. 2. Example images from the three sets of synthetic images.
evaluation measure gives a quality score to each layout,
denoting its ‘‘goodness’’. Since segmentation layout 5 is
the optimal segmentation, it should receive the best score
among the 7 layouts. However, many of the evaluation
measures frequently selected other segmentation layouts.
In the event an evaluation measure gives the best score to
a layout between 2 and 4, it means that the evaluation mea-
sure favors under-segmentation. Furthermore, the lower
the layout number is, the more bias the evaluation measure
has towards under-segmentation. Conversely, if the best
score goes to a layout between 6 and 8, it means that the
evaluation measure favors over-segmentation. Again, the
higher the layout number is, the more bias the evaluation
measure has towards over-segmentation. Consequently,
we can use the synthetic image sets and the 7 segmentation
layouts to examine the bias of these evaluation methods.

To quantitatively measure the bias, we first define the
bias distance of an evaluation measure. If N denotes
the layout number that an evaluation measure selects as
the best segmentation for an image, then we can define bias

distance = N � 5. So, a negative bias distance means a bias
towards under-segmentation, and a positive one means a
bias towards over-segmentation.

The average bias distances for the nine evaluation mea-
sures on the three synthetic image sets are shown in Fig. 4.
For set 1, since all the segments are of uniform color, this
experiment predominantly examines the bias introduced by
Fig. 4. The average bias distances for 9 evaluation measures on the images
in experimental one.



Fig. 5. IHS segmentations of different resolution (shown as a segmenta-
tion layouts displaying the average color for each region) (For interpre-
tation of the references to colours in this figure legend, the reader is
referred to the web version of this paper.).
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the intra-region disparity metrics. As evident, Vs and Vm

have small biases towards under-segmentation and over-
segmentation, respectively. Since Vs and Vm are simply
two variations of VCP that differ only in their weighting
mechanisms, we can conclude that for uniform regions
the intra- and inter-region metrics in VCP counteract each
other well. Conversely, in examining ECW, Zeb, and FRC,
it is clear that they are all strongly-biased towards under-
segmentation for images with uniform regions. However,
since few real images contain such uniform regions, the
performance results of the evaluation measures on sets 2
and 3 will be more representative for most images.

Also notice that for set 1, no bias distance is reported for
F, F 0 and Q. In regions with perfectly uniform color, their
intra-region uniformity measures, which use the squared
color error, become zero both for the optimal segmentation
layout as well as the over-segmented layouts. So, F, F 0 and
Q achieve their minimum (best) value for all segmentation
layouts between 5 and 8. No bias distance is reported for E

either, because E is constant when all segments are uni-
form. In other words, these evaluation methods are not suf-
ficiently discriminative to evaluate images consisting of
perfectly uniform regions. From a different perspective, if
N is randomly chosen from the set of segmentations that
are tied as the best results by an evaluation method, the
bias distance for F, F 0, Q and E would be 1.5. So, they
all statistically favor over-segmentation when the regions
are uniform.

Fig. 4 also presents the results for the nine evaluation
measures on the images in set 2 (textured images) and set
3 (highly-textured images). The results show that F, F 0, E

and ECW all have fairly strong biases towards under-seg-
mentation for textured and highly-textured images. Zeb

and Q are also moderately biased towards under-segmenta-
tion, while Vs, Vm and FRC are much more balanced, with
only small biases towards over-segmentation.

The results from this first experiment demonstrate how
the content of the image, and specifically, the amount of
texture, affects its performance. ECW is consistently
strongly biased towards under-segmentation, regardless
of the degree of texture. E, F, F 0 and Q are biased towards
under-segmentation, in a degree proportional to the
amount of texture in the image, with E being more biased,
and Q being less biased. Zeb is also biased towards under-
segmentation, but its bias is inversely proportional to the
amount of texture. FRC has a negligible bias when the
images are textured, but has a large bias towards under-
segmentation when the regions are uniform. Vs and Vm

have only minimal bias, slight favoring under-segmentation
and over-segmentation in textured and highly-textured
images, respectively.

4.2. Experiment 2: Machine vs. Machine segmentation by

the same segmentation method

While experiment one was insightful in delineating the
biases in the segmentation evaluation measures under vary-
ing degrees of texture, the images used are not representa-
tive of most real-world images. The images were synthetic
and the segmentations ideal. In this and subsequent exper-
iments, we therefore shift over to real-world images for
testing the effectiveness of the evaluation measures. In par-
ticular, this second experiment examines the performance
of the evaluation measures in discerning which segmenta-
tions are better among segmentations produced by the
same segmentation algorithm.

The test images in this experiment are from the aircraft
images in the Military Graphics Collection [60]. For each
image we create a series of segmentations where the num-
ber of segments varies from 2 to 20, using the Improved
Hierarchical Segmentation (IHS) [61] algorithm with fast
texture feature extraction [62]. Separately, a subjective
evaluation was performed in which each human evaluator
selected the best three segmentations and the worst three
segmentations in his/her judgment. From the set of best
and worst segmentations for each human evaluator, the
segmentations from all the best sets for the seven human
evaluators were aggregately combined into best set, B. Sim-
ilarly, the segmentations from all the worst sets for the
seven human evaluators were aggregately combined into
worst set, W. For each original image, a segmentation in
B is paired with a segmentation in W. We created 250 pairs
of segmentations using this approach. Examples are shown
in Fig. 5. The images in the leftmost column are the origi-
nal images, those in the middle column are segmentations
from B, and the rightmost column shows segmentations
from W.

The nine evaluation methods were applied to these
image pairs, and their results were then compared to
human evaluation results. For each image pair, an evalua-
tion measure should give the better score to the segmenta-
tion from the best set, B. An evaluation measure that gives
the better score to the segmentation from the worst set, W,
runs contrary to the subjective evaluation results. The effec-
tiveness of all nine evaluation measures for this experiment
are shown in Table 3. The effectiveness is described by
Accuracy, which is defined as the percentage of the number
of times the evaluation measure correctly matches human



Table 3
Accuracy (%) of the evaluation measures in Experiment 2

F F 0 Q E Vs Vm ECW Zeb FRC

47.2 47.2 74.0 33.6 60.8 60.4 33.6 68.4 61.6
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evaluation result (i.e. the better score was given to the
image in the pair from the best set, B), divided by the total
number of comparisons in the experiment (i.e. 250 here).

The results, given in Table 3, once again demonstrate
the bias of many of the evaluation methods towards
under-segmentation. In 66.7% of the 250 segmentation
pairs, the better segmentation (the segmentation from the
best set, B) has a greater number of segments, so those eval-
uation methods that are biased strongly towards under-seg-
mentation on textured images (as determined in experiment
one), namely F, F 0, E, and ECW, achieve low accuracy in
this experiment. On the other hand, those measures that
are more balanced or less biased towards under-segmenta-
tion, i.e. FRC, Vm, Vs, Q, and Zeb, achieve higher accuracy.
Overall, Q performs best here.
4.3. Experiment 3: Machine vs. machine segmentation by

different segmentation algorithms

While accurately comparing different segmentations
produced by the same segmentation algorithm is suffi-
ciently difficulty, we expect that it is even more difficult
to compare segmentations produced by different segmenta-
tion algorithms. To examine this, we performed a third
experiment using the both the IHS and the Edge Detection
and Image Segmentation (EDISON) System [64], which is
a low-level feature extraction tool that integrates confi-
dence-based edge detection and mean shift-based image
segmentation. For this experiment, we used images from
the Berkeley Segmentation Dataset [63] as our test images.
296 images from this database were segmented by both IHS
and EDISON. The IHS and EDISON segmentations for
each image were paired together, resulting in 296 segmen-
tation pairs for experiment three. Two of the sample
images and their segmentations by IHS and EDISON are
shown in Fig. 6.

Like the last experiment, this experiment similarly com-
pares the objective results from the nine unsupervised seg-
Fig. 6. Image examples segmented by EDISON and IHS.
mentation evaluation measures to subjective evaluation
results. The subjective evaluation results were produced
by a group of six human evaluators that, for each pair,
compared the segmentations from both algorithms and
selected the one that they considered better. Only those
images where at least four evaluators agreed which segmen-
tation is best were used.

Table 4 demonstrates the performance of these evalua-
tion measures in experiment three. Results show that the
accuracies for Vs, Vm, FRC and Zeb are around 55%, while
the accuracies for the other evaluators are even lower.

This experiment indicates once again that many of the
evaluation methods are biased towards under-segmenta-
tion. Because IHS and Edison commonly produce segmen-
tations with different numbers of regions, it was readily
apparent that many of the evaluation methods favored
the segmentation in each pair with fewer segments. Upon
close examination of the results we found that the percent-
age of the tests in which the segmentation with fewer
regions was judged the better segmentation is: 74.0% for
F and F 0, 78.7% for ECW, 62.16% for E, 61.8% for Q and
about 50% for the others, whereas the human evaluators
found the segmentations with fewer segments to be better
in only 36.8% of the segmentation pairs. In other words,
F, F 0, ECW again demonstrate a strong bias towards
under-segmentation, which is why their accuracies are so
much lower than the other evaluators in this experiment.
Q and E are also moderately biased towards under-segmen-
tation, similarly accounting for their lower accuracies.
Consequently, these methods all performed poorly in this
experiment since they prefer under-segmented images while
the human evaluators preferred more highly-segmented
results.

Another reason we anticipate this experiment resulted in
the lower accuracies than the prior experiments is the fact
that, in many cases the two segmentations in a pair are
so similar that it was hard even for human evaluators to
determine which one is better. And since the human evalu-
ators had such difficulty, it is unsurprising that the evalua-
tion measures had similar difficulties, resulting in the low
accuracies on this experiment.

4.4. Experiment 4: Human vs. machine segmentation

Lastly, we performed a final experiment that contrasts
machine segmentations versus the ideal segmentations of
those images, as specified by humans. This is a crucial
experiment, as it indicates which, if any, of the evaluation
measures can distinguish the human ideal for segmentation
as the better segmentation, over machine segmentations.
Human segmentations differ from machine segmentations
Table 4
The accuracy (%) of 9 evaluation measures in Experiment 3

F F 0 Q E Vs Vm ECW Zeb FRC

38.9 38.9 47.0 41.2 54.4 54.4 30.4 56.1 52.7
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in that they are determined based on human perceptual
organization, thus their segments are semantically more
meaningful.

In this experiment, we again use the images from the
Berkeley Segmentation Dataset [63] as our test images.
The Berkeley Segmentation Dataset is particularly useful
for this experiment, in that it already provides manually-
segmented versions (often multiple manually-segmented
versions) of the images in the database. For this experi-
ment, we use these human-generated segmentations for
comparison with machine segmentations produced by the
EDISON segmentation algorithm. For each human-gener-
ated segmentation in the database, we generate a machine
segmentation with an equal number of segments. Each
human segmentation is then paired with the corresponding
machine segmentation with the same number of segments.
There are 196 pairs of segmentations in our experiments,
two of which are shown in Fig. 7.

Again, we apply the nine evaluation measures on these
image pairs and compare their results to human evaluation.
The results from a group of six human evaluators con-
firmed that for each image, the human segmentation is bet-
ter than the machine segmentation.

The performance of these evaluation measures are
shown in Table 5. These results demonstrate that most of
the evaluation methods disagree with humans, instead
selecting the machine segmentation as the better segmenta-
tion. There are two major reasons for this result. The first
reason behind this disparity is that most of the evaluation
measures are based on the same type of feature metrics as
the machine-based segmentation algorithms themselves.
Such measures as intra-region uniformity and inter-region
disparity are based on maximizing or minimizing features
such as color error, texture, etc., which are the same fea-
tures used frequently in machine algorithms for segmenting
Fig. 7. Human and machine segmentation with the same number of
segments (shown as layout where the colors are only used to differentiate
segments) (For interpretation of the references to colours in this figure
legend, the reader is referred to the web version of this paper.).

Table 5
The accuracy (%) of 9 evaluation measures in Experiment 4

F F 0 Q E Vs Vm ECW Zeb FRC

19.4 15.3 4.1 82.1 1.0 4.1 17.9 9.2 76.5
images. Consequently, it is not surprising that most evalu-
ation metrics prefer machine segmentations. In fact, many
of the existing segmentation algorithms could be re-engi-
neered to function as segmentation evaluation methods,
as discussed below in Section 7.

The second, and foremost, reason behind this disparity
is that the manually-segmented images are based on
humans’ semantic understanding of the real-world objects
in the image. Human viewers can and do segment out
real-world objects which contain multiple disparate sub-
regions. For example, if you consider the bird in Fig. 7,
there are four major sub-regions that comprise the bird.
The first is the head region, which is predominantly black
with little texture. The second is the neck ring, which is
white with negligible texture. The chest area is an orange-
brown color with some texture. And finally, the back and
tail comprise a well-textured coloring of various shades
of brown and tan. Human viewers combine these four
sub-regions into a single segment based off their recogni-
tion of the object as a bird. Conversely, machine algo-
rithms will much more commonly segment these sub-
regions separately, or potentially combine them with the
background regions, as illustrated in the machine segmen-
tation for the bird in Fig. 7.

A particular reason that most of the segmentation eval-
uation methods perform poorly when evaluating human-
segmented images is evident in an analysis of the mathe-
matical equations defining the evaluation metrics. Notice
from Table 2 that for intra-region homogeneity, the major-
ity of the methods use color error or squared color error.
Likewise, for the inter-region disparity metric, the majority
of the methods use region color difference. The use of these
metrics is problematic for human segmentations as that
they all implicitly assume a region has a single indicative
average value. Further, the color error and squared color
error metrics in intra-region homogeneity assume an inten-
sity histogram with a single Gaussian-like distribution.
Since human segmentations frequently contain segments
with multiple sub-regions, it is clear that these assumptions
are invalid for such segments. In these cases, the average
values and squared color errors will clearly produce values
that poorly represent the sub-regions of such segments.

Given the above understanding, it is not surprising that
the majority of the segmentation evaluation measures
strongly favored machine segmentations over human seg-
mentations. Of the nine evaluation measures, seven of the
measures, F, F 0, Q, Vs, Vm, ECW, and Zeb, fall into this
category. F, F 0, and Q are strictly based on squared color
error for intra-region homogeneity, while ECW uses color
error for intra-region homogeneity and region color differ-
ence for inter-region disparity, so all four of these measures
were prone to problem of an invalid assumption for the
intra-segment intensity distribution. Zeb uses local color
difference for inter-region disparity, which is a better metric
since it only considers pixels on the boundary edges
between regions, but it also uses color difference for
intra-region homogeneity, and so also fell victim to the
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invalid distribution assumption. Like Zeb, Vs and Vm also
use local color difference for inter-region disparity, so their
disparity metric is safe from the distribution assumption
problem. However, while they use a texture measure for
intra-region homogeneity, instead of color error or squared
color error, their texture measures are largely based on the
assumption of a single underlying Gaussian-like distribu-
tion, so Vs and Vm are also prone to the distribution
assumption error.

Of the remaining two evaluation measures, E clearly
performed the best, achieving dramatically better results
than most of the other measures. The reason behind this
is two-fold. First, E does not use color error or squared
color error for intra-region homogeneity, and similarly
does not rely upon region averages for inter-region dis-
parity. Instead, it uses a more flexible distribution
assumption, assuming only that good segments will have
a set of pixel intensities such that pixels with those inten-
sities will occur frequently in the segment. This assump-
tion is able to accurately model segments containing
multiple sub-regions because it does not place any
assumptions on the correlation of pixels with different
intensities, so it can model multiple distributions, each
of which has a subset of pixels with a set of frequently
occurring intensities.

The second reason E performs well for the human seg-
mentations is due to E’s bias towards unequal-sized seg-
ments, which is very complementary with the manner in
which humans interpret images. Images frequently contain
real-world objects that very widely in size, and because
humans generally interpret images by grouping semanti-
cally-related regions into larger, more meaningful segments
corresponding to real-world objects (e.g. grouping the sep-
arate regions of a human body corresponding to limbs,
torso, face, hair, etc. into a single complex object represent-
ing a human being), regions in human segmentations tend
to vary much more dramatically in size than machine-
based segmentations, such as those produced by EDISON.
E likes the unequal-sized regions in the human segmenta-
tion better than the more equal-sized regions in the
machine segmentations, because its layout entropy, by def-
inition, favors unequal-sized regions. Mathematically,
given a number of segments, X, within an image (or subset
of an image) the logarithm of the probability with which a
pixel belongs to a region gives a higher entropy value (i.e. a
poorer evaluation score) to X regions that are of similar
size, and gives lower values (i.e. better evaluation scores)
to X segments that vary widely in size. Consequently, in
comparing two segmentations, it tends to favor the seg-
mentation in which a few segments dominate, which often
matches how humans define objects.

FRC is the one other segmentation evaluation method
that performed well in distinguishing that human segmen-
tations are better than machine segmentations. At first
glance, it appears surprising that FRC performed well, con-
sidering that it may use squared color error for intra-region
homogeneity, and region color difference for inter-region
disparity. However, recall from Section 3 that FRC has
two versions, one for non-textured images and one for tex-
tured images. Since many of the textures are well textured
and FRC is less prone to the distribution assumption prob-
lem in its textured version. Additionally, the combining
method used by FRC helps compensate to some degree
for the distribution assumption problem (in both the tex-
tured and non-textured versions). Finally, in its textured
version, the inter-region disparity metric is computed as
the distance between the barycenters of regions, which indi-
rectly captures and factors into account the diversity in
region sizes. And as we saw with E, this conforms well to
the way humans interpret images, which is particularly
beneficial to its performance.

Note that the evaluators perform significantly differently
in Experiment 4 as they do in Experiment 2 and Experi-
ment 3, although in all experiments their performances
are compared against ground-truths from human evalua-
tors. As we analyze in this section (especially in Section
4.5), the supervised evaluation methods experimented in
this paper are generally biased. Their intra-region and
inter-region measures are not balanced. The changes in
inter-region measures easily swamp changes in intra-region
measures, so they are generally biased towards under-seg-
mentation. In Experiment 2 and 3, we are comparing two
machine segmentations. They usually have different num-
ber of segments. The biases towards under-segmentation
cause these evaluations methods have higher accuracy, as
we discussed in Section 4.2 and 4.3. While in Experiment
4, we compare machine segmentations with human seg-
mentations with the same number of segments. Now the
difference between their inter-region measures are very
small (smaller or comparable to difference between intra-
region measures), so generally these methods work poorly.
The exceptions are E and FRC, but they work better here
only because of their designs of inter-region measures indi-
rectly prefer machine segmentations.

4.5. Results and discussion

As we saw above, many of the segmentation algorithms
exhibited biases or trends under certain circumstances.
Here we summarize those findings and discuss the reasons
behind them. In doing so, we will discuss those measures
first that were more biased towards under-segmentation,
and then discuss the remaining measures, which were gen-
erally more balanced with respect to over-segmentation
versus under-segmentation.

4.5.1. F, F 0, Q, E and ECW

The first three experiments all demonstrated that five of
the evaluation measures, F, F 0, Q, E and ECW, all have
biases (and in some cases strong biases) towards under-seg-
mentation, particularly for textured images.

To examine why these methods are biased towards
under-segmentation, recall (as discussed earlier and shown
in Table 2) that for their intra-region uniformity measures,
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F, F 0, Q and ECW use the squared color error or color dif-
ferences for each segment, while E uses region entropy.
These metrics for intra-region uniformity generate large
values in noisy and highly-textured regions. As a result,
as the number of regions decreases the intra-region unifor-
mity values do not increase significantly in textured or
noisy images. Conversely, the inter-region disparity mea-
sures decrease much more quickly as the number of regions
decreases. The degree to which this occurs varies between
these five metrics, but they all commonly display this effect
where the inter-region values decrease faster than the intra-
region values increase as the number of segments decrease.
The end result is that the overall goodness measure com-
puted by these metrics is frequently lower (indicating a
‘‘better’’ segmentation) in segmentations with fewer regions
in noisy/textured images, which explains the bias towards
under-segmentation.

F, F 0 and Q are further biased towards under-segmenta-
tion because they use a weighting factor to penalize against
over-segmentation. The weighting factor is a variable value
which is a function of the sizes of the segments and the
total number of segments. In general however, this weight-
ing factor is much larger than it needs to be (if in fact it is
needed at all), which further explains the bias of these three
methods towards under-segmentation.

Finally, we also saw from experiment four that E is
biased towards segmentations with unequal-sized regions.
This was found to be beneficial for the evaluation measure
since it corresponds well with human interpretation of
images, which frequently contain real-world objects that
vary widely in size. As a result, E performed much better
in experiment four than most of the other evaluation mea-
sures. However, it is also straightforward to envision sce-
narios containing images with many similar-sized regions,
in which case E would not prove as accurate because of
its bias towards unequal-sized segments.

4.5.2. Zeb, FRC, Vs and Vm
Zeb, FRC, Vs and Vm were all more balanced with

respect to under-segmentation and over-segmentation, with
only slight or negligible biases one way or the other.

Although Zeb uses the average color difference as intra-
region uniformity measure, it uses the average local color
differences along boundaries as the inter-region disparity
measure. Moreover, Zeb combines metrics by dividing
the inter-region metric by the intra-region metric, so it is
less biased than F, F 0, Q, E and ECW.

For textured images, FRC uses texture as the uniformity
measure, which is less sensitive to noise than both squared
color error and color difference, if an appropriate texture
measure is used. It uses Euclidean distance between bary-
centers of regions as the disparity measure, which indirectly
describes disparity. Although FRC performs better than the
others in the experiments, its uniformity measure and dis-
parity measure are not guaranteed to counteract each other
reliably, so may achieve poorer results under different
circumstances.
Vs and Vm use local color difference along the bound-
aries as disparity measure, which is more effective as com-
pared to color difference between neighboring regions.
They also use simple shape measures to counteract their
disparity measure’s bias towards over-segmentation, and
accommodate the Human Visual System by varying the
weights for different segments based on the estimated
importance of each region to human viewers, which is
likely why they achieve relatively good evaluation perfor-
mance in the experiments.

5. Summary analysis

Both the analysis and the experiments demonstrate that
the existing unsupervised evaluation methods are far from
perfect. As the experimental results demonstrate, the exist-
ing approaches are most effective at comparing segmenta-
tions produced by different parameterizations of the same
segmentation algorithm, they are much less effective at
comparing segmentations from different algorithms, and
most are particularly poor at distinguishing human seg-
mentations versus machine segmentations. The initial
experiments demonstrated one of the major problems with
current methods, which is the bias in many of the methods
towards under-segmentation. As discussed in Section 4.1,
the bias of many of the uniformity measures becomes par-
ticularly strong in textured or noisy images, which stems
from the fact that the various intra-region uniformity mea-
sures are all too sensitive to noise.

The second major problem became readily apparent
from the final experiment, which is that most of the meth-
ods assume a single underlying distribution, usually Gauss-
ian-like, of the pixels in each segment. Since human
segmentations essentially define the ideal target for image
segmentation, this is a particularly significant problem,
particularly in image segmentation algorithms, such as
edge-based methods, that enable compound segments con-
taining multiple sub-regions.

Another important problem, which is not as apparent
from the experimental results, is that the existing inter-
region disparity measures frequently do not complement
the intra-region measures well. While texture as a unifor-
mity measure and local color difference as a disparity mea-
sure outperformed the others in the experiments, there is
no effective way to combine them to ensure a reliable over-
all measure. Examining the intra-region homogeneity met-
rics and inter-region disparity metrics, we found that they
commonly have different value ranges, which accounts in
part for biases towards over-segmentation and under-seg-
mentation. Most evaluation methods currently combine
the two in an additive fashion, in which case the ranges
of the two parts should have equivalent ranges in order
to counteract each other well. Alternatively, different meth-
ods for combining the two parts, such as subtractive or
divisive, as used by FRC and Zeb, respectively, may prove
more effective. As we saw with FRC in the fourth experi-
ment, it was still effective at distinguishing human versus
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machine segmentations even though it was still prone to the
distribution assumption problem for non-textured images.

The final, and likely most difficult problem, is essentially
the same problem that image segmentation itself frequently
encounters, which is that the methods currently rely solely
on low-level feature extraction, and do not consider the
semantic meanings of segments. As a result, the best seg-
mentation result as identified by these evaluation methods
may well not be the best segmentation in a human’s judg-
ment. It is well known in image segmentation research that
purely data-driven segmentation methods based on simple
assumptions (such as partitioning an image into different
homogeneous regions) is likely to fail in non-trivial situa-
tions. Consequently, measuring only the uniformity and/
or heterogeneity of simple features, it is unlikely that a seg-
mentation evaluation method can achieve performance
comparable to a human evaluator.

Resolving these problems is important to the success of
unsupervised segmentation evaluation methods.

6. Evaluation using machine learning

All methods discussed in Section 3 are one-level meth-
ods. More specifically, in those unsupervised methods,
the constituent metrics are combined in some fixed and pre-
determined way, as described in Section 3.6, without fur-
ther analysis of the results, or learning from their
previous behavior. Since these measures usually examine
different fundamental criteria of the objects, or examine
the same criteria in a different fashion, they usually work
well in some cases, but poorly in the others.

Zhang et al. [65] propose a Meta-evaluation technique
(and a Co-evaluation framework [57] as a precursor), in
which different measures evaluate a segmentation in differ-
ent ways in the first level, then in the second level a meta-
learner generates the final judgment by combining all first-
level evaluation results. In the training process, first-level
evaluation results, image features, and the corresponding
human evaluation are all sent to the meta-learner, enabling
the meta-learner to learn how to coalesce the results from
the constituent measures under different circumstances,
i.e. it learns for what types of images each evaluation mea-
sure generates good results and which images generate bad
results. This enables it to leverage the appropriate evalua-
tion measures to achieve reliable overall results.

Because of the structure and working mechanism of this
method, different evaluation methods can be used together
to improve the evaluation performance. The resulting
Meta-evaluation is unsupervised if all of its constituent
first-level evaluation methods are unsupervised.

Examining the results of the Meta-evaluation for three
of the four experiments in the last section, we found the fol-
lowing: For experiment two, using E, F, Q, Vs and Vm as
the first level evaluation measures, the Meta-evaluation
achieves an accuracy of 85.53% (versus 74.0% from the best
result without Meta-evaluation). For experiment three,
using F, Q, E, Vs and FRC as the first level evaluation mea-
sures, the Meta-evaluation achieves an accuracy of 73.86%
(versus 56.1% from the best result without Meta-evalua-
tion). And finally, for experiment four, using F, F 0, E,
ECW and FRC as the first level evaluation measures, the
Meta-evaluation achieves an accuracy of 95.87% (versus
82.1% from the best result without Meta-evaluation). The
accuracy of the Meta-evaluation in each of these three
experiments is significantly better than both the accuracy
of any of the constituent first level measures (as shown in
Tables 3–5), and the accuracy of any unsupervised one-
level evaluation method examined in this paper.

7. Conclusion and future directions

In this paper, we examine the breadth of existing unsu-
pervised methods that objectively evaluate image segmenta-
tion. We first present the full range of segmentation
evaluation methodologies, and discuss the advantages and
shortcomings of each type of evaluation, including subjec-
tive, supervised, system-level, and unsupervised evaluation,
among others. Subjective and supervised evaluation are cur-
rently the two most popular methods, but they have their
disadvantages. Subjective evaluation demands time-con-
suming human studies in which a large body of human sub-
jects evaluates segmentations over a wide variety of images.
Supervised methods necessitate comparison against a man-
ually-segmented reference image, which are tedious to pro-
duce and can vary widely from one human to another.
Unsupervised segmentation evaluation methods offer the
unique advantage that they are purely objective and do
not require a manually-segmented reference image. This
advantage is crucial to general-purpose segmentation appli-
cations, such as those embedded in real-time systems, where
a large variety of images with unknown content and no
ground truth need to be segmented.

We comprehensively analyze the advantages and short-
coming of the underlying design mechanisms of the various
unsupervised segmentation evaluation measures through
analytical evaluation and experimentation. We classify
these methods according to their evaluation criteria, how
they define their metrics, and how they combine their indi-
vidual metrics. These underlying metrics and combination
methods help determine the performance of an evaluation
measure. We also implemented nine of the evaluation
methods suitable for color images, and tested their perfor-
mance with four different experiments. Finally, we
reviewed a promising recent technique employing machine
learning to coalesce the results of multiple evaluators to
provide much greater overall evaluation accuracy.

The empirical results demonstrate that unsupervised
segmentation evaluation performs reasonably-well in eval-
uating segmentations produced by the same segmentation
algorithm, but have much more modest performance in
comparing evaluation methods produced by different algo-
rithms and in comparing human versus machine segmenta-
tions. We have identified four of the major problems in the
current methods, which include:
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(i) The existing intra-region uniformity metrics are too
sensitive to noise and are biased towards under-
segmentation.

(ii) Most existing metrics assume a single underlying dis-
tribution, usually Gaussian-like, of pixels in a
segment.

(iii) The homogeneity and disparity metrics are frequently
not balanced and do not complement each other
effectively.

(iv) All the evaluation methods use only low-level fea-
tures and do not incorporate semantic information.

All four of these are important problems, and need to be
addressed in future methods in order to make unsupervised
segmentation evaluation a truly viable and robust
technology.

7.1. Future directions

In working towards resolving some of these problems,
one alternative is to use more sophisticated feature repre-
sentations. Instead of using a purely data-driven evaluation
using basic image features, higher-level information about
regions could be used. For instance, the image epitome
[66] could be used to measure the similarity between
regions. Since an image epitome provides a composite
description of shape and appearance, it is possible to
achieve a better measure of homogeneity/heterogeneity of
the segments. Furthermore, this metric unifies the measures
for intra-region homogeneity and inter-region heterogene-
ity should be unified, enabling them to counteract each
other nicely and provide a reliable overall measure.

As a first step towards resolving the semantic informa-
tion problem, when possible, prior knowledge, especially
application-dependent knowledge, should be incorporated
into an evaluation method so that the evaluation method
knows the preferred characteristics of a segment (as corre-
sponding to a real-world object). Two methods can be
applied to include prior knowledge about a preferred seg-
mentation. One method is to design object models. In the
example of human face segmentation, using a model defin-
ing the configuration of a human face could enable an eval-
uation method to more effectively human bodies and faces.

The other method to obtain prior knowledge is though
machine learning. An evaluation method learns the knowl-
edge about a good segmentation in the training process in
which examples and their correct human labels are pro-
vided. With such knowledge, an evaluation method differ-
entiates segmentations based not only on the low-level
feature characteristics, but also on how human evaluators
subjectively rank them. The Meta-evaluation in Section 6
is one example of learning-aided evaluation methods. Since
the prior knowledge is gained through the training process,
not through manually-segmented reference images, these
methods are still unsupervised evaluation methods.

One final possible direction for future research is in re-
engineering existing image segmentation methods to per-
form segmentation evaluation. Since existing segmentation
algorithms predominantly perform image segmentation by
performing a sequence of decisions in identifying pixel
regions based on quantitative image, region, and pixel fea-
ture data, many of these algorithms could be re-designed to
serve as evaluators. The key difference between segmenting
an image and evaluating a segmented image is that in eval-
uation, the completed segmentation is provided and the
quantitative score must be computed based on knowledge
of the final result, not on knowledge of the sequence of seg-
mentation steps. Consequently, if the approximate
sequence of segmentation steps can be extrapolated from
the final segmentation, and the series of segmentation steps
can be effectively quantified into a segmentation score, then
the image segmentation algorithm can be re-engineered to
serve as an unsupervised segmentation evaluation method.
Appendix A. Evaluation metric equations

We use the following notation for the evaluation met-
rics. Let I be the segmented image with the height Ih and
width Iw. Let SI be the area (as measured by the number
of pixels) of the full image (i.e. SI = Ih · Iw). Observe that
SI is independent of the segmentation itself. We define a
segmentation as a division of the image into N arbi-
trarily-shaped (and possibly non-contiguous) regions. We
use Rj to denote the set of pixels in region j, and use
Sj = jRjj to denote the area of region j. For component x

(e.g. x might be the red, green, or blue intensity value)
and pixel p, we use Cx(p) to denote the value of component
x for pixel p. We define the average value of component x

in region j by

bCxðRjÞ ¼
X
p2Rj

CxðpÞ
 !

=Sj ðA1Þ

The squared color error of region j is defined as

e2
xðRjÞ ¼

X
p2Rj

ðCxðpÞ � bCxðRjÞÞ2 ðA2Þ

We use N(a) to denote the number of regions in the seg-
mented image having an area of exactly a, MaxArea to de-
note the area of the largest region in the segmented image,
and Z as a normalization factor. The subscript ‘‘gl’’ de-
notes gray-level, subscript ‘‘o’’ means those measures for
object, and subscript ‘‘b’’ means those for background.

A.1. Intra-region uniformity metrics

A.1.1. DWR

Discrepancy ¼
XIh

i

XIw

j

ðCglði; jÞ � Lði; jÞÞ ðA3Þ

where Cgl(i, j) is the gray-level value of pixel p(i, j) on origi-
nal image and L(i, j) is the gray-level value of p(i, j) on the
image after thresholding.
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A.1.2. Eintra of ECW

Eintra ¼
P

p2Il jjCo
xðpÞ � Cs

xðpÞjjL�a�b � TH
� �

SI
ðA4Þ

where Co
xðpÞ and Cs

xðpÞ are pixel feature value (color com-
ponents in CIEL*a*b space) for pixel p on original and seg-
mented image, respectively, TH is the threshold to judge
significant difference, and l(t) = 1 when t > 0, otherwise
l(t) = 0.
A.1.3. Ij of Zeb

Ij ¼
1

Sj

X
s2Rj

maxfcontrastðs; tÞ; t 2 W ðsÞ
\

Rjg ðA5Þ

where W(p) is the neighborhood of the p, and con-
trast(s, t) = jCx(s) � Cx(t)j is the contrast of pixel s and t.
A.1.4. r2
W of g

r2
W ¼

Sb

SI
e2

glðRbÞ þ
So

SI
e2

glðRoÞ: ðA6Þ
A.1.5. Gray-level uniformity measure (U) of PV

U ¼ 1�
XN

j¼1

e2
glðRjÞ � W j

Z
ðA7Þ

where Wj is a weighting factor.
A.1.6. Normalized uniformity measure (NU)

NU ¼ 1�
e2

glðRoÞ þ e2
glðRbÞ

Z
ðA8Þ
A.1.7. D(I) of FRC

DðIÞ ¼ 1

N

XN

j¼1

Sj

SI
e2

xðRjÞ ðA9Þ

where x2 {color components} (RGB in our experiments).
A.1.8. F

F ðIÞ ¼
ffiffiffiffi
N
p XN

j¼1

e2
jffiffiffiffiffi
Sj

p : ðA10Þ
A.1.9. F 0

F 0ðIÞ ¼ 1

1000 � SI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXMaxArea

a¼1
½NðaÞ�1þ1=a

r XN

j¼1

e2
jffiffiffiffiffi
Sj

p ðA11Þ
A.1.10. Q

QðIÞ ¼ 0

ffiffiffiffi
N
p

1000 � SI

XN

j¼1

e2
j

1þ log Sj
þ NðSjÞ

Sj

� �2
" #

ðA12Þ
A.1.11. Ra of PV

Ra ¼
NRa=Sa

NRI=SI
ðA13Þ

where NRa means the number of regions in area a.

A.1.12. SI and text_var of VCP

SIj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nj

X
j

X
k

sobel2
j �

1

Nj

X
j

X
k

sobelj

 !2
vuut ðA14Þ

text varðRjÞ ¼
1

5
3r2

Y ðRjÞ þ r2
UðRjÞ þ r2

V ðRjÞ

� �
ðA15Þ

where SIj is the standard deviation of the Sobel coefficients
of region Rj after Sobel operator being applied, and r2

Y ðRjÞ,
r2

UðRjÞ and r2
V ðRjÞ are the variances of the Y, U and V com-

ponents of the pixels in region Rj.

A.1.13. H(2) of SE

H ð2ÞðRkÞ ¼ �
XT

i¼0

XT

j¼0

pij ln pij ðA16Þ

where pij is the probability from the co-occurrence matrix
for pixel intensities i and j, and T is the assumed threshold.

A.1.14. Hr of E

Given a segmented image, define Vj as the set of all pos-
sible values associated with the luminance in region j. Then,
for region j of the segmentation and value m of the lumi-
nance in that region, Lj(m) denotes the number of pixels
in region j that have a value of m for luminance in the ori-
ginal image. The entropy for region j is defined as:

HrðRjÞ ¼ �
X
m2V j

LjðmÞ
Sj

log
LjðmÞ

Sj
: ðA17Þ
A.2. Inter-region disparity metrics

A.2.1. r2
B of g

r2
B ¼

Sb

SI
� So

SI
� ðbCglðRoÞ � bCglðRbÞÞ2 ðA18Þ
A.2.2. Region contrast (Ca) of PV
For an area a, Ca is computed as:

Ca ¼
X
Rj2a

vj

X
adjRi

pij
jbCðRiÞ � bCðRjÞjbCðRiÞ þ bCðRjÞ

 ! X
Rj2a

vj

,
ðA19Þ
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where pij is the adjacency value used for weighting the con-
trast between regions, and vj is the weight for region Rj,
using a function approximating human contrast sensitive
curve.

A.2.3. DðIÞ of FRC

DðIÞ is defined as the average of the weighted sum of
DðRiÞ for each of the region Ri. DðRiÞ is defined as the dis-
parity between two regions. For two uniform regions Ri

and Rj, the disparity is:

DðRi;RjÞ ¼
jbCglðRiÞ � bCglðRjÞj

NG
ðA20Þ

where NG is the number of gray levels in the image.

A.2.4. Einter of ECW

Einter ¼
XN

i¼1

XN

j¼1;j 6¼i

lðTH� jjCo
xðpÞ � Cs

xðpÞjjL�a�b
	 �

�wij=ðSI � ZÞ� ðA21Þ

where wij denotes the jointed length between Ri and Rj, and
TH is the threshold to judge significant difference.

Also, as in Eq. (A4), Co
xðpÞ and Cs

xðpÞ are pixel feature
value (color components in CIEL*a*b space) for pixel p

on original and segmented image, respectively. TH is the
threshold to judge significant difference, and l(t) = 1 when
t > 0, otherwise l(t) = 0.

A.2.5. Contrast of VCP

contrast ¼
P

i;jð2 maxðDY
i;jÞ þmaxðDU

i;jÞ þmaxðDV
i;jÞÞ

4 � 255 � N b

ðA22Þ

where Nb is the number of border pixels for the object, and
DX

i;j is the differences between the X component (X 2
{Y,U,V}) of an object’s border pixel and its four
neighbors.

A.2.6. Ej of Zeb

Ej ¼
1

NbðRjÞ
�X

s2nðRjÞ
maxfcontrastðs; tÞ; t 2 W ðsÞ; t 62 Rjg ðA23Þ

where n(Rj) is the set of pixels on the border of Rj, and
Nb(Rj) is the total length of the border of Rj.

A.2.7. VEST

VEST measures the spatial color contrast along the
boundary of each object. It is defined as:

dcolor ¼ 1� 1

K t

XKt

i¼1

jjCi
O � Ci

I jjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� 2552Þ

q ðA24Þ
where Ci
O and Ci

I are the average color calculated in the
neighborhood of outside and inside pixel, respectively,
and Kt is the total number of normal lines drawn on the ob-
ject boundary.

A.2.8. DðIÞ of FRC

DðIÞ is the average of D(Ri,Rj) and

DðRi;RjÞ ¼
dðBi;BjÞ
jjBijj þ jjBjjj

ðA25Þ

where Bi is the barycenter of region Ri and d(.,.) is the
Euclidean distance.

A.2.9. Hl of E

H ‘ðIÞ ¼ �
XN

j¼1

Sj

SI
log

Sj

SI
: ðA26Þ
A.3. Semantic matrics

A.3.1. SM

SM ¼ 1

C

X
ðx;yÞ
fSgn½Cðx; yÞ � CNðx;yÞ�dðx; yÞ

Sgn½Cðx; yÞ � T �g ðA27Þ

where d(x,y) is the gradient at pixel (x,y), T is segmenta-
tion threshold and CN(x,y) is the average value of the neigh-
bors of pixel (x,y).

A.3.2. Shape regularity of VCP

For an object j,

compactness ¼
p2

j

Sj
; ðA28Þ

circularity ¼ 4 � p � Sj

p2
j

; ðA29Þ

elongation ¼ Sj

ð2 � thicknessjÞ2
; ðA30Þ

where pj is the perimeter of object Rj, thickness being the
number of morphological erosion steps [67] that can be ap-
plied to the object until it disappears.
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